(1) Attractons \& Repellers
((a)) $y^{\prime}=y^{2}-3 y$

$$
\begin{aligned}
& f(y)=y^{2}-3 y=y(y-3) \\
& f(y)=0 \Rightarrow y=0 ; y=3 \\
& y|c| c
\end{aligned}
$$

((b)) $y^{\prime}=y^{2}\left(4-y^{2}\right)$

$$
\begin{aligned}
& f(y)=y^{2}\left(4-y^{2}\right) \\
& \quad f(y)=0 \Rightarrow y=0 ; y=2 ; y=-2
\end{aligned}
$$

equilibrium solutions

| y | -20 |
| :---: | :---: | :---: |
| $4-y^{2}$ | $-0+2+0-$ |
| y^{2} | $+0+0+0+0+0+0$ |

((c)) $y^{\prime}=y \ln (y+2)$
$f(y)=y \ln (y+2)=0 \Rightarrow \underbrace{y=0, y=-1}_{\substack{\text { equilibrium soins. }}}$

(d),

$$
\begin{aligned}
& y^{\prime}=(y-2)^{4} \\
& f^{\prime}(y)=(y-2)^{4}=0 \Rightarrow y=2
\end{aligned}
$$

$$
(y-2)^{4} \geqslant 0 \text { fo all } y
$$

((e))

$$
\begin{aligned}
& y^{\prime}=y^{2}-y^{3} \\
& f(y)=y^{2}(1-y) \Rightarrow y=0 ; y=1 \\
& \begin{array}{c|c}
& 0 \\
\hline 1-y & ++++0-- \\
\hline y^{2} & ++0++++ \\
f(y) & +0+0-
\end{array} \\
& \text { equil. } 80 \text {. }
\end{aligned}
$$

((g)) $y^{\prime}=\frac{y e^{y}-q y}{e^{y}}$

$$
f(y)=\frac{y\left(e^{y}-9\right)}{e^{y}}=0 \Rightarrow \frac{y=0 ; y=\ln 9}{\text { equil. sol. }}
$$

	$0 \ln 9$
y	$-0+++$
$e^{y}-9$	$--0+$
$f(y)$	$+0-0+$

equil. sol.

(2) Logistic Equation:

$$
\frac{d y}{d t}=r\left(1-\frac{1}{k} y\right) y\left[\begin{array}{l}
\pi>0 \\
k>0
\end{array}\right.
$$

Solution subject to $y(0)=y_{0}$:

$$
y(t)=\frac{k y_{0}}{y_{0}+\left(k-y_{0}\right) e^{-r t}} ; t>0
$$

((a)) Eqvilibriuve Solutions:

$$
\begin{gathered}
y^{\prime}=\pi\left(1-\frac{1}{k} y\right) y \\
y^{\prime}=0 \Rightarrow y=0 ; y=k
\end{gathered}
$$

	0
y	$-0++++$
$1-\frac{1}{k} y$	$+++0-$

(b)) Suppose $0<y_{0}<k$. Show that $y(t)$ is increasing on $(0, \infty)$, and

$$
0<y(t) \leqslant k, \quad \forall t>0
$$

Compute $y^{\prime}(t)$:

$$
\begin{aligned}
y^{\prime}(t) & =-\frac{k y_{0}}{\left(y_{0}+\left(k-y_{0}\right) e^{-r t}\right)^{2}}\left(\left(k-y_{0}\right) \cdot(-r) e^{-r t}\right) \\
& =\frac{r y_{0} k\left(k-y_{0}\right) e^{-r t}}{\left(y_{0}+\left(k-y_{0}\right) e^{-n t}\right)^{2}}>0 \Rightarrow y(t) \text { is increasing }
\end{aligned}
$$

It is obvious that $y(t)>0$ for all t. To prove the other imgeuality:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} \frac{k y_{0}}{y_{0}+\left(k-y_{0}\right) e_{t \rightarrow \infty}^{-n t}}=\frac{k y_{0}}{y_{0}}=k
$$

So y is increasing and $\lim _{t \rightarrow \infty} y(t)=k$, so $y(t) \leqslant k$ for all $t>0$.
\Rightarrow If the initial population is smaller than the carrying capacity, the population increases over tirue and approaches the carrying capacity over time.
(c).) Suppose $y_{0}>k$. Then

$$
y^{\prime}(t)=\frac{\pi y_{0} k\left(k-y_{0}\right) e^{-r t}}{\left(y_{0}+\left(k-y_{0}\right) e^{-n t}\right)^{2}}<0 \Rightarrow y(t) \text { is decreasing }
$$

The limit as $t \rightarrow \infty$ renuaines $\lim _{t \rightarrow \infty} y(t)=K$, so because y is decreasing

$$
y(t) \geqslant k \text { for all } t
$$

\Rightarrow If the initial population exceeds the carrying capacity, the population decreases, stabilising at the carrying capacity.

$$
0 \text { only if } \mathrm{y}=0 \text { or } \mathrm{y}=\mathrm{K} \text {, }
$$

((d))

$$
\begin{aligned}
& y^{\prime}=\pi\left(1-\frac{1}{k} y\right) y \\
& y^{\prime \prime}=\pi\left(-\frac{1}{k} y+\left(1-\frac{1}{k} y\right)\right)=r\left(1-\frac{2}{k} y\right) y^{\prime}
\end{aligned}
$$ neither of which are possit on this interval.

(Recall that an inflection point of a function $f(x)$ is a point whore the second derivative $f^{\prime \prime}(x)$ changes sign, and f changes concavity). $y^{\prime \prime}=0 \Rightarrow y=\frac{k}{2} \Rightarrow$ The inflection point occurs when the population reaches $\mathrm{k} / 2$.

\Rightarrow This can only happen if $y_{0}<k$ (because if $y_{0}>k$, then $y(t) \geqslant k$ for all t).

But $y^{\prime \prime}$ is the derivative of y^{\prime} (the nate of growth), so

	$k / 2$
$y^{\prime \prime}$	$++0 \ldots$
y^{\prime}	$\longrightarrow \rightarrow+$

\Rightarrow The inflection point is where the nate of growth is maxine
\Rightarrow The population initially increases steadily from y_{0}.
Once the population reaches half the carrying capacity, it begins to grow slower and slower, eventually tapering off around K,
(3)

$$
\begin{array}{ll}
y_{0}=3 \mathrm{mg} & \frac{d y}{d t}=0.2 y\left(1-\frac{1}{100} y\right) \\
k=100 \mathrm{mg} & y(t)=\frac{300}{3+97 e^{-0.2 t}} \\
r=0.2 / \text { hour } & y
\end{array}
$$

(a))

$$
\begin{aligned}
& y(t)=20 \mathrm{mg} \\
& \Rightarrow \frac{300}{3+97 e^{-0.2 t}}=20 \Rightarrow 3+97 e^{-0.2 t}=15 \Rightarrow e^{-0.2 t}=\frac{12}{97} \\
& \Rightarrow-0.2 t=\ln (12 / 97) \\
& \Rightarrow t=\frac{\ln (97 / 12)}{0.2} \simeq 10.45 \text { hours }
\end{aligned}
$$

((b)). $y(t)=200 \mathrm{mg}$
The long way: $\frac{300}{3+97 e^{-0.2 t}}=200 \Rightarrow 3+97 e^{-0.2 t}=\frac{3}{2}$

$$
\Rightarrow 97 e^{-0.2 t}=-\frac{3}{2}
$$

No malutions: $97 e^{-0.2 t}>0 \quad \forall t$
The short may: Never, because 200 ny exceeds the carrying capacity.

