Worksheet 13 - Substitution in Double Integrals

1. Sketch and describe the region in the (u, v)-plane obtained by applying the transformation

$$
u=2 x-y ; v=x+y
$$

to the triangle with vertices $(1,2),(2,1)$, and $(3,4)$ in the (x, y)-plane.
2. Sketch and describe the region in the (u, v)-plane obtained by applying the transformation

$$
u=x / y ; v=x y ; x, y>0
$$

to the square $[1,2] \times[1,2]$ in the (x, y)-plane.
3. Compute

$$
\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A
$$

where R is the trapezoidal region in the (x, y)-plane with vertices $(1,0),(2,0),(0,2)$, and $(0,1)$.
Hint: Use the substitution $u=y-x ; v=y+x$.
4. Compute

$$
\iint_{R} x^{2} d A
$$

where R is the region in the (x, y)-plane bounded by the ellipse $9 x^{2}+4 y^{2}=36$, by using the substitution $u=x / 2$ and $v=y / 3$.
5. Compute

$$
\iint_{R}\left(\frac{x-y}{x+y+2}\right)^{2} d A
$$

where R is the square in the (x, y)-plane with vertices $(0,1),(-1,0),(0,-1),(1,0)$.
Hint: Use the substitution $u=x-y, v=x+y+2$.
6. Compute

$$
\iint_{R} e^{\frac{x+y}{4 x+y}} d A
$$

where R is the region in the (x, y)-plane determined by

$$
R=\{(x, y): 1 \leq 4 x+y \leq 2 ; x \geq 0 ; y \geq 0\}
$$

Hint: Use the substitution $u=x+y ; v=4 x+y$.

