Separable Equations

Solve the following differential equations using separation of variables:

1. $\frac{d y}{d x}=\sin (5 x)$
2. $x y^{\prime}=4 y$
3. $\left(4 y+y x^{2}\right) d y-\left(2 x+x y^{2}\right) d x=0$
4. $\frac{d y}{d x}=\frac{x y+3 x-y-3}{x y-2 x+4 y-8}$
5. $y d y=4 x \sqrt{y^{2}+1} d x ; y(0)=1$
6. $\frac{d x}{d y}=4\left(x^{2}+1\right) ; x\left(\frac{\pi}{4}\right)=1$
7. $x^{2} y^{\prime}=y-x y ; \quad y(-1)=-1$
8. $e^{y} \sin (2 x) d x+\cos x\left(e^{2 y}-y\right) d y=0$.

Differential equations of the form $y^{\prime}(x)=F(a x+b y+c)$, with $b \neq 0$, can be reduced to a separable equation by making the substitution:

$$
u=a x+b y+c
$$

Differentiating both sides above, we have:

$$
\frac{d u}{d x}=a+b \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{b}\left(\frac{d u}{d x}-a\right)
$$

and the original equation may be rewritten as:

$$
\frac{d u}{d x}=a+b F(u)
$$

Use this method to solve the equations:
9. $\frac{d y}{d x}=(x+y+1)^{2}$
10. $\frac{d y}{d x}=1+e^{y-x+5}$
11. $\frac{d y}{d x}=2+\sqrt{y-2 x+3}$.

