(Ipt

Quiz 1

Suppose that $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = 2$. Find $\mathbf{u} \cdot \mathbf{v}$, given that the angle between the two vectors is $\frac{\pi}{4}$.

Given the points:

$$P(1,2,3),$$
 $Q(1,4,3+\sqrt{5})$

- a). Express the vector \overrightarrow{PQ} in component form.
- b). Find the length of \overrightarrow{PQ}
- c). Find the direction of the vector \overrightarrow{PQ} .

3. Given the vectors:

$$\mathbf{u} = \langle 3, 1, -2 \rangle,$$

 $\mathbf{v} = \langle -4, 0, 1 \rangle$

find
$$\mathbf{u} \times \mathbf{v}$$
 and $\mathbf{v} \times \mathbf{u}$.

(1) $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \Rightarrow \cos \frac{\vec{u}}{4} = \frac{\vec{u} \cdot \vec{v}}{3 \cdot 2} \Rightarrow \frac{\vec{v}}{2} = \frac{\vec{u} \cdot \vec{v}}{6} \Rightarrow \hat{u} \cdot \vec{v} = 3\sqrt{2}$

(1) $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \Rightarrow \cos \frac{\vec{u}}{4} = \frac{\vec{u} \cdot \vec{v}}{3 \cdot 2} \Rightarrow \hat{u} \cdot \vec{v} = 3\sqrt{2}$

(1) $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} \Rightarrow \hat{u} \cdot \vec{v} = 3\sqrt{2}$

(2) a). $\overrightarrow{PQ} = \langle 0, 2, \sqrt{5} \rangle$ (1pt.) $|\cancel{3pt./component}|$

b).
$$|\vec{PQ}| = \sqrt{4+5} = 3$$
 (1pt.)

c). direction =
$$\frac{\overline{PQ}}{|\overline{PQ}|}$$
 = $\langle 0, \frac{2}{3}, \sqrt{5}/3 \rangle$ (1pt.) /3pt. component

(3)
$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -4 & 0 \end{vmatrix} = \begin{vmatrix} \vec{i} & | & -2 \\ -4$$

$$\vec{v} \times \vec{u} = \left(-1, -5, -4\right)$$