\qquad
February $10^{\text {th }}, 2016$.
Math 2551; Sections L1, L2, L3.
Georgia Institute of Technology

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	16	
3	16	
4	18	
5	20	
6	10	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

Angle $\theta(0 \leq \theta \leq \pi)$ between vectors \mathbf{u} and \mathbf{v} :

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} ; \quad \sin \theta=\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}||\mathbf{v}|}
$$

Vector Projection of \mathbf{u} onto $\mathbf{v} \neq 0$:

$$
\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=|\mathbf{u} \cos \theta| \frac{\mathbf{v}}{|\mathbf{v}|}
$$

Distance from a point S to a line L going through P and parallel to \mathbf{v} :

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Length of a smooth curve C : $\mathbf{r}(t)$, traced exactly once as $a \leq t \leq b$:

$$
L=\int_{a}^{b}|\mathbf{v}(t)| d t
$$

Arclength parameter:

$$
s(t)=\int_{t_{0}}^{t}|\mathbf{v}(\tau)| d \tau
$$

TNB Frame:

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|} ; \quad \mathbf{N}=\frac{d \mathbf{T} / d s}{\kappa}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|} ; \quad \mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

Curvature:

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}} .
$$

Tangential and Normal Components of Acceleration:

$$
\begin{gathered}
\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N} \\
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}|\mathbf{v}(t)|
\end{gathered}
$$

$$
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}(t)|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{T}^{2}}
$$

Torsion:

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}=-\frac{1}{|\mathbf{v}|} \frac{d \mathbf{B}}{d t} \cdot \mathbf{N}
$$

1. [20 points] Consider the vectors:

$$
\begin{gathered}
\mathbf{u}=\langle 1,0,2\rangle \\
\mathbf{v}=\langle-1,2,1\rangle
\end{gathered}
$$

a). Find $\mathbf{u} \cdot \mathbf{v}$.
b). Find the angle θ between the two vectors. Give an exact answer.
c). Find $\mathbf{u} \times \mathbf{v}$.
d). Find $\mathbf{v} \times \mathbf{u}$.
2. [16 points] Find parametric equations for the line tangent to the curve

$$
\mathbf{r}(t)=\left\langle e^{t}, t e^{t}, t e^{t^{2}}\right\rangle
$$

at the point $(1,0,0)$.
3. [16 points] Find the length of the curve:

$$
\mathbf{r}(t)=\left\langle e^{t}, e^{t} \sin t, e^{t} \cos t\right\rangle
$$

between the points $(1,0,1)$ and $\left(e^{2 \pi}, 0, e^{2 \pi}\right)$.
4. [18 points] Consider the curve:

$$
\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle
$$

and its unit tangent and unit normal vectors:

$$
\begin{gathered}
\mathbf{T}=\left\langle-\frac{3}{5} \sin t, \frac{3}{5} \cos t, \frac{4}{5}\right\rangle, \\
\mathbf{N}=\langle-\cos t,-\sin t, 0\rangle
\end{gathered}
$$

a). Find the unit binormal vector \mathbf{B}.
b). Find the torsion τ along this curve.
5. [20 points] Find the following limits:
a). $\lim _{(x, y) \rightarrow(0,0)} \frac{-2 e^{-4 y} \sin (3 x)}{-x}$
b). $\lim _{\substack{(x, y) \rightarrow(0,0) \\ x \neq y}} \frac{x-y+5 \sqrt{x}-5 \sqrt{y}}{\sqrt{x}-\sqrt{y}}$

Consider the function

$$
f(x, y)=\frac{y^{4}-2 x^{2}}{y^{4}+x^{2}}
$$

c). Find the limit of $f(x, y)$ as (x, y) approaches $(0,0)$ along the x-axis.
d). Find the limit of $f(x, y)$ as (x, y) approaches $(0,0)$ along the y-axis.
e). What conclusion can you draw about

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}-2 x^{2}}{y^{4}+x^{2}} ?
$$

6. [10 points] Find the point on the curve

$$
\mathbf{r}(t)=\left\langle t^{3}, t^{2}+1, t-1\right\rangle
$$

where the normal plane is orthogonal to the plane $\frac{1}{3} x-y+z=4$. Recall that the normal plane is determined by \mathbf{N} and \mathbf{B}.

