Math 308 - Differential Equations

Section 501 Texas A& M University, Spring 2022

Separable Equations

Solve the following differential equations using separation of variables:

1.
$$\frac{dy}{dx} = \sin(5x)$$

2. $xy' = 4y$
3. $(4y + yx^2) dy - (2x + xy^2) dx = 0$
4. $\frac{dy}{dx} = \frac{xy + 3x - y - 3}{xy - 2x + 4y - 8}$
5. $y dy = 4x\sqrt{y^2 + 1} dx; \ y(0) = 1$
6. $\frac{dx}{dy} = 4(x^2 + 1); \ x\left(\frac{\pi}{4}\right) = 1$
7. $x^2y' = y - xy; \ y(-1) = -1$
8. $e^y \sin(2x) dx + \cos x(e^{2y} - y) dy = 0.$

Differential equations of the form y'(x) = F(ax + by + c), with $b \neq 0$, can be reduced to a separable equation by making the substitution:

$$u = ax + by + c.$$

Differentiating both sides above, we have:

$$\frac{du}{dx} = a + b\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{b}\left(\frac{du}{dx} - a\right),$$

and the original equation may be rewritten as:

$$\frac{du}{dx} = a + bF(u).$$

Use this method to solve the equations:

9.
$$\frac{dy}{dx} = (x + y + 1)^2$$

10. $\frac{dy}{dx} = 1 + e^{y - x + 5}$
11. $\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3}$.

Homework 2