Math 308-Differential Equations

Properties of The Laplace Transform

Laplace transforms of some basic functions:

$\mathscr{L}\{1\}=\frac{1}{s} ; s>0$.
$\mathscr{L}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}} ; s>0 . \quad \mathscr{L}\{\sinh (a t)\}=\frac{a}{s^{2}-a^{2}} ; s>|a|$.
$\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} ; s>0$.
$\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a} ; s>a$.

$$
\mathscr{L}\{\cos (a t)\}=\frac{s}{s^{2}+a^{2}} ; s>0 .
$$

$$
\begin{aligned}
\mathscr{L}\{\sinh (a t)\} & =\frac{a}{s^{2}-a^{2}} ; s>|a| . \\
\mathscr{L}\{\cosh (a t)\} & =\frac{s}{s^{2}-a^{2}} ; s>|a| .
\end{aligned}
$$

Properties of the Laplace transform:
Translation Theorem: $\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)=\left.\mathscr{L}\{f(t)\}\right|_{s \rightarrow s-a}$
Derivatives of Laplace Transforms: $\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$

Laplace Transforms of Derivatives: $\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0)$

Find the Laplace transforms below, with the frequency domain as well.

1. $\mathscr{L}\left\{t e^{10 t}\right\}$.
2. $\mathscr{L}\left\{t^{3} e^{-2 t}\right\}$.
3. $\mathscr{L}\left\{e^{t} \sin (3 t)\right\}$.
4. $\mathscr{L}\left\{e^{-t} \sin ^{2} t\right\}$.
5. $\mathscr{L}\left\{t\left(e^{t}+e^{2 t}\right)^{2}\right\}$.
6. $\mathscr{L}\{t \cos (2 t)\}$.
7. $\mathscr{L}\left\{e^{5 t} \sinh (3 t)\right\}$.
8. $\mathscr{L}\left\{t e^{2 t} \sin (6 t)\right\}$.
9. $\mathscr{L}\left\{e^{-2 t}\left(t^{3}+1\right)^{2}\right\}$.
10. $\mathscr{L}\left\{t e^{a t} \sin (b t)\right\}$.
11. Suppose y is the solution to the IVP:

$$
y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad y(0)=2, y^{\prime}(0)=3
$$

Find $Y(s)$, the Laplace transform of y (without solving the IVP!).

