Math 2401
Final Exam

Name:
Section:
$\qquad$

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: $\qquad$

| Problem 1 | Possible <br> 10 | Earned |
| :---: | :---: | :---: |
| 2 | 5 |  |
| 3 | 5 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 5 |  |
| 7 | 10 |  |
| 8 | 5 |  |
| 9 | 10 |  |
| 10 | 10 |  |
| 11 | 5 |  |
| 12 | 10 |  |
| 13 | 10 |  |
| 14 | 10 |  |
| 15 | 10 |  |
| Total | 125 |  |

1. ( 10 pts ) Let $-1 \leq t \leq 1$. For the parametric curve:

$$
\vec{r}(t)=\left(\frac{4}{9}(1+t)^{\frac{3}{2}}, \frac{4}{9}(1-t)^{\frac{3}{2}}, \frac{t}{3}\right)
$$

(a) Find the unit tangent vector to the curve $\vec{r}(t)$;
(b) Find the unit normal vector to the curve $\vec{r}(t)$;
(c) Find the unit binormal vector to the curve $\vec{r}(t)$.
2. ( 5 pts ) Find the length of the curve

$$
\vec{r}(t)=\left(3 \cos t, 3 \sin t, 2 t^{\frac{3}{2}}\right)
$$

when $0 \leq t \leq 3$.
3. ( 5 pts ) Find an equation for the plane that passes through the point $(3,-2,1)$ that is normal to the vector $\vec{n}=(2,1,1)$.
4. (10 pts) Find the directional derivative of

$$
f(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)
$$

at the point $(a, a, a), a \neq 0$, in the direction of the vector $(2,1,2)$.
5. (10 pts) Find the maximum and minimum values of

$$
f(x, y, z)=x+y-z
$$

subject to the constraint that

$$
\frac{x^{2}}{4}+\frac{y^{2}}{4}+z^{2}=1
$$

6. (5 pts) Find the limit of

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}
$$

as $(x, y) \rightarrow(0,0)$ or show that the limit does not exist.
7. (10 pts) For the function:

$$
f(x, y)=-\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+4 x y-y^{2}
$$

(a) Find the critical values;
(b) For each critical point found from part (a) determine if the function achieves a local maximum, local minimum or a saddle point by using the second derivative test.
8. (5 pts) For the equation $x^{2}+y^{2}-2 x y-x+3 y-z=-4$ find the normal line through the point $(2,-3,18)$.
9. ( 10 pts ) Let $\Omega$ be the region in the $x y$ plane that lies in the first quadrant, is bounded by the hyperbola $x y=1, x y=16$ and the lines $y=x$ and $y=9 x$.
(a) Sketch the region $\Omega$;
(b) Find a domain $\Gamma$ in the $u v$-plane so that the transformation $x(u, v)=\frac{u}{v}$ and $y(u, v)=$ $u v$ with $u>0$ and $v>0$ maps $\Gamma$ to $\Omega$. Sketch $\Gamma$;
(c) Find the Jacobian of the above transformation;
(d) Evaluate $\iint_{\Omega}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d A(x, y)$.
10. (10 pts) Find the volume of the region in the first octant bounded by the coordinate planes and the surface $z=4-x^{2}-y$.
11. (5 pts) Use polar coordinates to evaluate the integral:

$$
\int_{-1}^{1}\left(\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y\right) d x
$$

12. (10 pts) For the vector field $\vec{F}(x, y, z)=\left(e^{x} \cos y+y z, x z-e^{x} \sin y, x y+z\right)$ :
(a) Show that $\vec{F}$ is a conservative vector field;
(b) Find the scalar potential function $f$ such that $\vec{F}=\nabla f$;
(c) Evaluate the line integral of $\vec{F}$ over any path $\vec{r}$ starting at the point $(0,0,0)$ and ending at the point $(1,2 \pi, 0)$. Namely, compute

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where $C$ is any path starting at $(0,0,0)$ and ending at $(1,2 \pi, 0)$.
13. (10 pts) Let $S$ denote the surface $x^{2}+y^{2}+z^{2}=R^{2}$, and let $\vec{n}(x, y, z)$ denote the outer unit normal to the surface. Suppose that

$$
\vec{v}(x, y, z)=\left(x \sqrt{x^{2}+y^{2}+z^{2}}, y \sqrt{x^{2}+y^{2}+z^{2}}, z \sqrt{x^{2}+y^{2}+z^{2}}\right) .
$$

Compute $\iint_{S}(\vec{v} \cdot \vec{n}) d \sigma$ in two different ways:
(a) By direct calculation of $\iint_{S}(\vec{v} \cdot \vec{n}) d \sigma$;
(b) By the Divergence Theorem.

You may use the fact that the surface area of the sphere of radius $R$ is $4 \pi R^{2}$, namely:

$$
\iint_{S} d \sigma=4 \pi R^{2}
$$

14. (10 pts) Let $S$ be the surface parameterized by $\vec{r}(u, v)=(u+v, u-v, v)$ with $0 \leq u \leq 1$ and $0 \leq v \leq 1$. Let

$$
f(x, y, z)=x y-z^{2}
$$

Compute

$$
\iint_{S} f d \sigma
$$

15. (10 pts) Let $\Omega=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Let $C$ be the boundary of the domain $\Omega$, parameterized by the curve $\vec{r}(t)=(\cos t, \sin t)$ with $0 \leq t \leq 2 \pi$. Show that

$$
\oint_{C} k y d x+h x d y=(h-k) \pi
$$

in two ways:
(a) By direct calculation of $\oint_{C} k y d x+h x d y$;
(b) By an application of Green's Theorem.

