Math 308-Differential Equations
Section 501
Texas A \& M University, Spring 2022

Homogeneous Linear ODEs with Constant Coefficients (1)

Find the general solution for the following differential equations:

1. $4 y^{\prime \prime}+y^{\prime}=0$.
2. $y^{\prime \prime}-36 y=0$.
3. $12 y^{\prime \prime}-5 y^{\prime}-2 y=0$.

Solve the IVP:
4. $y^{\prime \prime}-y=0 ; \quad y(0)=y^{\prime}(0)=1$.

Solve the BVP:
5. $y^{\prime \prime}-y=0 ; \quad y(0) 1 ; y^{\prime}(1)=0$.
6. Find a homogeneous linear ODE which could have the solution:

$$
y=4 e^{6 x}+\pi e^{-2 x}
$$

Hint: Look for a linear ODE with constant coefficients.
7. Given that $y_{1}=x^{3}$ is a solution of the ODE:

$$
x^{2} y^{\prime \prime}-6 y=0
$$

use reduction of order to find a second (linearly independent) solution y_{2} on the interval $(0, \infty)$, and then write the general solution.

- Set $y_{2}(x)=u(x) x^{3}$, where $u(x)$ is some function you will try to find.
- Find the condition u should satisfy in order for y_{2} to be a solution.
- Use the substitution $v=u^{\prime}$ to reduce your condition on u from a second order equation, to a first order equation. Solve the first order ODE in v (should be separable), then find u.
- Write the general solution $y=c_{1} y_{1}+c_{2} y_{2}$.

