Math 2551 (L1-L3) 4/3/2016

Worksheet 15

Part I - Line Integrals

- 1. Find $\int_C xy^4 ds$, where C is the right half of the circle $x^2 + y^2 = 16$.
- 2. Find $\int_C (2+x^2y) ds$, where C is the upper half of the unit circle $x^2 + y^2 = 1$..
- 3. Find $\int_C \frac{x^2}{y^{4/3}} ds$, where C is the curve: $\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j}$, $-3 \le t \le 1$.
- 4. Find the line integral of f(x, y, z) = xyz along the curve C given by the helix:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + 3t\vec{k}, \ 0 \le t \le 4\pi.$$

Figure 1: Helix

Part II - Flow, Circulation and Flux

- 1. Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} xy \mathbf{j}$ to move a particle along the quarter circle $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j}, \ 0 \le t \le \frac{\pi}{2}$.
- 2. Find the flow of the field $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$ along the curve C: $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$, $0 \le t \le 1$.
- 3. Find the flow of the field $\mathbf{F}(x,y) = x^2 y^3 \mathbf{i} y \sqrt{x} \mathbf{j}$ along the curve C: $\mathbf{r}(t) = t^2 \mathbf{i} t^3 \mathbf{j}, 0 \le t \le 1$.
- 4. Find the flow of the field $\mathbf{F}(x, y, z) = \sin(x)\mathbf{i} + \cos(y)\mathbf{j} + xz\mathbf{k}$ along the curve C: $\mathbf{r}(t) = t^3\mathbf{i} t^2\mathbf{j} + t\mathbf{k}$, $0 \le t \le 1$.
- 5. Consider the vector field $\mathbf{F}(x, y) = (x y)\mathbf{i} + (xy)\mathbf{j}$ (see Figure 2).
- a). Find the flow of **F** along C_1 , where C_1 is the arc of the circle $x^2 + y^2 = 4$ traversed counterclockwise from (2,0) to (0,-2).
- b). Find the flow of **F** along C_2 , where C_2 is the arc of the circle $x^2 + y^2 = 4$ traversed counterclockwise from (0, -2) to (2, 0).
- c). Find the *circulation* of **F** around the circle C: $x^2 + y^2 = 4$.
- d). Find the *flux* of **F** around the circle C: $x^2 + y^2 = 4$.

Figure 2: The vector field \mathbf{F} and the curve C in Problem II.5.

6. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x,y) = \langle e^{x-1}, xy \rangle$$
 and $\mathbf{r}(t) = \langle t^2, t^3 \rangle, \ 0 \le t \le 1.$

7. Find the work done by the force field $\mathbf{F}(x, y) = \langle x, y + 2 \rangle$ to move a particle along an arch of the cycloid (See Figure 3):

C:
$$\mathbf{r}(t) = \langle t - \sin(t), 1 - \cos(t) \rangle; \quad 0 \le t \le 2\pi.$$

Figure 3: The vector field \mathbf{F} and the curve C in Problem II.7.

8. Figure 4 shows a plot of the so-called "vortex" vector field:

$$\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$

Find the circulation and the flux of this field around the circle C, centered at the origin, of radius 2, traversed counterclockwise.

Figure 4: The "vortex" vector field ${\bf F}$ and the curve C in Problem II.8.