(1) $4 y^{\prime \prime}+y^{\prime}=0$

Char. $\varepsilon_{2 n .: ~} \quad 4 m^{2}+m=0$

$$
m(4 m+1)=0
$$

Roots: $0,-1 / 4 \Rightarrow G_{\text {en }}$. Sol.: $y=c_{1}+c_{2} e^{-x / 4}$
(2) $y^{\prime \prime}-36 y=0$

Char.Egn.: $m^{2}-36=0$

$$
\begin{aligned}
& (m-6)(m+6)=0 \\
& \text { Roots: } 6,-6 \Rightarrow G_{e n} . \text { Sol.: } y=c_{1} e^{6 x}+c_{2} e^{-6 x}
\end{aligned}
$$

(3) $12 y^{\prime \prime}-5 y^{\prime}-2 y=0$

Char. Eूn.: $\quad 12 m^{2}-5 m-2=0$

$$
\begin{aligned}
\Delta=25+8 \cdot 12 & =121 \\
m=\frac{5 \pm 11}{24}= & \frac{16}{24}, \frac{-6}{24} \\
& \frac{2}{3}, \frac{-1}{4}
\end{aligned}
$$

(4) $y^{\prime \prime}-y=0 ; \quad y(0)=y^{\prime}(0)=1$

Char.Eूn.: $m^{2}-1=0$

$$
\begin{gathered}
(m-1)(m+1)=0 \\
m= \pm 1 \Rightarrow \text { gen.sol.: } \\
\begin{cases}y=c_{1} e^{x}+c_{2} e^{-x} \\
y(0)=1 \\
y^{\prime}(0)=1\end{cases} \\
\begin{cases}c_{1}+c_{2}=1 & y^{\prime}=c_{1} e^{x}-c_{2} e^{-x} \\
c_{1}-c_{2}=1\end{cases} \\
\begin{array}{ll}
\oplus\left(2 c_{1}=2\right.
\end{array}
\end{gathered}
$$

(5) $y^{\prime \prime}-y=0 ; \quad y(0)=1 ; y^{\prime}(1)=0 \quad y=c_{1} e^{x}+c_{2} e^{-x}$

This is a BVP (Same $\begin{aligned} & y^{\prime}=c_{1} e^{x} \text { eneralsol, as above) }\end{aligned}$

$$
\begin{array}{r}
\left\{\begin{array} { l }
{ y (0) = 1 } \\
{ y ^ { \prime } (1) = 0 }
\end{array} \left\{\begin{array}{c}
c_{1}+c_{2}=1 \\
c_{1} e-c_{2} \frac{1}{e}=0
\end{array}\left\{\begin{array}{c}
c_{1}+c_{2}=1 \\
c_{1} e^{2}-c_{2}=0 \\
l \\
c_{2}=c_{1} e^{2}
\end{array}\right\}\right.\right. \\
c_{1}+c_{1} e^{2}=1=2 c_{1}=\frac{1}{1+e^{2}} \\
\Rightarrow c_{2}=\frac{e^{2}}{1+e^{2}}
\end{array}
$$

$$
\Rightarrow y=\frac{1}{1+e^{2}} e^{x}+\frac{e^{2}}{1+e^{2}} e^{-x}
$$

6) Find a homogeneous linear ODE which coned have the solution:

$$
y=4 e^{6 x}+\pi e^{-2 x}
$$

Hint: look for an OD with

$$
\frac{4 e^{6 x}, \pi e^{-2 x}}{=}
$$

constant coesfricienl.
the coefficients $4 \& \pi$ don't really matter here.
What does matter: the roots of the char. en., which would have to be 6 and -2 :

$$
\begin{aligned}
&(m-6)(m+2)=0 \\
& m^{2}+2 m-6 m-12=0 \\
& m^{2}-4 m-12=0< \\
& \Rightarrow \text { char. छूn. } \\
& y^{\prime \prime}-4 y^{\prime}-12 y=0
\end{aligned}
$$

(7) Given that $y_{1}=x^{3}$ is a solution of:

$$
x^{2} y^{\prime \prime}-6 y=0
$$

use reduction of order to find a second solution on the interval $(0, \infty)$.

- Set $y=u(x) x^{3}$. Find the condition that $u(x)$ would have to satisfy so that $y=u \cdot x^{3}$ is a solution:

$$
\begin{aligned}
y & =u \cdot x^{3} \\
y^{\prime} & =u^{\prime} \cdot x^{3}+3 x^{2} \cdot u \\
y^{\prime \prime} & =u^{\prime \prime} x^{3}+u^{\prime} \cdot 3 x^{2}+6 x \cdot u+3 x^{2}-u^{\prime} \\
& =u^{\prime \prime} x^{3}+u^{\prime} \cdot 6 x^{2}+u \cdot 6 x
\end{aligned}
$$

$\Rightarrow x^{2} y^{\prime \prime}-6 y=0$ becomes:

$$
\begin{gathered}
x^{2}\left(x^{3} u^{\prime \prime}+6 x^{2} u^{\prime}+6 x u\right)-6\left(x^{3} u\right)=0 \\
x^{5} u^{\prime \prime}+6 x^{4} u^{\prime}+6 x^{3} u-6 x^{3} u=0 \\
x^{4}\left(x u^{\prime \prime}+6 u^{\prime}\right)=0
\end{gathered}
$$

\Rightarrow Condition on u : $\quad x u^{\prime \prime}+6 u^{\prime}=0$

- Make the substitution:

$$
\begin{aligned}
v & =u^{\prime} \\
v^{\prime} & =u^{\prime \prime}
\end{aligned}
$$

\Rightarrow condition on u becomes:

$$
x v^{\prime}+6 v=0
$$

$$
\begin{aligned}
& x \frac{d v}{d x}+6 v=0 \\
& x \frac{d v}{d x}=-6 v \\
&-\frac{1}{6 v} d v=\frac{1}{x} d x \\
& \frac{-1}{6} \ln |v|=\ln |x|+C \\
&=\ln x+c \quad \text { b/c } x \in(0, \infty)
\end{aligned}
$$

$$
\ln |v|=-6 \ln x+c
$$

$$
v=x^{-6} \cdot e^{c}
$$

$$
\Rightarrow v=\frac{c}{x^{6}} \Rightarrow u^{\prime}=\frac{c}{x^{6}}
$$

$$
u=\frac{-c}{5 x^{5}}+c^{\prime}
$$

Take $u=\frac{1}{x^{5}} \Rightarrow$ New solution:

$$
y_{2}=\frac{1}{x^{5}} \cdot x^{3}=\frac{1}{x^{2}}
$$

- General Solution: $y=c_{1} y_{1}+c_{2} y_{2}$

$$
y=c_{1} x^{3}+\frac{c_{2}}{x^{2}}
$$

