Math 308-Differential Equations
Section 501
Texas A\&M University, Spring 2022.

Laplace Transform:

Convolutions and Laplace Transform

1. Use convolutions to find

$$
\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+k^{2}\right)^{2}}\right\}
$$

where $k \neq 0$ is a constant.
2. Find

$$
\mathscr{L}^{-1}\left\{\frac{G(s)}{(s-1)^{2}+1}\right\}
$$

where $G(s)$ is the Laplace transform of a piecewise continuous function $g(t)$ of exponential order. Specifically, your answer should be $(f \star g)(t)$, where you specify the function $f(t)$ explicitly (g is any appropriate function).
3. Find the solution to the initial value problem:

$$
y^{\prime \prime}+k^{2} y=g(t) ; y(0)=\alpha, y^{\prime}(0)=\beta
$$

where $k \neq 0, \alpha$ and β are constants, and $g(t)$ is a piecewise continuous function of exponential order. Your answer will contain a convolution $f \star g(t)$, you must only specify the function $f(t)$ explicitly.

Solve the following equations - all examples of Volterra integral equations:
4. $x(t)=2 \cos t+3 \int_{0}^{t} \sin (t-y) x(y) d y$.
5. $x(t)=t^{3}+\int_{0}^{t}(t-y) x(y) d y$.
6. $y(t)=e^{t}+\int_{0}^{t} y(\tau) d \tau$.
7. $y(t)=1+\int_{0}^{t}(\tau-t) y(\tau) d \tau$.
8. $y(t)=\int_{0}^{t}(\tau-t) y(\tau) d \tau$.
9. Kirchhoff's second law in a series RLC circuit (consisting of a resistor, an inductor, and a capacitor) is:

$$
L \frac{d i}{d t}+R i(t)+\frac{1}{C} \int_{0}^{t} i(\tau) d \tau=E(t)
$$

where $E(t)$ is the voltage. Find the current $i(t)$ in such an RLC circuit, where

$$
L=0.1 h ; R=2 \Omega ; C=0.1 f ; \quad i(0)=0
$$

and the voltage function is given by

$$
E(t)=120 t\left(1-u_{1}(t)\right)
$$

Laplace transforms of some basic functions
$\mathscr{L}\{1\}=\frac{1}{s} ; s>0$
$\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} ; s>0$
$\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a} ; s>a$

$$
\begin{array}{ll}
\mathscr{L}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}} ; s>0 & \mathscr{L}\{\sinh (a t)\}=\frac{a}{s^{2}-a^{2}} ; s>|a| \\
\mathscr{L}\{\cos (a t)\}=\frac{s}{s^{2}+a^{2}} ; s>0 & \mathscr{L}\{\cosh (a t)\}=\frac{s}{s^{2}-a^{2}} ; s>|a| \\
\mathscr{L}\left\{u_{a}(t)\right\}=\frac{e^{-a s}}{s} ; s>0 ; a>0 . & \mathscr{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}} ;\left(t_{0}>0\right)
\end{array}
$$

Inverse Laplace transforms of some basic functions

$$
\begin{array}{lll}
\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1 & \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+a^{2}}\right\}=\frac{1}{a} \sin (a t) & \mathscr{L}^{-1}\left\{\frac{1}{s^{2}-a^{2}}\right\}=\frac{1}{a} \sinh (a t) \\
\mathscr{L}^{-1}\left\{\frac{1}{s^{n}}\right\}=\frac{1}{(n-1)!} t^{n-1} & \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+a^{2}}\right\}=\cos (a t) & \mathscr{L}^{-1}\left\{\frac{s}{s^{2}-a^{2}}\right\}=\cosh (a t) \\
\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t} & \mathscr{L}^{-1}\left\{\frac{e^{-a s}}{s}\right\}=u_{a}(t) & \mathscr{L}^{-1}\left\{e^{-s t_{0}}\right\}=\delta\left(t-t_{0}\right) ;\left(t_{0}>0\right)
\end{array}
$$

Properties of the Laplace and Inverse Laplace transform

Translation Theorem I:

$$
\begin{aligned}
& \mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)=\left.\mathscr{L}\{f(t)\}\right|_{s \rightarrow s-a} \\
& \mathscr{L}^{-1}\{F(s-a)\}=\mathscr{L}^{-1}\left\{\left.F(s)\right|_{s \rightarrow s-a}\right\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}=e^{a t} f(t)
\end{aligned}
$$

Translation Theorem II:

$$
\begin{aligned}
& \mathscr{L}\left\{f(t-a) u_{a}(t)\right\}=e^{-a s} F(s)=e^{-a s} \mathscr{L}\{f(t)\} \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u_{a}(t)=\left.\mathscr{L}^{-1}\{F(s)\}\right|_{t \rightarrow t-a} u_{a}(t)
\end{aligned}
$$

Derivatives of Laplace Transforms:

$$
\begin{aligned}
& \mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s) \\
& \mathscr{L}^{-1}\left\{F^{(n)}(s)\right\}=(-1)^{n} t^{n} f(t)
\end{aligned}
$$

Laplace Transforms of Derivatives:

Laplace Transform of Periodic Functions:

If $f(t)$ is piecewise continuous on $[0, \infty)$, of exponential order, and periodic with period T :

$$
\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t
$$

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime}\right\}= & s Y(s)-y(0) \\
\mathscr{L}\left\{y^{\prime \prime}\right\}= & s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\mathscr{L}\left\{y^{\prime \prime \prime}\right\}= & s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0) \\
& \vdots \\
\mathscr{L}\left\{y^{(n)}(t)\right\}= & s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\ldots-s y^{(n-2)}(0)-y^{(n-1)}(0)
\end{aligned}
$$

Convolution Theorem:

$$
\begin{aligned}
& \mathscr{L}\{f(t) \star g(t)\}=F(s) G(s)=\mathscr{L}\{f(t)\} \mathscr{L}\{g(t)\} \\
& \mathscr{L}^{-1}\{F(s) G(s)\}=f(t) \star g(t)
\end{aligned}
$$

Dirac Delta Function:

$$
\begin{aligned}
& \int_{0}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right) \\
& (f \star \delta)(t)=f(t)
\end{aligned}
$$

