(1)

$$
\begin{aligned}
& (5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y=0 \\
& M(x, y)=5 x+4 y \quad \Rightarrow \frac{\partial M}{\partial y}=4 \\
& N(x, y)=4 x-8 y^{3} \quad \Rightarrow \frac{\partial N}{\partial x}=4
\end{aligned}
$$

Exact

Exact

Find $f(x, y)$ such that $\frac{\partial f}{\partial x}=5 x+4 y ; \frac{\partial f}{\partial y}=4 x-8 y^{3}$
\Rightarrow Solutions to the ODE : $\quad \frac{5 x^{2}}{2}+4 x y-2 y^{4}=C$
(2)

$$
\begin{aligned}
& (\sin y-y \sin x) d x+(\cos x+x \cos y-y) d y=0 \\
& M(x, y)=\sin y-y \sin x \Rightarrow \frac{\partial M}{\partial y}=\cos y-\sin x \\
& N(x, y)=\cos x+x \cos y-y \Rightarrow \frac{\partial N}{\partial x}=-\sin x+\cos y
\end{aligned}
$$

Exact

Find $f(x, y)$ sit. $\frac{\partial f}{\partial x}=\sin y-y \sin x ; \quad \frac{\partial f}{\partial y}=\cos x+x \cos y-y$

$$
\left.\begin{array}{rl}
\frac{\partial f}{\partial x}=\sin y-y \sin x \Rightarrow f(x, y) & =x \sin y+y \cos x+g(y) \\
\Rightarrow \frac{\partial f}{\partial y} & \left.=x \cos y+\cos x+g^{\prime}(y)\right\} \Rightarrow g^{\prime}(y)=-y \\
& =x \cos y+\cos x-y
\end{array}\right\} \Rightarrow g(y)=-y^{2} / 2
$$

\Rightarrow Solutions to the ODE: $x \sin y+y \cos x-y^{2} / 2=C$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=5 x+4 y \Rightarrow f(x, y)=5 \frac{x^{2}}{2}+4 x y+g(y) \\
& \left.\begin{array}{rl}
\Rightarrow \quad \frac{\partial f}{\partial y} & =4 x+g^{\prime}(y) \\
& =4 x-8 y^{3}
\end{array}\right\} \Rightarrow \begin{array}{l}
g^{\prime}(y)=-8 y^{3} \\
\Rightarrow g(y)=-2 y^{4}
\end{array} \\
& \Rightarrow f(x, y)=5 \frac{x^{2}}{2}+4 x y-2 y^{4}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& {\left[\begin{array}{c}
{[\cos (x y)-x y \sin (x y)] d x-x^{2} \sin (x y) d y=0} \\
N(x, y)
\end{array}\right.} \\
& \begin{aligned}
\frac{\partial M}{\partial y} & =-x \sin (x y)-x \sin (x y)-x^{2} y \cos (x y) \\
& =-2 x \sin (x y)-x^{2} y \cos (x y)
\end{aligned} \\
& \frac{\partial N}{\partial x}=-2 x \sin (x y)-x^{2} y \cos (x y)
\end{aligned}
$$

Exact

Find potential: $\frac{\partial f}{\partial x}=M ; \frac{\partial f}{\partial y}=N$

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=\cos (x y)-x y \sin (x y) \\
\begin{array}{rl}
\frac{\partial f}{\partial y}= & -x^{2} \sin (x y)
\end{array} \\
\begin{array}{l}
\rightarrow \text { f }(x, y)
\end{array}=x \cos (x y)+g(x) \\
\Rightarrow \frac{\partial f}{\partial x}
\end{array}=\cos (x y)-x y \sin (x y)+g^{\prime}(x)\right\} \Rightarrow g^{\prime}(x)=0 \Rightarrow g(x)=c
$$

$$
\Rightarrow \quad f(x, y)=x \cos (x y)
$$

\Rightarrow Solution to ODE: $\quad x \cos (x y)=C$
(4)

$$
\left.\begin{array}{l}
y e^{x y} d x+\left(2 y-x e^{x y}\right) d y=0 \\
M(x, y)=y e^{x y} \Rightarrow \frac{\partial M}{\partial y}=e^{x y}+x y e^{x y} \\
N(x, y)=2 y-x e^{x y} \Rightarrow \frac{\partial N}{\partial x}=-e^{x y}-x y e^{x y}
\end{array}\right\} \text { NOT Exact }
$$

(5)
$(1+\ln (x y)) d x+x y^{-1} d y=0$

$$
\begin{array}{ll}
M(x, y)=1+\ln (x y) & \Rightarrow \frac{\partial M}{\partial y}=\frac{1}{x y} \cdot x=\frac{1}{y} \quad \vee \\
N(x, y)=\frac{x}{y} & \Rightarrow \frac{\partial N}{\partial x}=\frac{1}{y}
\end{array}
$$

Find potential $f(x, y)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=1+\ln (x y) \\
& \frac{\partial f}{\partial y}=\frac{x}{y} \leadsto f(x, y)=x \ln y+g(x) \\
& \left.\begin{array}{rl}
\Rightarrow \quad \frac{\partial f}{\partial x} & =\ln y+g^{\prime}(x) \\
& =1+\ln (x y)
\end{array}\right\} \Rightarrow \ln y+g^{\prime}(x)=1+\ln (x y) ~ 子 g^{\prime}(x)=1+\ln (x y)-\ln y . \\
& =1+\ln x \\
& \Rightarrow g(x)=x+x \ln x-x \\
& \Rightarrow f(x, y)=x \ln y+x \ln x=x \ln (x y) \\
& =x \ln x
\end{aligned}
$$

\Rightarrow Solutions to ODE: $x \ln (x y)=C$
(6)

$$
\begin{aligned}
& \left(2 y^{2} x-3\right) d x+\left(2 y x^{2}+4\right) d y=0 \\
& \frac{\partial M}{\partial y}=4 y x \quad r \quad \varepsilon_{x a c t} \\
& \frac{\partial N}{\partial x}=4 y x \quad, \quad
\end{aligned}
$$

Potential: $\quad \frac{\partial f}{\partial x}=2 y^{2} x-3 \Rightarrow f(x, y)=x^{2} y^{2}-3 x+g(y)$

$$
\left.\begin{array}{rlrl}
\frac{\partial f}{\partial y}=2 y x^{2}+4 & \Rightarrow \frac{\partial f}{\partial y} & \left.=2 x^{2} y+g^{\prime}(y)\right\} \\
& =2 x^{2} y+4
\end{array}\right\} \Rightarrow g^{\prime}(y)=4
$$

\Rightarrow Solution to ODE: $\quad x^{2} y^{2}-3 x+4 y=C$
(7)

$$
\begin{aligned}
& (\underbrace{\left(2 y-\frac{1}{x}+\cos (3 x)\right.}_{N(x, y)}) \frac{d y}{d x}+\underbrace{\frac{y}{x^{2}}-4 x^{3}+3 y \sin (3 x)}_{M(x, y)}=0 \\
& \left.\begin{array}{l}
\frac{\partial M}{\partial y}=\frac{1}{x^{2}}+3 \sin (3 x) \\
\frac{\partial N}{\partial x}=+\frac{1}{x^{2}}-3 \sin (3 x)
\end{array}\right\} \Rightarrow \text { not exact. }
\end{aligned}
$$

(8) $\left(x^{3}+y^{3}\right) d x+3 x y^{2} d y=0$

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=3 y^{2} ; \frac{\partial N}{\partial x}=3 y^{2} \Rightarrow \\
& \left.\begin{array}{rl}
\frac{\partial f}{\partial x}=x^{3}+y^{3} \Rightarrow f(x, y) & =\frac{1}{4} x^{4}+y^{3} x+g(y) \\
& \Rightarrow \frac{\partial f}{\partial y}=3 y^{2} x+g^{\prime}(y) \\
& \frac{\partial f}{\partial y}=3 x y^{2}
\end{array}\right\} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c
\end{aligned}
$$

$f(x, y)=\frac{1}{4} x^{4}+y^{3} x \quad \Rightarrow$ Solution to ODE: $\frac{1}{4} x^{4}+y^{3} x=C$
(9)

$$
\begin{aligned}
& \left(y^{3}-y^{2} \sin x-x\right) d x+\left(3 x y^{2}+2 y \cos x\right) d y=0 \\
& \frac{\partial M}{\partial y}=3 y^{2}-2 y \sin x \quad, ~ E x a c t \\
& \frac{\partial N}{\partial x}=3 y^{2}-2 y \sin x
\end{aligned}
$$

Potential:

$$
\left.\begin{array}{rl}
\frac{\partial f}{\partial x} & =y^{3}-y^{2} \sin x-x \\
\Rightarrow f(x, y) & =y^{3} x+y^{2} \cos x-\frac{x^{2}}{2}+g(y) \\
\Rightarrow \frac{\partial f}{\partial y} & =3 y^{2} x+2 y \cos x+g^{\prime}(y) \\
& =3 x y^{2}+2 y \cos x
\end{array}\right\} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c
$$

$$
f(x, y)=y^{3} x+y^{2} \cos x-\frac{x^{2}}{2} \Rightarrow \text { Solution to ODE: } y^{3} x+y^{2} \cos x-\frac{x^{2}}{2}=c
$$

(10)

$$
\begin{aligned}
& \left(y \ln y-e^{-x y}\right) d x+\left(\frac{1}{y}+x \ln y\right) d y=0 \\
& \left.\begin{array}{l}
\frac{\partial M}{\partial y}=\ln y+1+x e^{-x y} \\
\frac{\partial N}{\partial x}=\ln y
\end{array}\right\} \text { Not exact. }
\end{aligned}
$$

(II) $\frac{2 x}{y} d x-\frac{x^{2}}{y^{2}} d y=0$

$$
\begin{aligned}
\frac{\partial M}{\partial y}=-\frac{2 x}{y^{2}} ; \frac{\partial N}{\partial x}=-\frac{2 x}{y^{2}} \Rightarrow \underline{E_{x a c t}} \\
\left.\begin{array}{rl}
\frac{\partial f}{\partial x}=\frac{2 x}{y} \Rightarrow f(x, y) & =\frac{1}{y} x^{2}+g(y) \\
\Rightarrow \frac{\partial f}{\partial y} & =-\frac{x^{2}}{y^{2}}+g^{\prime}(y) \\
& =-\frac{x^{2}}{y^{2}}
\end{array}\right\} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c
\end{aligned}
$$

$f(x, y)=\frac{1}{y} x^{2} \Rightarrow$ Solution to ODE: $\frac{1}{y} x^{2}=c$ or $y=c x^{2}$

Remark : \#II is also separable:

$$
\begin{aligned}
\frac{2 x}{y} d x=\frac{x^{2}}{y^{2}} d y \Rightarrow \frac{2}{x} d x=\frac{1}{y} d y & \Rightarrow 2 \ln |x|+c=\ln |y| \\
& \Rightarrow y= \pm e^{c} x^{2} \Rightarrow y=c x^{2}(c \neq c
\end{aligned}
$$

(12)

$$
\begin{aligned}
& \left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right) d x+\frac{x}{x^{2}+y^{2}} d y=0 \\
& \frac{\partial M}{\partial y}=-\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial M}{\partial x}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Potential : $\quad \frac{\partial f}{\partial x}=\frac{1}{x}-\frac{y}{x^{2}+y^{2}}$

$$
\left.\left.\begin{array}{rl}
\frac{\partial f}{\partial y}=\frac{x}{x^{2}+y^{2}} \Rightarrow f(x, y)=\int \frac{x}{x^{2}+y^{2}} d y+g(x)=\arctan (y / x)+g(\\
f(x, y)=\arctan \left(\frac{y}{x}\right)+g(x) & \int \frac{a}{a^{2}+y^{2}} d y=\int \frac{1 / a}{1+(y / a)^{2}} d y \\
\Rightarrow \frac{\partial f}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)+g^{\prime}(x) \quad=\arctan (y / a) \\
=\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{-y}{x^{2}}+g^{\prime}(x)=-\frac{y}{x^{2}+y^{2}}+g^{\prime}(x) \\
f(x, y)= & =\frac{1}{x}-\frac{y}{x^{2}+y^{2}}
\end{array}\right\} \Rightarrow g^{\prime}(x)=\frac{1}{x}\right) \Rightarrow g(x)=\ln |x|
$$

\Rightarrow Solution to ODE: $\arctan (y / x)+\ln |x|=C$

Obsenation: What if, instead, we found the potential by integrating with respect to x first?

$$
\begin{aligned}
\frac{\partial f}{\partial x}=\frac{1}{x}-\frac{y}{x^{2}+y^{2}} \Rightarrow f(x, y) & =\ln |x|-\arctan (x / y)+g(y) \\
\Rightarrow \frac{\partial f}{\partial y} & =-\frac{1}{1+x^{2} / y^{2}} \cdot \frac{-x}{y^{2}}+g^{\prime}(y) \\
& =+\frac{x}{x^{2}+y^{2}}+g^{\prime}(y) \\
& =\frac{x}{x^{2}+y^{2}} \\
\Rightarrow f(x, y)=\ln |x|-\arctan (x / y) & \Rightarrow \ln |x|-\arctan (x / y)=c
\end{aligned}
$$

We obtained two apparently different ralutrons:

$$
\begin{align*}
& \ln |x|+\arctan (y / x)=c \tag{1}\\
& \ln |x|-\arctan (x / y)=c \tag{2}
\end{align*}
$$

We can check. by implicit differentiation that both satisfy the DE:

$$
\begin{aligned}
(1) & \Rightarrow \frac{1}{x}+\frac{1}{1+(y / x)^{2}}\left(\frac{y^{\prime}}{x}-\frac{y}{x^{2}}\right)=0 \\
& \Rightarrow \frac{1}{x}+\frac{x^{2}}{x^{2}+y^{2}} \frac{x y^{\prime}-y}{x^{2}}=0 \Rightarrow\left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right)+\frac{x}{x^{2}+y^{2}} y^{\prime}=0 \\
(2) & \Rightarrow \frac{1}{x}-\frac{1}{1+(x / y)^{2}}\left(\frac{1}{y}-\frac{x}{y^{2}} y^{\prime}\right)=0 \\
& \Rightarrow \frac{1}{x}-\frac{y^{2}}{x^{2}+y^{2}} \frac{y-x y^{\prime}}{y^{\prime 2}}=0 \Rightarrow\left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right)+\frac{x}{x^{2}+y^{2}} y^{\prime}=0
\end{aligned}
$$

The two solutions are equivalent, because

$$
\arctan \left(\frac{1}{\alpha}\right)= \pm \frac{\pi}{2}-\arctan (\alpha)
$$

So only if you cave

$$
\begin{align*}
(1): \ln |x|+\arctan (y / x)=c & \Leftrightarrow \ln |x| \pm \frac{\pi}{2}-\arctan (x / y)=c \\
& \Leftrightarrow \ln |x|-\arctan (x / y)=c \tag{2}
\end{align*}
$$

$$
\arctan \left(\frac{1}{\alpha}\right)=\left\{\begin{aligned}
-\frac{\pi}{2}-\arctan (\alpha), & \text { if } \alpha<0 \\
\frac{\pi}{2}-\arctan (\alpha) ; & \text { if } \alpha>0
\end{aligned}\right.
$$

Recall sone basic facts from Trigonometry:

$$
\begin{gathered}
\arctan : \mathbb{R} \rightarrow(-\pi / 2, \pi / 2) \quad \operatorname{arccot}: \mathbb{R} \rightarrow(0, \pi) \\
\arctan (\alpha)+\operatorname{arccot}(\alpha)=\frac{\pi}{2}
\end{gathered}
$$

Suppose arctan $\frac{1}{\alpha}=\beta$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\alpha}=\tan \beta \\
& \Rightarrow \alpha=\frac{1}{\tan \beta} \\
& \Rightarrow \alpha=\cot \beta \Rightarrow \operatorname{arccot}(\alpha)=\operatorname{arccot}(\cot \beta)
\end{aligned}
$$

If $\alpha>0 \Rightarrow \beta \in(0, \pi / 2) \Rightarrow$ arccot $\alpha=\beta$
If $\alpha<0 \Rightarrow \beta \in(-\pi / 2,0) \Rightarrow$ arcsot $\alpha=\beta+\pi$ (see pic on the right above)

$$
\Rightarrow \beta=\arctan \left(\frac{1}{\alpha}\right)=\left\{\begin{array}{l}
\operatorname{arccot} \alpha \text { if } \alpha>0 \\
\operatorname{arccot} \alpha-\pi \text { if } \alpha<0
\end{array}=\left\{\begin{array}{l}
\frac{\pi}{2}-\arctan \alpha \text { if } \alpha>0 \\
-\frac{\pi}{2}-\arctan \alpha \text { if } \alpha<0
\end{array}\right.\right.
$$

(13)

$$
\begin{aligned}
& (x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0 ; y(1)=1 \\
& \frac{\partial M}{\partial y}=2(x+y) \\
& \frac{\partial N}{\partial x}=2 y+2 x=2(x+y) \quad \text { Exact }
\end{aligned}
$$

Potential: $\quad \frac{\partial f}{\partial x}=(x+y)^{2} \Rightarrow f(x, y)=\frac{1}{3}(x+y)^{3}+g(y)$

$$
\left.\begin{array}{l}
\left.\begin{array}{rl}
\Rightarrow \quad \frac{\partial f}{\partial y} & =(x+y)^{2}+g^{\prime}(y) \\
& =2 x y+x^{2}-1=(x+y)^{2}-\left(1+y^{2}\right)
\end{array}\right\} \Rightarrow \\
\Rightarrow g^{\prime}(y)=-\left(1+y^{2}\right) \Rightarrow g(y)=-y-\frac{1}{3} y^{3}
\end{array}\right\} \begin{aligned}
& f(x, y)=\frac{1}{3}(x+y)^{3}-y-\frac{1}{3} y^{3} \quad \begin{array}{l}
x=1 \\
y=1
\end{array} \Rightarrow \frac{8}{3}-1-\frac{1}{3}=c \Rightarrow c=\frac{4}{3} \\
& \Rightarrow(x+y)^{3}-y-\frac{1}{3} y^{3}=c \quad(x+y)^{3}-3 y-y^{3}=4 \quad
\end{aligned}
$$

(14)

$$
\left.\begin{array}{l}
\left(e^{x}+y\right) d x+\left(2+x+y e^{y}\right) d y=0 ; y(0)=1 \\
\begin{array}{r}
\frac{\partial M}{\partial y}=1 ; \frac{\partial N}{\partial x}=1 \quad \underline{\text { Exact }}
\end{array} \\
\left.\begin{array}{r}
\frac{\partial f}{\partial x}=e^{x}+y \Rightarrow f(x, y)=e^{x}+x y+g(y) \\
\Rightarrow \frac{\partial f}{\partial y}=x+g^{\prime}(y) \\
=2+x+y e^{y}
\end{array}\right\} \Rightarrow g^{\prime}(y)=2+y e^{y} \\
g(y)=2 y+y e^{y}-e^{y}
\end{array}\right\} \begin{aligned}
& \begin{array}{l}
e^{x}+x y+2 y+y e^{y}-e^{y}=c \\
f(x, y)=e^{x}+x y+2 y+y e^{y}-e^{y} \\
e^{x}+x y+2 y+y e^{y}-e^{y}=3
\end{array}
\end{aligned}
$$

(15)

$$
\begin{aligned}
& \left(y^{2} \cos x-3 x^{2} y-2 x\right) d x+\left(2 y \sin x-x^{3}+\ln y\right) d y=0 ; y(0)=e \\
& \left.\begin{array}{rl}
\frac{\partial M}{\partial y}=2 y \cos x-3 x^{2} \quad ; \quad \frac{\partial N}{\partial x}=2 y \cos x-3 x^{2} \quad \text { Exact } \\
\frac{\partial f}{\partial x}=y^{2} \cos x-3 x^{2} y-2 x & \Rightarrow f(x, y)=y^{2} \sin x-x^{3} y-x^{2}+g(y) \\
\Rightarrow \frac{\partial f}{\partial y} & \left.=2 y \sin x-x^{3}+g^{\prime}(y)\right\} \\
& =2 y \sin x-x^{3}+\ln y
\end{array}\right\} \Rightarrow \\
& \Rightarrow g^{\prime}(y)=\ln y \Rightarrow g(y)=y \ln y-y \\
& \begin{aligned}
f(x, y)=y^{2} \sin x-x^{3} y-x^{2}+y \ln y-y & \Rightarrow y^{2} \sin x-x^{3} y-x^{2}+y \ln y-y=c \\
x=0, y=e & \Rightarrow e-e=c \Rightarrow c=0
\end{aligned} \\
& \Rightarrow y^{2} \sin x-x^{3} y-x^{2}+y \ln y-y=0
\end{aligned}
$$

(16)

$$
\begin{aligned}
& \left(\frac{1}{1+y^{2}}+\cos x-2 x y\right) \frac{d y}{d x}=y(y+\sin x) ; y(0)=1 \\
& y(y+\sin x) d x-\left(\frac{1}{1+y^{2}}+\cos x-2 x y\right) d y=0 \\
& M(x, y)=y(y+\sin x)=y^{2}+y \sin x \Rightarrow \frac{\partial M}{\partial y}=2 y+\sin x \\
& N(x, y)=-\left(\frac{1}{1+y^{2}}+\cos x-2 x y\right) \Rightarrow \frac{\partial N}{\partial x}=\sin x+2 y
\end{aligned}
$$

$$
\frac{\partial f}{\partial x}=y^{2}+y \sin x \Rightarrow f(x, y)=x y^{2}-y \cos x+g(y)
$$

$$
\left.\begin{array}{rl}
\Rightarrow \frac{\partial f}{\partial y} & =2 x y-\cos x+g^{\prime}(y) \\
& =2 x y-\cos x-\frac{1}{1+y^{2}}
\end{array}\right\} \Rightarrow g^{\prime}(y)=-\frac{1}{1+y^{2}}
$$

$$
\left.\begin{array}{c}
\Rightarrow f(x, y)=x y^{2}-y \cos x-\arctan (y)=c \\
x=0, y=1 \Rightarrow-1-\frac{\pi}{4}=c
\end{array}\right\} \Rightarrow x y^{2}-y \cos x-\arctan (y)=-1-\frac{\pi}{4}
$$

(17)

$$
\left.\begin{array}{l}
\left(y^{3}+k x y^{4}-2 x\right) d x+\left(3 x y^{2}+20 x^{2} y^{3}\right) d y=0 \\
M(x, y)=y^{3}+k x y^{4}-2 x \Rightarrow \frac{\partial M}{\partial y}=3 y^{2}+4 k x y^{3} \\
N(x, y)=3 x y^{2}+20 x^{2} y^{3} \Rightarrow \frac{\partial N}{\partial x}=3 y^{2}+40 x y^{3}
\end{array}\right\} \Rightarrow 4 k=40 \Rightarrow k=10
$$

Solve: $\frac{\partial f}{\partial x}=y^{3}+10 x y^{4}-2 x \Rightarrow f(x, y)=x y^{3}+5 x^{2} y^{4}-x^{2}+g(y)$

$$
\left.\begin{array}{rl}
\Rightarrow \frac{\partial f}{\partial y} & =3 x y^{2}+20 x^{2} y^{3}+g^{\prime}(y) \\
& =3 x y^{2}+20 x^{2} y^{3}
\end{array}\right\} \Rightarrow g^{\prime}(y)=0
$$

Solution: $x y^{3}+5 x^{2} y^{4}-x^{2}=C$
(18)

$$
\left.\begin{array}{l}
\left(2 x-y \sin (x y)+k y^{4}\right) d x-\left(20 x y^{3}+x \sin (x y)\right) d y=0 \\
\frac{\partial M}{\partial y}=-\sin (x y)-x y \cos (x y)+4 k y^{3} \\
\frac{\partial N}{\partial x}=-20 y^{3}-\sin (x y)-x y \cos (x y)
\end{array}\right\} \Rightarrow 4 k=-20 \Rightarrow k=-5
$$

Solve: $\frac{\partial f}{\partial x}=2 x-y \sin (x y)-5 y^{4} \Rightarrow f(x, y)=x^{2}+\cos (x y)-5 y^{4} x+g(y)$

$$
\left.\begin{array}{rl}
\Rightarrow \frac{\partial f}{\partial y} & =-x \sin (x y)-20 y^{3} x+g^{\prime}(y) \\
& =-x \sin (x y)-20 y^{3} x
\end{array}\right\} \Rightarrow \begin{aligned}
& g^{\prime}(y)= \\
& g(y)=
\end{aligned}
$$

Solution: $\quad x^{2}+\cos (x y)-5 y^{4} x=c$
(19)

$$
\begin{aligned}
& \left(2 x y^{2}+y e^{x}\right) d x+\left(2 x^{2} y+k e^{x}-1\right) d y=0 \\
& \left.\begin{array}{l}
\frac{\partial M}{\partial y}=4 x y+e^{x} \\
\frac{\partial N}{\partial x}=4 x y+k e^{x}
\end{array}\right\} \Rightarrow k=1
\end{aligned}
$$

Solve: $\frac{\partial f}{\partial x}=2 x y^{2}+y e^{x} \Rightarrow f(x, y)=x^{2} y^{2}+y e^{x}+g(y)$

$$
\left.\begin{array}{rl}
\Rightarrow \frac{\partial f}{\partial y} & =2 x^{2} y+e^{x}+g^{\prime}(y) \\
& =2 x^{2} y+e^{x}-1
\end{array}\right\} \Rightarrow g^{\prime}(y)=-1
$$

$$
x^{2} y^{2}+y e^{x}-y=c
$$

(20) $\left(6 x y^{3}+\cos y\right) d x+\left(k x^{2} y^{2}-x \sin y\right) d y=0$

$$
\left.\begin{array}{l}
\frac{\partial M}{\partial y}=18 x y^{2}-\sin y \\
\frac{\partial N}{\partial X}=2 k x y^{2}-\sin y
\end{array}\right\} \Rightarrow 18=2 k \Rightarrow K=9
$$

Solve: $\frac{\partial f}{\partial x}=6 x y^{3}+\cos y \Rightarrow f(x, y)=3 x^{2} y^{3}+x \cos y+g(y)$

$$
\left.\begin{array}{rl}
\Rightarrow \frac{\partial f}{\partial y} & =9 x^{2} y^{2}-x \sin y+g^{\prime}(y) \\
& =9 x^{2} y^{2}-x \sin y
\end{array}\right\} \Rightarrow g^{\prime}(y)=0
$$

\Rightarrow Solution: $\quad 3 x^{2} y^{3}+x \cos y=c$
(21) M

$$
\begin{aligned}
& M(x, y) d x+\left(x e^{x y}+2 x y+\frac{1}{x}\right) d y=0 \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Rightarrow \frac{\partial M}{\partial y}=e^{x y}+x y e^{x y}+2 y-\frac{1}{x^{2}} \\
& \Rightarrow \frac{\partial M}{\partial y}=e^{x y}(1+x y)+2 y-\frac{1}{x^{2}} \\
& \Rightarrow M(x, y)=y e^{x y}+y^{2}-\frac{y}{x^{2}}+g(x)
\end{aligned}
$$

$$
\begin{aligned}
\int e^{x y}(1+x y) d y & =\frac{1}{x} \int(1+x y)\left(e^{x y}\right)^{\prime} d y \\
& =\frac{1}{x}(1+x y) e^{x y}-\frac{1}{x} \int x e^{x y} d y \\
& =\left(\frac{1}{x}+y\right) e^{x y}-\frac{1}{x} e^{x y} \\
& =y e^{x y}
\end{aligned}
$$

(22)

$$
\begin{aligned}
& \left(\frac{\sqrt{y}}{\sqrt{x}}+\frac{x}{x^{2}+y}\right) d x+N(x, y) d y=0 \\
& \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
\end{aligned} \quad \Rightarrow \frac{\partial N}{\partial x}=\frac{1}{2 \sqrt{x y}}-\frac{x}{\left(x^{2}+y\right)^{2}} .
$$ you mant here

(23) $\overbrace{y(x+y+1)}^{M_{1}(x, y)} d x+\overbrace{(x+2 y)}^{N_{1}(x, y)} d y=0 ; \quad \mu(x, y)=e^{x}$
(*)

$$
\begin{aligned}
& y e^{x}(x+y+1) d x+\left(x e^{x}+2 y e^{x}\right) d y=0 \\
& \frac{\partial M}{\partial y}=e^{x}(x+2 y+1) \\
& \frac{\partial N}{\partial x}=e^{x}+x e^{x}+2 y e^{x}=e^{x}(x+2 y+1)
\end{aligned}
$$

Remark: The original equation is not exact: $\frac{\partial M_{1}}{\partial y}=x+2 y+1$

$$
\frac{\partial N_{1}}{\partial X}=1
$$

Solve (*): $\frac{\partial f}{\partial x}=x y e^{x}+y^{2} e^{x}+y e^{x}$

$$
\begin{aligned}
\frac{\partial f}{\partial y}=x e^{x}+2 y e^{x} \Rightarrow f(x, y) & =x y e^{x}+y^{2} e^{x}+g(x) \\
& \Rightarrow \frac{\partial f}{\partial x}
\end{aligned}=y e^{x}+x y e^{x}+y^{2} e^{x}+g^{\prime}(x) \Rightarrow g^{\prime}(x)=0
$$

\Rightarrow Solution: $\quad x y e^{x}+y^{2} e^{x}=c$
(24) $(-x y \sin x+2 y \cos x) d x+2 x \cos x d y=0 ; \quad \mu(x, y)=x y$
(*) $\left(-x^{2} y^{2} \sin x+2 x y^{2} \cos x\right) d x+2 x^{2} y \cos x d y=0$

$$
\frac{\partial M}{\partial y}=-2 x^{2} y \sin x+4 x y \cos x ; \frac{\partial N}{\partial x}=4 x y \cos x-2 x^{2} y \sin x \Rightarrow \text { Exact }
$$

Solve: $\frac{\partial f}{\partial y}=2 x^{2} y \cos x \Rightarrow f(x, y)=x^{2} y^{2} \cos x+g(x)$

$$
\begin{aligned}
\Rightarrow \frac{\partial f}{\partial x} & \left.=2 x y^{2} \cos x-x^{2} y^{2} \sin x+g^{\prime}(x)\right\} \Rightarrow g^{\prime}(x)=0 \\
& =2 x y^{2} \cos x-x^{2} y^{2} \sin x
\end{aligned} \quad g(x)=c
$$

\Rightarrow Solution: $x^{2} y^{2} \cos x=c$

