Method of Undetermined Coefficients
Homework 6 - Part 2 Solutions
(1) $y^{\prime \prime}+3 y^{\prime}+2 y=6$

Complementary Solution

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
& m^{2}+3 m+2=0 \\
& (m+1)(m+2)=0 \Rightarrow m=-1,-2 \quad y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}
\end{aligned}
$$

Particular solution: $y_{p}=A \Rightarrow y_{p}^{\prime}=y_{p}^{\prime \prime}=0$

$$
\Rightarrow 2 A=6 \Rightarrow A=3 \quad y_{p}=3
$$

General Solution: $y=c_{1} e^{-x}+c_{2} e^{-2 x}+3$
(2) $y^{\prime \prime}+4 y=3 \sin (2 x)$.

Complementary Solution: $y^{\prime \prime}+4 y=0$

$$
m^{2}+4=0 \Rightarrow m= \pm 2 i
$$

$$
y_{c}=c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

Particular Solution: Initial guess would be $y_{p}=A \sin (2 x)+B \cos (2 x)$ but these are contained in the complementary solution!
So take $y_{p}=A x \sin (2 x)+B x \cos (2 x)$

$$
\begin{aligned}
y_{p}^{\prime}= & A \sin (2 x)+2 A x \cos (2 x)+B \cos (2 x)-2 B x \sin (2 x) \\
y_{p}^{\prime \prime}= & 2 A \cos (2 x)+2 A \cos (2 x)-4 A x \sin (2 x)-2 B \sin (2 x) \\
& -2 B \sin (2 x)-4 B x \cos (2 x) \\
= & 4 A \cos (2 x)-4 B \sin (2 x)-4 A x \sin (2 x)-4 B x \cos (2 x)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y_{p}^{\prime \prime}+4 y_{p} & =4 A \cos (2 x)-4 B \sin (2 x)+(4 A-4 A) \times \sin (2 x)+(4 B-4 B) \times \cos (2 x) \\
& =3 \sin (2 x) \\
& \Rightarrow\left\{\begin{array}{l}
4 A=0 \\
-4 B=3
\end{array} \Rightarrow A=0 ; B=-3 / 4 \Rightarrow y_{p}=-\frac{3}{4} x \cos (2 x)\right.
\end{aligned}
$$

General Solution : $y=c_{1} \sin (2 x)+c_{2} \cos (2 x)-\frac{3}{4} x \cos (2 x)$
(3) $y^{\prime \prime}+2 y^{\prime}+y=\sin x+3 \cos (2 x)$

Complewentary solutron: $y^{\prime \prime}+2 y^{\prime}+y=0$

$$
\begin{gathered}
m^{2}+2 m+1=0 \\
(m+1)^{2}=0 \\
m=-1 \text { (double Noot) }
\end{gathered}
$$

Particular salution:

$$
\begin{aligned}
& y_{p}=A \sin x+B \cos x+C \sin (2 x)+D \cos (2 x) \\
& y_{p}^{\prime}=A \cos x-B \sin x+2 C \cos (2 x)-2 D \sin (2 x) \\
& y_{p}^{\prime \prime}=-A \sin x-B \cos x-4 C \sin (2 x)-4 D \cos (2 x)
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{rl}
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p}= & -A \sin x-B \cos x-4 C \sin (2 x)-4 D \cos (2 x) \\
& -2 B \sin x+2 A \cos x-4 D \sin (2 x)+4 C \cos (2 x) \\
& +A \sin x+B \cos x+C \sin (2 x)+D \cos (2 x) \\
& -2 B \sin x+2 A \cos x+(-3 C-4 D) \sin (2 x)+(4 C-3 D) \cos (2 x) \\
= & \sin x+3 \cos (2 x) \\
& =\begin{aligned}
&-2 B=1 \Rightarrow B=-1 / 2 \quad y_{p}=-\frac{1}{2} \cos x+\frac{12}{25} \sin (2 x)-\frac{9}{25} \cos (2 x) \\
& 2 A=0 \Rightarrow A=0 \\
& 4 C-3 D=3
\end{aligned} \\
-12 C-16 D=0 \\
12 C-9 D=9 \\
1-25 D=9 & D=-9 / 25
\end{array} \\
C=\frac{3}{4}(D+1)=\frac{3}{4} \cdot \frac{16}{25}=\frac{12}{25} \\
y=C_{1} e^{-x}+C_{2} x e^{-x}-\frac{1}{2} \cos x+\frac{12}{25} \sin (2 x)-\frac{9}{25} \cos (2 x)
\end{aligned}
$$

(4)) $y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3$

Complementary Solution: $\quad y^{\prime \prime}-10 y^{\prime}+25 y=0$

$$
\begin{aligned}
& m^{2}-10 m+25=0 \\
& (m-5)^{2}=0 \\
& m=5 \text { (double foot) }
\end{aligned}
$$

Particular Solution:

$$
\left.\begin{array}{rl}
y_{p}^{\prime} & =A \\
y_{p}^{\prime \prime} & =0 \\
y_{p}^{\prime \prime}-10 y_{p}^{\prime}+25 y_{p} & =-10 A+25 A x+25 B \\
& =25 A x+(25 B-10 A)=30 x+3 \\
A & =6 / 5 \\
25 A=30 & B=\frac{1}{25}(10 A+3)=\frac{1}{25} \cdot 15 \quad B=3 / 5
\end{array}\right\}
$$

$$
y_{p}=\frac{6}{5} x+\frac{3}{5}
$$

General solution: $y=c_{1} e^{5 x}+c_{2} x e^{5 x}+\frac{6}{5} x+\frac{3}{5}$
(5)) $y^{\prime \prime}-y^{\prime}=-3$

Complementary Solution: $y^{\prime \prime}-y^{\prime}=0$

$$
\begin{array}{r}
m^{2}-m=0 \Rightarrow m(m-1)=0 \Rightarrow m=0,1 \\
y_{c}=c_{1}+c_{2} e^{x}
\end{array}
$$

Particular Solution: $y_{p}=A x$ (the initial guess $y_{p}=A$ is contained in y_{c} !.

$$
\begin{aligned}
& y_{p}^{\prime}=A ; y_{p}^{\prime \prime}=0 \\
& \left.\begin{array}{rl}
\Rightarrow y_{p}^{\prime \prime}-y_{p}^{\prime} & =-A \\
& =-3
\end{array}\right\} \Rightarrow A=3 \Rightarrow y_{p}=3 x
\end{aligned}
$$

General solution: $y=c_{1}+c_{2} e^{x}+3 x$
(6) $\frac{1}{4} y^{\prime \prime}+y^{\prime}+y=x^{2}-2 x$

Complementary Solution:

$$
\begin{aligned}
\frac{1}{4} y^{\prime \prime}+y^{\prime}+y & =0 \\
\frac{1}{4} m^{2}+m+1 & =0 \\
m^{2}+4 m+4 & =0 \\
(m+2)^{2} & =0
\end{aligned}
$$

Particular Solution:

$$
\begin{aligned}
& y_{p}=A x^{2}+B x+C \\
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{4} y_{p}^{\prime \prime}+y_{p}^{\prime}+y_{p} & =\frac{1}{2} A+2 A x+B+A x^{2}+B x+C \\
& =A x^{2}+(2 A+B) x+\left(\frac{1}{2} A+B+C\right)=x^{2}-2 x
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{l}
A=1 \\
2 A+B=-2 \Rightarrow 2+B=-2 \Rightarrow B=-4 \\
\frac{1}{2} A+B+C=0 \Rightarrow \frac{1}{2}-4+C=0 \Rightarrow C=7 / 2
\end{array}\right.
$$

$$
y_{p}=x^{2}-4 x+7 / 2
$$

General Solution: $y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+x^{2}-4 x+7 / 2$
(7) $y^{\prime \prime}+3 y=-48 x^{2} e^{3 x}$

Complementary Solution: $y^{\prime \prime}+3 y=0$

$$
m^{2}+3=0 \Rightarrow m= \pm i \sqrt{3}
$$

$$
y_{c}=c_{1} \sin (\sqrt{3} x)+c_{2} \cos (\sqrt{3} x
$$

Particular Solution:

$$
\begin{aligned}
y_{p} & =\left(A x^{2}+B x+C\right) e^{3 x} \\
y_{p}^{\prime} & =(2 A x+B) e^{3 x}+3\left(A x^{2}+B x+C\right) e^{3 x} \\
& =\left(3 A x^{2}+(3 B+2 A) x+(B+3 C)\right) e^{3 x} \\
y_{p}^{\prime \prime} & =\left(6 A x+(3 B+2 A)+9 A x^{2}+(9 B+6 A) x+(3 B+9 C)\right) e^{3 x} \\
& =\left(9 A x^{2}+(9 B+12 A) x+(6 B+2 A+9 C)\right) e^{3 x}
\end{aligned}
$$

$$
y_{p}^{\prime \prime}+3 y_{p}=\left(12 A x^{2}+(12 B+12 A) x+(6 B+2 A+12 C)\right) e^{3 x}=-48 x^{2} e^{3 x}
$$

$$
\Rightarrow\left\{\begin{array}{l}
12 A=-48 \\
12 B+12 A=0 \\
6 B+2 A+12 C=0
\end{array} \Rightarrow\left\{\begin{array}{l}
A=-4 \\
B=-A \Rightarrow B=4 \\
12 C=-24+8=-16
\end{array} \Rightarrow C=-4 / 3\right) y_{P}=\left(-4 x^{2}+4 x-4 / 3\right) e^{3}\right.
$$

General Solution:

$$
y=c_{1} \sin (\sqrt{3} x)+c_{2} \cos (\sqrt{3} x)-\left(4 x^{2}-4 x+4 / 3\right) e^{3 x}
$$

(8) $y^{\prime \prime}+y=2 x \sin x$

Complementary Solution:

$$
\begin{aligned}
y^{\prime \prime}+y & =0 \\
m^{2}+1 & =0 \\
m & = \pm i
\end{aligned} y_{c}=c_{1} \sin x+c_{2} \cos x
$$

Particular Solution: Initial guess would be $y_{p}=(A x+B) \sin x+(C x+D) \cos x$ but this duplicates the complementary solution. So, we multiply by x (and duplication is eliminated):

$$
\begin{aligned}
& y_{p}=\left(A x^{2}+B x\right) \sin x+\left(C x^{2}+D x\right) \cos x \\
& y_{p}^{\prime}=(2 A x+B) \min x+\left(A x^{2}+B x\right) \cos x \\
&-\left(C x^{2}+D x\right) \sin x+(2 C x+D) \cos x \\
&=\left(-C x^{2}+(2 A-D) x+B\right) \sin x+\left(A x^{2}+(B+2 C) x+D\right) \cos x \\
& y_{p}^{\prime \prime}=\left(-C x^{2}+(2 A-D) x+B\right) \cos x+(-2 C x+(2 A \rightarrow)) \min x \\
&+(2 A x+(B+2 C)) \cos x-\left(A x^{2}+(B+2 C) x+D\right) \min x \\
&=\left(-C x^{2}+(4 A-D) x+(2 B+2 C)\right) \cos x+\left(-A x^{2}-(B+4 C) x+(2 A-2 D)\right) \sin \\
& \Rightarrow y_{p}^{\prime \prime}+y_{p}=(-4 C x+(2 A-2 D)) \sin x+(4 A x+(2 B+2 C)) \cos x \\
&= 2 x \min x \\
& \Rightarrow\left\{\begin{array}{l}
-4 C=2 \\
2 A-2 D=0 \quad\left\{\begin{array}{l}
C=-1 / 2 \\
4 A=0 \\
2 B+2 C=0 \quad
\end{array} \quad \begin{array}{l}
A=0 \\
B=0
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

General Solution: $y=c_{1} \sin x+c_{2} \cos x+\frac{1}{2} x \sin x-\frac{1}{2} x^{2} \cos x$
(9) $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=3+e^{x / 2}$

Complementary solution: $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=0$

$$
m^{2}-m+\frac{1}{4}=0
$$

$$
y_{c}=c_{1} e^{x / 2}+c_{2} x e^{x / 2}
$$

$$
(m-1 / 2)^{2}=0
$$

Particular Solution: Initial guess would be $A+B e^{x / 2}$

$$
\begin{aligned}
& y_{p}=A+B x^{2} e^{x / 2} \\
& y_{p}^{\prime}=2 B x e^{x / 2}+\frac{1}{2} B x^{2} e^{x / 2} \\
& y_{p}^{\prime \prime}=2 B e^{x / 2}+B x e^{x / 2} \\
& +B x e^{x / 2}+\frac{1}{4} B x^{2} e^{x / 2}
\end{aligned}
$$

Q: Why didn't we also multiply the A by x^{2} ?
In problem (8) we had $g(x)=2 x \sin x$ and so we multiplied the initial guess $[(A x+B) \sin x+(C x+D) c$ boy $X \leadsto$ both terms were multiplied, So why not here? Because here (A) and Be x/2

$$
y_{p}^{\prime \prime}-y_{p}^{\prime}+\frac{1}{4} y_{p}=
$$ are actually 2 different guesses for two

$$
\left(2 B+2 B X+\frac{1}{4} B X^{2}\right) e^{x / 2}
$$ particular solutions - we ave really doing

superposition here!

$$
-\left(2 B x+\frac{1}{2} B x^{2}\right) e^{x / 2}
$$

(\#9): $g(x)=3+e^{e^{x / 2}} \quad$ (Bum of functions)

$$
+\frac{1}{4} A+\frac{1}{4} B x^{2} e^{x / 2}
$$

guess: A
guess: $B e^{x / 2} \mid \times x^{2}$ to avoid'

$$
=\frac{1}{4} A+2 B e^{x / 2}
$$

(\#8): $g(x)=2 \times \sin x \quad$ (one function)

$$
=3+e^{x / 2}
$$

guess: $[\underbrace{(A x+B) \sin x+(C x+D) \cos x] \cdot x}$

$$
\Rightarrow\left\{\begin{array} { l }
{ \frac { 1 } { 4 } A = 3 } \\
{ 2 B = 1 }
\end{array} \quad \left\{\begin{array}{l}
A=12 \\
B=1 / 2
\end{array}\right.\right.
$$

this does have two terms, but they both come from $g(x$

$$
y_{p}=12+\frac{1}{2} x^{2} e^{x / 2}
$$ If in \#8) $g(x)$ were instead $g(x)=2 x \sin x+e^{3 x}$ we would leave the guess for $e^{3 x}$ alone, i.e. we wowed put $y_{p}=\left(A x^{2}+B x\right) \sin x+\left(C x^{2}+D x\right) \cos x+E e^{3}$

General solution: $y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}+\frac{1}{2} x^{2} e^{x / 2}+12$
(10) $y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos (2 x)$

Complementary Solution: $y^{\prime \prime}-2 y^{\prime}+5 y=0$

$$
\begin{aligned}
& m^{2}-2 m+5=0 \\
& \quad \Delta=4-20=-16 \Rightarrow m=\frac{2 \pm 4 i}{2}=1 \pm 2 i \\
& y_{c}=e^{x}\left(c_{1} \sin (2 x)+c_{2} \cos (2 x)\right) .
\end{aligned}
$$

Particular Solution: Initial guess would be: $A e^{x} \cos (2 x)+B e^{x} \sin (2 x)$ (multiply by x to eliminate duplication of y_{c}):

$$
\begin{aligned}
& y_{p}= A x e^{x} \cos (2 x)+B x e^{x} \sin (2 x) \\
& y_{p}^{\prime}= A e^{x} \cos (2 x)+A x e^{x} \cos (2 x)-2 A x e^{x} \sin (2 x) \\
&+B e^{x} \sin (2 x)+B x e^{x} \sin (2 x)+2 B x e^{x} \cos (2 x) \\
&= {[(A+(A+2 B) x) \cos (2 x)+(B+(B-2 A) x) \sin (2 x)] e^{x} } \\
& y_{p}^{\prime \prime}= {[(A+(A+2 B) x) \cos (2 x)+(B+(B-2 A) x) \sin (2 x)+} \\
&(A+2 B) \cos (2 x)-2(A+(A+2 B) x) \sin (2 x) \\
&+(B-2 A) \sin (2 x)+2(B+(B-2 A) x) \cos (2 x)] e^{x} \\
&= {[(2 A+4 B+(4 B-3 A) x) \cos (2 x)+(2 B-4 A+(-4 A-3 B) x) \sin (2 x)] E } \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}+5 y_{p}=(4 B) \cos (2 x) e^{x}+(-4 A) \sin (2 x) e^{x} \\
&= e^{x} \cos (2 x) \\
& \Rightarrow\left\{\begin{array} { l }
{ 4 B = 1 } \\
{ - 4 A = 0 }
\end{array} \left\{\begin{array}{l}
B=1 / 4 \\
A=0
\end{array} \quad y_{p}=\frac{1}{4} x e^{x} \sin (2 x)\right.\right.
\end{aligned}
$$

General solution: $y=c_{1} e^{x} \sin (2 x)+c_{2} e^{x} \cos (2 x)+\frac{1}{4} x e^{x} \sin (2 x)$
(11) $y^{\prime \prime \prime}-6 y^{\prime \prime}=3-\cos x$

Complementary Solution: $y^{\prime \prime \prime}-6 y^{\prime \prime}=0$

$$
\begin{aligned}
& y^{\prime \prime \prime}-6 y^{\prime \prime}=0 \\
& m^{3}-6 m^{2}=0 \\
& m^{2}(m-6)=0
\end{aligned} \quad y_{c}=c_{1}+c_{2} x+c_{3} e^{6 x}
$$

Particular Solution: $y_{p}=\underbrace{A x^{2}}_{1}+\underbrace{B \cos x+C \sin x}_{\text {these come from } \cos x}$
this comes from the constant 3 . Initial guess would be just " A " but we must multiply by x^{2} to eliminate duplication of the c_{1} and $C_{2} x$ in y_{0}.

$$
\begin{align*}
& \begin{aligned}
& y_{p}=A x^{2}+B \cos x+C \sin x \\
& y_{p}^{\prime}= 2 A x-B \sin x+C \cos x
\end{aligned} \begin{aligned}
y_{p}^{\prime \prime \prime}-6 y_{p}^{\prime \prime} & =-12 A+(6 B-C) \cos x+(6 C+B) \cos \prime \\
& =3-\cos x
\end{aligned} \\
& y_{p}^{\prime \prime}=2 A-B \cos x-C \sin x \\
& y_{p}^{\prime \prime \prime}=B \sin x-C \cos x
\end{align*} \quad\left\{\begin{array}{rl}
-12 A & =3 \\
6 B-C=-1 \\
6 C+B=0
\end{array} \quad A=-1 / 4\right)
$$

General Solution : $y=c_{1}+c_{2} x+c_{3} e^{6 x}-\frac{1}{4} x^{2}-\frac{6}{37} \cos x+\frac{1}{37} \sin x$
(12) $y^{\prime \prime}+y=8 \sin ^{2} x$

Complementary Solution: $y_{c}=c_{1} \sin x+c_{2} \cos x$
Particular Solution: How to handle $8 \sin ^{2} x$? Trigonometric Identity:

$$
\begin{aligned}
& \cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\
& \Rightarrow \sin ^{2} \alpha=\frac{1-\cos (2 \alpha)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
y^{\prime \prime}+y=4-4 \cos (2 x) \\
y_{p}=A+B \cos (2 x)+C \sin (2 x) \\
y_{p}^{\prime}=-2 B \sin (2 x)+2 C \cos (2 x) \\
y_{p}^{\prime \prime}=-4 B \cos (2 x)-4 C \sin (2 x)
\end{array}\right\} \begin{aligned}
y_{p}^{\prime \prime}+y_{p} & =A-3 B \cos (2 x)-3 C \sin (2 x \\
& =4-4 \cos (2 x)
\end{aligned} \\
& \left\{\begin{array}{l}
A=4 \\
3 B=4 \Rightarrow B=4 / 3
\end{array}\right.
\end{aligned}
$$

$$
y_{p}=4+\frac{4}{3} \cos (2 x)
$$

General Solution: $y=c_{1} \sin x+c_{2} \cos x+4+\frac{4}{3} \cos (2 x)$
(13) $y^{\prime \prime}+4 y=-2 ; \quad y(\pi / 8)=1 / 2 ; y^{\prime}(\pi / 8)=2$.

Complementary Solution:

$$
\begin{aligned}
y^{\prime \prime}+4 y & =0 \\
m^{2}+4 & =0 \\
m & = \pm 2 i
\end{aligned} \quad y_{c}=c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

Particular Solution:

$$
\left.\begin{array}{rl}
y_{p}=A & \Rightarrow y_{p}^{\prime}=y_{p}^{\prime \prime}=0 \\
& \Rightarrow y_{p}^{\prime \prime}+4 y_{p}=4 A \tag{p}\\
& =-2
\end{array}\right\} \Rightarrow A=-1 / 2
$$

Geveral Solution:

$$
\begin{aligned}
& y=c_{1} \sin (2 x)+c_{2} \cos (2 x)-1 / 2 \\
& y^{\prime}=2 c_{1} \cos (2 x)-2 c_{2} \sin (2 x)
\end{aligned}
$$

IVP

$$
\begin{aligned}
& y(\pi / 8)=c_{1} \frac{\sqrt{2}}{2}+c_{2} \frac{\sqrt{2}}{2}-1 / 2=1 / 2 \Rightarrow\left(c_{1}+c_{2}\right) \frac{1}{\sqrt{2}}=1 \Rightarrow\left(c_{1}+c_{2}=\sqrt{2}\right. \\
& y^{\prime}(\pi / 8)=2 c_{1} \frac{\sqrt{2}}{2}-2 c_{2} \frac{\sqrt{2}}{2}=2 \Rightarrow\left(c_{1}-c_{2}\right) \sqrt{2}=2 \Rightarrow \frac{c_{1}-c_{2}=\sqrt{2}}{2 c_{1}=2 \sqrt{2}} \\
& y=\sqrt{2} \sin (2 x)-1 / 2 c_{1}=\sqrt{2} ; c_{2}=0
\end{aligned}
$$

(14) $5 y^{\prime \prime}+y^{\prime}=-6 x ; y(0)=0 ; y^{\prime}(0)=-10$

Complementary Solution: $5 m^{2}+m=0$

$$
\begin{aligned}
& 5 m^{2}+m=0 \\
& m(5 m+1)=0 \quad\{0,-1 / 5\} \quad y_{c}=c_{1}+c_{2} e^{-x / 5}
\end{aligned}
$$

Particutar Solution: $y_{p}=A x^{2}+B x$ (imitial guess $A x+B$ duplicater c_{1}; $n y_{c}$)

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B ; y_{p}^{\prime \prime}=2 A \\
& 5 y_{p}^{\prime \prime}+y_{p}^{\prime}=10 A+2 A x+B \quad\left\{\begin{array}{l}
2 A=-6 \\
\\
\\
\\
\\
\end{array}\right)=-6 x+(10 A+B) \quad A=-3 \\
& 10 A+B=0
\end{aligned} \quad \begin{aligned}
& y_{p}=-3 x^{2}+30 x
\end{aligned}
$$

Geveral Solutoon: $y=c_{1}+c_{2} e^{-x / 5}-3 x^{2}+30 x$

$$
y^{\prime}=-\frac{1}{5} c_{2} e^{-x / 5}-6 x+30
$$

IVP: $0=y(0)=c_{1}+c_{2}$

$$
-10=y^{\prime}(0)=-\frac{1}{5} c_{2}+30
$$

$$
\begin{aligned}
& c_{1}+c_{2}=0 \\
& -\frac{1}{5} c_{2}=-40 \quad c_{2}=200 \quad c_{1}=-200 \\
& v--200+200 e^{-x 15}-3 x^{2}+30 x
\end{aligned}
$$

(15) $y^{\prime \prime}+y=x^{2}+1 ; y(0)=5, y(1)=0$

Complementary Solution: $\quad y_{c}=c_{1} \sin x x+c_{2} \cos x$
Particular salution:

$$
\begin{aligned}
& y_{p}=A x^{2}+B x+C \\
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A \\
& y_{p}^{\prime \prime}+y_{p}=2 A+A x^{2}+B x+C \\
& =A x^{2}+B x+(2 A+C) \\
& =x^{2}+1 \\
& \left\{\begin{array}{l}
A=1 \\
B=0 \\
2 A+C=1 \Rightarrow C=-1
\end{array}\right. \\
& y_{p}=x^{2}-1
\end{aligned}
$$

Geweral Salution: $y=c_{1} \sin x+c_{2} \cos x+x^{2}-1$.
IVP: $5=y(0)=c_{2}-1 \Rightarrow c_{2}=6$

$$
\begin{gathered}
0=y(1)=c_{1} \sin 1+c_{2} \cos 1 \Rightarrow c_{1} \sin 1=-6 \cos 1 \Rightarrow c_{1}=-6 \cot (\\
y=-6 \cot (1) \sin x+6 \cos x+x^{2}-1
\end{gathered}
$$

