## Worksheet 6

1. Consider the curve:

$$
\mathbf{r}(t)=\left\langle t^{2}, \sin t, t\right\rangle ; 3 \leq t \leq 9
$$

Give a new parametrization $\mathbf{r}_{1}(s)$ of this curve in terms of the parameter $s$, given by $t=e^{s}$.
2. Find the arc length parametrization for the line $\mathbf{r}(t)=\langle 2 t, 1-2 t$, $\rangle$, taking $(0,1,0)$ as your basepoint.
3. Recall the definition of curvature of a curve $\mathbf{r}(t)$ :

$$
\kappa(t)=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}(t)|}\left|\frac{d \mathbf{T}}{d t}\right|,
$$

where $\mathbf{v}(t)$ is the velocity and $\mathbf{T}(t)$ is the unit tangent vector.
a). Show that curvature can also be expressed as:

$$
\kappa(t)=\frac{|\mathbf{v}(t) \times \mathbf{a}(t)|}{|\mathbf{v}(t)|^{3}}
$$

where $\mathbf{a}(t)$ is the acceleration. As highlighted in the next example, this latter formula is often easier to use than the original definition. Follow the steps below to prove this new formula:

- Show that:

$$
\mathbf{v}(t)=\frac{d s}{d t} \mathbf{T}(t) \quad \text { and } \quad \mathbf{a}(t)=\frac{d^{2} s}{d t^{2}} \mathbf{T}(t)+\frac{d s}{d t} \frac{d \mathbf{T}}{d t}
$$

- Use the expressions above to show that

$$
\mathbf{v}(t) \times \mathbf{a}(t)=|\mathbf{v}(t)|^{2}\left(\mathbf{T}(t) \times \frac{d \mathbf{T}}{d t}\right)
$$

- Take the length of both sides above to show that

$$
|\mathbf{v}(t) \times \mathbf{a}(t)|=|\mathbf{v}(t)|^{2}\left|\frac{d \mathbf{T}}{d t}\right|
$$

- Conclude the new formula for curvature.
b). Compute the curvature of $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.

4. At what point on the curve $\mathbf{r}(t)=\left\langle t^{3}, 3 t, t^{4}\right\rangle$ is the normal plane parallel to the plane $6 x+6 y-8 z=1$ ? Recall that the normal plane is the one determined by $\mathbf{B}$ and $\mathbf{N}$.
5. Suppose a Ferris wheel is a circle of radius $R=30 \mathrm{~m}$. At time $t=t_{0}$, a person is seated in the car at the lowest point of the wheel (see figure), which is rotating counterclockwise with a speed of $30 \mathrm{~m} / \mathrm{min}$ and is slowing down at a rate of $15 \mathrm{~m} / \mathrm{min}^{2}$ at this time. Find the acceleration vector $\mathbf{a}\left(t_{0}\right)$. How would your answer change if the wheel was rotating clockwise?

