(1) $y^{\prime \prime}-4 y^{\prime}+5 y=0$

Char. Egn.: $m^{2}-4 m+5=0$

$$
\begin{gathered}
\Delta=16-20=-4<0 \\
m=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i \\
y=c_{1} e^{2 x} \cos (x)+c_{2} e^{2 x} \sin (x) .
\end{gathered}
$$

(2) $3 y^{\prime \prime}+2 y^{\prime}+y=0$

Char. Eूn:: $3 m^{2}+2 m+1=0$

$$
\begin{gathered}
\Delta=4-12=-8 \\
m=\frac{-2 \pm \sqrt{-8}}{6}=\frac{-2 \pm 2 \sqrt{2} i}{6}=\frac{-1 \pm \sqrt{2} i}{3} \\
=\frac{-1}{3} \pm i \frac{\sqrt{2}}{3} \\
y=c_{1} e^{-x / 3} \cos \left(\frac{\sqrt{2}}{3} x\right)+c_{2} e^{-x / 3} \sin \left(\frac{\sqrt{2}}{3} x\right)
\end{gathered}
$$

(3) $y^{\prime \prime}-4 y=0$

Char. Egn:

$$
\begin{array}{r}
\text { Egn } \therefore \quad m^{2}-4=0 \\
m= \pm 2 \\
y=c_{1} e^{2 x}+c_{2} e^{-2 x}
\end{array}
$$

(4) $y^{\prime \prime}+4 y=0$

$$
\begin{aligned}
& \text { Char. Egn. } \quad \begin{array}{c}
m^{2}+4=0 \\
m^{2}=-4 ;
\end{array}, m= \pm 2 i=0 \pm 2 i \\
& y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\end{aligned}
$$

(5) $y^{\prime \prime}+y=0 ; \quad y(\pi / 3)=0, \quad y^{\prime}(\pi / 3)=2$.
char. ELn::

$$
\begin{aligned}
& m^{2}+1=0 \\
& m= \pm i
\end{aligned}
$$

$$
\left.\begin{array}{l}
y=c_{1} \cos (x)+c_{2} \sin (x) \\
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x) \quad y(\pi / 3) ? \\
y(\pi / 3)=c_{1} \cdot \frac{1}{2}+c_{2} \cdot \frac{\sqrt{3}}{2}=0 \\
y^{\prime}(\pi / 3)=-c_{1} \frac{\sqrt{3}}{2}+c_{2} \cdot \frac{1}{2}=2 \\
\left\{\begin{array}{lr}
c_{1}+\sqrt{3} c_{2}=0 & \sqrt{3} c_{1}+3 c_{2}=0 \\
-\sqrt{3} c_{1}+c_{2}=4 \quad & -\sqrt{3} c_{1}+c_{2}=4
\end{array}\right. \\
\Rightarrow-\sqrt{3} c_{1}=3=c_{1}=-\sqrt{3} \quad 4 c_{2}=4
\end{array}\right]
$$

$$
y=-\sqrt{3} \cos (x)+\sin _{x \in \mathbb{R}}(x)
$$

IVP Solution
(6) $y^{\prime \prime}-10 y^{\prime}+25 y=0 ; \quad y(0)=1 ; y(1)=0$

Char. EL: $m^{2}-10 m+25=0$
$(m-5)^{2}=0 \Rightarrow m_{1}=m_{2}=5$ Repeated root
\Rightarrow general solution: $\quad y=c_{1} e^{5 x}+c_{2} x e^{5 x}$

$$
\begin{aligned}
& y(0)=c_{1}=1 \\
& y(1)=c_{1} e^{5}+c_{2} e^{5}=0 \\
& \\
& e^{5}+c_{2} e^{5}=0 \Rightarrow c_{2}=-1
\end{aligned}
$$

\Rightarrow BVP Solution: $\quad y=e^{5 x}-x e^{5 x}$
(7) $y^{\prime \prime}+4 y=0 ; \underbrace{\sqrt{B V P}}_{\sqrt[B V P]{ } y(0)=0 ; y(\pi)=0}$

Char. EL.: $m^{2}+4=0$

$$
m= \pm 2 i
$$

$\Rightarrow G_{\text {en . Sol. }: ~} \quad y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$.

$$
\left.\begin{array}{l}
y(0)=c_{1}=0 \\
y(\pi)=c_{1}=0
\end{array}\right\} \Rightarrow c_{1}=0 \text { but } c_{2} \text { can be anything! }
$$

\Rightarrow BVP Solution: $y=C \sin (2 x)$
Note that this is an infinite family of solutions (not unique), which can happen with linear BUP's, but not IUP's.

