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ABSTRACT

The symmetric rank of a polynomial P is the minimum number of d-th powers of

linear forms necessary to sum to P . Questions pertaining to the rank and decompo-

sition of symmetric forms or polynomials are of classic interest. Work on this topic

dates back to the mid 1800’s to J. J. Sylvester. Many questions have been resolved

since Sylvester’s work, yet many more questions have arisen. In recent years, certain

polynomials including detn, the determinant of an n × n matrix of indeterminates,

have become central in the study of rank problems. Symmetric border rank of a

polynomial P is the minimum r such that P is in the Zariski closure of polynomials

with symmetric rank r. It bounds and is closely related to rank. This dissertation

demonstrates new lower bounds for the symmetric border rank of the polynomial

detn. We prove this result using methods from algebraic geometry and representa-

tion theory. In addition to the lower bounds for symmetric border rank of detn, we

present a lower bound for symmetric border rank of a related polynomial, perm3. We

conclude by giving future directions for continuing this project. The first direction is

to use the methods from algebraic geometry and representation theory used in this

dissertation to study permn. With the new lower bound on symmetric border rank

of perm3 we know that there are only 3 possible values for symmetric border rank of

perm3. One could ask which of the 3 possible values for symmetric border rank of

perm3 is the correct value.
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1. INTRODUCTION: THE WARING PROBLEM FOR THE DETERMINANT

The Waring problem emerged in the late 1700’s, see [War82, p. 349]. The Waring

problem is known to ask: if d is a natural number, is there a number k(d) such

that no more than k(d) d-th powers of natural numbers are needed to sum to any

n ∈ N? This question remained open for over a century until David Hilbert answered

the question in the affirmative in [Hil09]. For a survey on the Waring problem see

[VW02].

Since the Waring problem was initially stated many analogues have arisen. In

particular, it is known that any complex homogeneous degree d polynomial in n

variables may be written as a sum of d-th powers of linear forms. This motivates the

polynomial Waring problem:

Question 1.1 (polynomial Waring problem). Let P be a complex homogeneous de-

gree d polynomial in n variables. What is the minimum r needed to write P as

P =
r∑
i=1

(αi1x1 + · · ·+ αinxn)d

where αij ∈ C?

This question is still open for explicit polynomials. In the above question r is

called the symmetric rank or Waring rank of P and is commonly called rank if it is

clear by context.

Rank of polynomials is not semi-continuous and the Zariski closure of the set

of homogeneous degree d polynomials in n variables of a fixed rank r can contain

polynomials of rank greater than r. Symmetric border rank is a geometrically mean-

ingful concept of rank addressing this phenomenon. See Definition 2.36 for a formal
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definition of symmetric border rank. The set of homogeneous degree d polynomials

in n variables with symmetric border rank at most r is an algebraic variety. This al-

lows the powerful tools of algebraic geometry to be used to study border rank. Lower

bounds for the symmetric border rank of P are obtained by evaluating defining equa-

tions of these varieties on P . Early examples of this method date back to Sylvester’s

work in the 1800’s. Sylvester introduces catalecticants in [Syl51a] and observes a

connection between their rank and the symmetric border rank of polynomials. This

dissertation presents catalecticants as symmetric flattenings.

In [LO13], Landsberg and Ottaviani describe the method of Young Flattenings to

obtain linear maps from a given polynomial P and which generalize catalecticants.

Young flattenings provide equations on the variety of polynomials of border rank at

most r and therefore find lower bounds on border rank of P .

This dissertation uses the method of Landsberg and Ottaviani to obtain lower

bounds on the symmetric border rank of the determinant of an n × n matrix of

indeterminates, detn, a homogeneous polynomial of degree n in n2 variables. The

determinant is a classic focus of research and many properties of the determinant

are well understood, but the rank of detn is unknown. Due to questions originating

in complexity theory motivated by the work of Valiant in [Val79] and Mulmuley

and Sohoni in [MS01] the determinant polynomial and a related polynomial, the

permanent, have become increasingly important and popular foci of research.

Section two provides basic definitions and theorems needed to understand the

Young flattenings of Landsberg and Ottaviani. This background section includes

basics on tensor decomposition, and representation theory, and a brief discussion on

secant varieties. Section three offers a brief summary of results and applications of

tensor and polynomial rank. Section four covers lower bounds obtained via the use

of Young flattenings. This section details a specific application of these flattenings

2



and describes how representation theory aided in calculating the rank of a linear map

obtained as the Young flattening of detn. It also demonstrates how computer software

calculated new lower bounds for small determinants and permanents. Section five

summarizes this dissertation and outlines further research directions.

3



2. BACKGROUND

We begin with a discussion of tensors, including the concepts of rank and flat-

tenings. Next, we introduce secant varieties and the border rank of a tensor. The

section concludes with tools from representation theory crucial to understanding the

proofs presented later. Much of the material in this section can be found in basic

texts such as [Ful97, FH91, Ike13, Lan12]. Our base field is C, the field of complex

numbers.

Tensors play an important role in mathematics and its applications. The tensor is

a universal object for multi-linear algebra. Our interest lies in tensors with symmetry,

but the definitions and ideas in the general case for tensors can be easier to state

and understand. The statements for the special case will follow and we may see the

similarities.

Definition 2.1. A function f : V ∗1 × · · · × V ∗k → C is k-linear if for every i

f(. . . , αi + cβi, . . .) = f(. . . , αi, . . .) + cf(. . . , βi, . . .).

Definition 2.2. Let V1, . . . , Vk be vector spaces. The tensor product of the vector

spaces V1, . . . , Vk is the space of k-linear functions f : V ∗1 × · · · × V ∗k → C and is

denoted by V1 ⊗ · · · ⊗ Vk.

For vi ∈ Vi and αi ∈ V ∗i where i = 1, . . . , k, the map v1 ⊗ · · · ⊗ vk(α1, . . . , αk) =

α1(v1) · · ·αk(vk) defines the element v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk. We call tensors

T ∈ V1 ⊗ · · · ⊗ Vk which may be written in this form rank one.

Definition 2.3. The rank of a tensor T ∈ V1⊗ · · · ⊗ Vk is the minimum r such that

T = ∑r
i=1 ci · v1,i ⊗ · · · ⊗ vk,i where ci ∈ C and vj,i ∈ Vj.
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That is, the rank of T is the minimal number of rank one tensors needed to sum

to T .

Remark 2.4. For any choice of i ∈ {1, . . . , k}, there exists an interpretation of V1 ⊗

· · · ⊗ Vk as a (k − 1)-linear map TVi : V ∗1 × · · · × V̂ ∗i × · · · × V ∗k → Vi where the V̂ ∗i

should be interpreted as omitted.

Definition 2.5. Consider the tensor product V1 ⊗ · · · ⊗ Vk and let I ⊆ {1, . . . , k}

and let J = {1, . . . , k} r I and let V ∗I = V ∗i1 ⊗ · · · ⊗ V
∗
i|I|

and VJ = Vj1 ⊗ · · · ⊗ Vj|J|
where i` ∈ I and j` ∈ J such that im 6= in and jm 6= jn when m 6= n. The linear map

TI,J : V ∗I → VJ is called a flattening of T .

Example 2.6. Let A, B, and C be vector spaces of dimension two and let ai, bi,

and ci be bases of vector spaces A, B, and C respectively and let αi, βi, and γi be

bases of their dual spaces. The tensor T = a1⊗ b1 ⊗ c2 + 2a2 ⊗ b1⊗ c1 + a2⊗ b2⊗ c2

has the following flattenings:

T{2,3},{1} =

β1 ⊗ γ1 β1 ⊗ γ2 β2 ⊗ γ1 β2 ⊗ γ2
a1 0 1 0 0

a2 2 0 0 1
,

T{1,3},{2} =

α1 ⊗ γ1 α1 ⊗ γ2 α2 ⊗ γ1 α2 ⊗ γ2
b1 0 1 2 0

b2 0 0 0 1
,
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and

T{1,2},{3} =

α1 ⊗ β1 α2 ⊗ β1 α1 ⊗ β2 α2 ⊗ β2
c1 0 2 0 0

c2 1 0 0 1
.

An application and generalization of tensor flattenings will be presented shortly.

Now we introduce secant varieties, important results, and definitions associated

with such varieties. First, we introduce secant varieties in full generality, then move to

a special case which provides an alternative to the tensor rank previously introduced.

Definition 2.7. Let X ⊂ PV be a variety. The r-th secant variety of X is

σr(X) =
⋃

x1,...,xr∈X
〈x1, . . . , xr〉.

Notice for every x1, . . . , xr, 〈x1, . . . , xr−1〉 ⊆ 〈x1, . . . , xr〉. This implies

⋃
x1,...,xr−1∈X

〈x1, . . . , xr−1〉 ⊆
⋃

x1,...,xr∈X
〈x1, . . . , xr〉.

This implies σr−1(X) ⊆ σr(X).

Definition 2.8. The Segre variety is the variety of rank one tensors. It is the image

of the map

Seg: PV1 × · · · × PVk → P(V1 ⊗ · · · ⊗ Vk)

([v1], . . . , [vk]) 7→ [v1 ⊗ · · · ⊗ vk].

In general, the set of rank r tensors is open and therefore does not define a

projective variety. σr(Seg(PV1 × · · · × PVk)) is a variety containing the tensors in
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V1⊗ · · ·⊗Vk of rank r. Notice if T ∈ 〈x1, . . . , xr〉 where x1, . . . , xr ∈ Seg(PV1× · · ·×

PVk), then T can be written as the sum of r rank one tensors; the r-th secant variety

of the Segre variety is the Zariski closure of the set of such tensors. By taking the

Zariski closure, more tensors than those of rank r may be in this secant variety. This

motivates the following definition which provides a geometrically meaningful notion

of rank.

Definition 2.9. For a tensor T ∈ V1 ⊗ · · · ⊗ Vk, the minimal r such that T ∈

σr(Seg(PV1 × · · · × PVk)) is called the border rank of T and is denoted R(T ).

The equations of the variety σr(Seg(PV1 × · · · × PVk)) provide a method to test

for the border rank of a tensor. If an equation vanishes on this variety but does not

vanish on a tensor T , then T has border rank greater than r. Tensor flattenings

provide some of the known equations for σr(Seg(PV1 × · · · × PVk)). Given a tensor

T ∈ V1⊗ · · · ⊗ Vk, if there exists a nonzero (r+ 1)× (r+ 1)-minor of flattening TI,J ,

then R(T ) > r [Lan12, p. 76]. Unfortunately, in most cases the equations obtained

from flattenings are incomplete and more equations are needed to understand these

varieties.

Conditions on the rank of flattenings are useful for determining non-membership

in the r-th secant variety of the Segre variety. A generalization of flattenings that

implies lower bounds for the polynomial Waring problem, Question 1.1, is provided

shortly.

We now discuss basics of representation theory. Tensors appear early on in the

study of representations since there are natural actions of the general linear group

and the symmetric group on tensors.

Definition 2.10. Let V be a finite dimensional vector space. GL(V ) denotes the

group of all invertible linear transformations f : V → V . This group is called the

7



general linear group of V . By fixing a basis of V , we identify f ∈ GL(V ) with an

n × n matrix Mf with entries in C. This identifies GL(V ) with the group of n × n

invertible matrices with entries in C denoted GLn. The special linear group of V is

the subgroup SL(V ) ⊂ GL(V ) of f ∈ GL(V ) such that det(Mf ) = 1.

Definition 2.11. Let V be finite dimensional vector space and G be a group. A

representation of G is a group homomorphism

ρ : G→ GL(V ).

We sometimes refer to V as a representation of G. In this case the reader should

understand that there is a homomorphism ρ : G → GL(V ) and the action of g ∈ G

on v ∈ V is g.v = ρ(g)(v).

Definition 2.12. Let V be a representation of the group G. A subrepresentation of

V is a subspace U ⊆ V such that ∀u ∈ U and ∀g ∈ G, g.u ∈ U .

Definition 2.13. A group representation V is irreducible if its subrepresentations

are {0} or V .

Definition 2.14. Given a group G and representations V and W of G, a linear map

ϕ : V → W is called a G-module homomorphism if ϕ(g.v) = g.ϕ(v).

Understanding maps between two representations provides us with information

about how the representations decompose. For instance, if we know that ϕ is a G-

module homomorphism then we have the following lemmas about the maps kernel

and image.

Lemma 2.15. Let G be a group with representations V and W and let ϕ : V → W

be a G-module homomorphism. Then ker(ϕ) ⊆ V is a G-module.

8



Lemma 2.16. Let G be a group with representations V and W and let ϕ : V → W

be a G-module homomorphism. Then Im(ϕ) ⊆ W is a G-module.

These two statements are essential for the proof of Schur’s lemma, one of the

most useful lemmas in representation theory.

Lemma 2.17 (Schur’s lemma). Let G be a group and let V and W be irreducible

G-modules. Then ϕ : V → W is either identically zero or it is an isomorphism.

Proof. In the statement of Schur’s lemma V and W are irreducible G-modules. Since

V is irreducible, ker(ϕ) is either {0} and ϕ is an isomorphism or it is V and ϕ is

identically zero.

Let V be a vector space of dimension n. Furthermore, let V ∼= Vi for every i and

let V ⊗k = V1 ⊗ · · · ⊗ Vk. The general linear group GL(V ) acts in the following way.

Let g ∈ GL(V ), then ∀w = v1 ⊗ · · · ⊗ vk ∈ V ⊗k

g.w = g.v1 ⊗ · · · ⊗ g.vk.

This extends to an action of GL(V ) on V ⊗k by the universal mapping property of

tensor products.

Let Sk denote the symmetric group on k letters. Let τ ∈ Sk and w = v1⊗ · · · ⊗

vk ∈ V ⊗k, then the action of Sk on V ⊗k is defined as follows

τ.w = vτ−1(1) ⊗ · · · ⊗ vτ−1(k)

and extend linearly.

A tensor T ∈ V ⊗k is symmetric if T (α1, . . . , αk) = T (ατ(1), . . . , ατ(k)) for every

τ ∈ Sk. SkV ⊆ V ⊗k denotes the space of symmetric tensors or k-forms.

9



We identify SkV with the space of homogeneous degree k polynomials on V ∗ in

the following way: Let P ∈ SkV be a symmetric tensor. The homogeneous degree k

polynomial P ∈ SkV associated to P is

P (α) = P (α, . . . , α).

Given a homogeneous degree k polynomial P ∈ SkV , the symmetric tensor P ∈ SkV

associated with P is obtained via polarization, which is defined as follows:

P (α1, . . . , αk) = 1
k! · coeft1···tk(P (t1α1 + · · ·+ tkαk)),

where coeft1···tk(P ) denotes the coefficient of t1 · · · tk. The next example demonstrates

both of these ideas.

Example 2.18. Let P ((α, β)) = α2β + 3αβ2, then

P ((α1, β1), (α2, β2), (α3, β3)) =

= 1
3!coeft1t2t3 [P ((t1α1 + t2α2 + t3α3), (t1β1 + t2β2 + t3β3))]

=1
6coeft1t2t3 [(2(β1α2α3 + α1β2α3 + α1α2β3) + 6(β1β2α3 + β1α2β3 + α1β2β3))t1t2t3

+ (2α1α2β1 + 3α2β
2
1 + α2

1β2 + 6α1β1β2)t21t2 + · · · ]

=1
6[2(β1α2α3 + α1β2α3 + α1α2β3) + 6(β1β2α3 + β1α2β3 + α1β2β3)]

=1
3(β1α2α3 + α1β2α3 + α1α2β3) + (β1β2α3 + β1α2β3 + α1β2β3).

Reversing this process, we see

P ((α, β)) = P ((α, β), (α, β), (α, β)) = 1
3(3α2β) + 3αβ2 = α2β + 3αβ2.

10



Definition 2.19. A partition λ = (λ1, . . . , λd) is a weakly decreasing finite sequence

of nonnegative numbers. The length of a partition equals the number of nonzero

parts in the partition, denoted `(λ), and |λ| = λ1 + · · · + λd. A Young diagram is

a diagram of boxes left and top justified with λi boxes in the i-th row. If the boxes

are filled with entries from {1, . . . , n}, it is called a Young tableau. The content of

a tableau T with fillings from {1, . . . , n} is an n-tuple c(T ) ∈ Nn, the i-th entry of

c(T ) records the number of times the entry i ∈ {1, . . . , n} is an entry of T . The

entries of a standard tableau strictly increase left to right across rows and down

columns, while the entries of a semistandard tableau strictly increase down columns

and weakly increase left to right across rows. See Figure 2.1 for examples.

1 2 3 3
2 3
3

1 2 4 6
3 5
7

Figure 2.1: Examples of a Young diagram, a semistandard Young tableau, and a
standard Young tableau corresponding to the partition λ = (4, 2, 1).

If a partition λ = (λ1, . . . , λd) is such that λj+1 = λj+2 = · · · = λj+k where

1 ≤ j+1 ≤ j+k ≤ d we may write λ = (λ1, . . . , λj, λ
k
j+1, λj+k+1, . . . , λd) to abbreviate

notation. For example the partition (4, 3, 2, 2, 2, 1) may be written (4, 3, 23, 1).

Definition 2.20. Given a partition λ, its conjugate partition λ′ is the partition

whose i-th part is the length of the i-th column in the Young diagram of λ.

Example 2.21. Let λ = (2, 1, 1) be a partition. The conjugate partition of λ is

λ′ = (3, 1).

11



Definition 2.22. Let λ be a partition and T be a standard tableau of shape λ with

c(T ) = (1, . . . , 1). The permutation τ ∈ S|λ| acts on a standard tableau by permuting

the entries of the tableau. Let ST (i) ⊆ S|λ| consist of elements τ ∈ S|λ| such that τ

permutes only the entries of the i-th row of T and S′T (j) ⊆ S|λ| consist of elements

τ ∈ S|λ| such that τ permutes only the entries of the j-th column of T . Let C[S|λ|]

denote the group algebra of S|λ| and for every τ ∈ S|λ| let eτ denote a basis element of

C[S|λ|]. Let ρ(T, i) = ∑
τ∈ST (i) eτ and define ρ(T ) = ρ(T, 1) · · · ρ(T, `(λ)). Similarly,

define ρ′(T, j) = ∑
τ∈S′T (j) sgn(τ)eτ and ρ′(T ) = ρ′(T, 1) · · · ρ′(T, `(λ′)). A Young

symmetrizer corresponding to T is Y (T ) ∈ C[S|λ|] defined by Y (T ) = ρ(T )ρ′(T ).

For references on Young symmetrizers, see e.g., [FH91, p. 46] and [Lan12, p. 142].

Definition 2.23. Let V be a vector space. Fix H ⊂ GL(V ) a maximal abelian

diagonalizable subgroup. We usually work with a basis of V for which H is the

subgroup of invertible diagonal matrices. Let W be a representation of GL(V ). For

every group homomorphism λ : H → C∗, define Wλ = {w ∈ W | h.w = λ(h)w,∀h ∈

H}. If Wλ 6= 0, we call it a weight space of W for H and λ is said to be its

weight. Notice that the Wλ’s are the (simultaneous) eigenspaces of H and λ’s are

their associated generalized eigenvalues.

Fix a basis where H is diagonal. In any irreducible GL(V )-representation W

there is a unique line ` ⊂ W such M.` = ` for all upper triangular matrices M . This

line ` is a weight space. We call the weight of ` a highest weight and ` a highest

weight line see, e.g., [Lan12, Ch. 6.8].

Definition 2.24. Let λ be partition. A Schur module, denoted SλV , is an irreducible

GL(V )-module with highest weight λ and defined as the image of V ⊗|λ| under the

projection determined by Y (T ) where T is a standard Young tableau with c(T ) =

(1, . . . , 1) and shape λ.
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Let V be a vector space of dimension n. For a given Schur module SλV , we have

the isomorphism SλcV
∗ ∼= SλV as SL(V )-modules where λc is the complement of the

Young diagram λ in the n× λ1 rectangle.

Example 2.25. Let V be a vector space of dimension three, then given λ = (3, 1)

then λc = (3, 2).

The following is a discussion of the irreducible GL(V )-module SλV as a quotient

space of an abstract vector space of Young tableaux. This interpretation follows those

found in [Ful97, p. 110] and [Ike13, p. 35f]. Let V be a vector space of dimension

n and λ be a partition with `(λ) ≤ n. Let Cλ(n) denote the vector space with

the set of all Young tableaux of shape λ with fillings from {1, . . . , n} as its basis.

Let S1 ⊆ Cλ(n) be the subspace generated by sums of tableaux T + T ′ where T ′

is obtained from T by exchanging the entries of exactly two boxes of the same

column. Sums of tableaux Γ(T, i, j) := T − ∑
T ′ T

′ generate the subspace S2 ⊆

Cλ(n), where the sum ∑
T ′ T

′ ranges over all T ′ that are obtained by exchanging

the top j entries of the (i + 1)-st column of T with any choice of j entries in the

i-th column of T while maintaining vertical order. Maintaining vertical order means

if entries a and b are exchanged from column i + 1 to column i or column i to

column i+ 1 with entry a in a box above b, not necessarily immediately above, then

a is in a box above b after the exchange. Let the subspace S ⊆ Cλ(n) be defined

S = S1 + S2. The irreducible GL(V )-representation SλV as a vector space can be

defined as the quotient space of Cλ(n)/S which has a basis of semistandard tableaux

with fillings from {1, . . . , n}. The shuffling rules Lemma 2.26 and Lemma 2.27 given

below are relations among tableaux in the quotient space Cλ(n)/S. Through repeated

applications of the shuffling rules a tableau T ∈ Cλ(n)/S can be rewritten a sum of

semistandard tableaux.
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Lemma 2.26 (Shuffling rule 1). Let T, T ′ ∈ Cλ(n), with T ′ obtained by exchang-

ing the entries of two boxes in the same column of T , then in the quotient space

Cλ(n)/S we have [T ′] = −[T ], where −T is an element of the vector space Cλ(n).

See Figure 2.2 for an illustration.

2 3 3
1 = − 1 3 3

2

Figure 2.2: An example of the Lemma 2.26 with dim(V ) ≥ 3.

Lemma 2.27 (Shuffling rule 2). Let T ∈ Cλ(n) and the tableaux T ′ ∈ Cλ(n) be

tableaux obtained by exchanging the top j entries of the (i + 1)-st column of T with

any choice of j entries in the i-th column of T while maintaining vertical order. In

the quotient space Cλ(n)/S, we have [T ] = ∑
T ′ [T ′]. Figure 2.3 visually demonstrates

this rule.

3 1 3
4 2 6
5

=
1 3 3
2 4 6
5

+
1 3 3
4 5 6
2

+
3 4 3
1 5 6
2

Figure 2.3: An example of the Lemma 2.27 with dim(V ) ≥ 6.

Remark 2.28. As a result of Lemma 2.26, if tableau T has an entry repeated in the any

given column then [T ] = [0] ∈ Cλ(n)/S. Lemma 2.27 implies [T ] = [T ′] ∈ Cλ(n)/S if

T ′ is a tableau obtained from T by switching columns of the same size.
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The tensor product SλV ⊗SkV decomposes as a GL(V )-module. This decompo-

sition is governed by the Pieri rule.

Proposition 2.29 (Pieri rule). Let V be a vector space of dimension n, then

SλV ⊗ SkV =
⊕
µ

SµV

where partitions µ are partitions with length at most n obtained from λ by adding k

boxes to the diagram of λ with no two boxes added to the same column.

Let V be a vector space of dimension at least 4. An example of the Pieri rule,

S(2,1,1)V ⊗ S3V , is demonstrated visually in Figure 2.4. We interpret Figure 2.4 as

showing

S(2,1,1)V ⊗ S3V = S(5,1,1)V ⊕ S(4,2,1)V ⊕ S(4,13)V ⊕ S(3,2,12)V.

On the left hand side we identify S(2,1,1)V with a Young diagram corresponding to

the partition λ = (2, 1, 1). We also identify S3V and S(3)V . Then S(3)V is identified

with the Young diagram corresponding to the partition (3). The right hand side of

the figure is a sum of Young diagrams which correspond to the partitions of each

summand SµV occurring in the GL(V )-module decomposition of S(2,1,1)V ⊗ S3V .

• •
•
•

⊗ =
• •
•
•

⊕
• •
•
•

⊕
• •
•
• ⊕

• •
•
•

Figure 2.4: An example of the Pieri rule with SλV where λ = (2, 1, 1) and S3V .
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The Pieri rule also governs the decomposition of SλV ⊗
∧k V into irreducible

GL(V )-modules. Given a vector space V of dimension n, this decomposition is as

follows

SλV ⊗
∧k

V =
⊕
µ

SµV

where the partitions µ are partitions with length at most n obtained from λ by adding

k boxes to the diagram of λ with no two boxes added to the same row. Figure 2.5

illustrates this version of the Pieri rule.

• •
•
•

⊗ =

• •
•
• ⊕

• •
•
• ⊕

• •
•
• ⊕

• •
•
• ⊕

• •
•
• ⊕

• •
•
•

Figure 2.5: An example of the Pieri rule with λ = (2, 1, 1) and the partition (1, 1, 1).

On the left hand side of Figure 2.5, identifications similar to the identifications

made in Figure 2.4 are made. The GL(V )-module ∧3 V is identified with S(1,1,1)V .

The right hand side of the figure is a sum of Young diagrams which correspond to

the partitions of each summand SµV occurring in the GL(V )-module decomposition

of S(2,1,1)V ⊗
∧3 V . Figure 2.5 is interpreted as showing

S(2,1,1)V ⊗
∧3

V =S(2,15)V ⊕ S(22,13)V ⊕ S(23,1)V

⊕ S(3,2,12)V ⊕ S(3,14)V ⊕ S(3,22)V.

The Pieri rule is a special case of the Littlewood-Richardson rule. This gen-
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eralization will not be explicitly stated as it is not used in this dissertation; how-

ever, the Littlewood-Richardson rule governs the decomposition of SλV ⊗ SµV =⊕
|ν|=|λ|+|µ| SνV

⊕cνλµ as GL(V )-representations [Lan12, p. 153].

In this dissertation we look at a vector space V = A⊗B where A and B are both

of dimension n. In general, a GL(V )-representation for a vector space V = A ⊗ B

decomposes as GL(A)×GL(B) irreducible modules as

Sλ(A⊗B) =
⊕

|λ|=|µ|=|ν|
(SµA⊗ SνB)⊕gλµν

where gλµν is called a Kronecker coefficient [Lan12, p. 150].

Example 2.30. Let A and B be vector spaces of dimension n. The following ex-

amples, see e.g. [Lan12, p. 157], of Kronecker decompositions which will be useful

later:

Sk(A⊗B) =
⊕
|λ|=k

SλA⊗ SλB

∧k(A⊗B) =
⊕
|λ|=k

SλA⊗ Sλ′B.

Recall that given an order k tensor T and a subset I of k, a flattening of T

was a linear map from V ∗I to VJ where J = [k] r I. The following defines an

analogous map for symmetric tensors. The definition relies upon the observation

that SkV ⊂ Sk−dV ⊗ SdV as a GL(V )-module for any d < k.

Remark 2.31. Let V be a vector space of dimension n. Let {x1, . . . , xn} be a basis of

V and V ∗ be its dual space with dual basis {∂x1 , . . . , ∂xn}. Notice that ∂xi(xj) = δij.

We extend this action of V ∗ on V to an action on SqV for any q by Leibniz’s rule.

We conclude that V ∗ can be identified with the space of linear differential operators
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on {x1, . . . , xn}. Since SqV is a space of polynomials differentiation commutes and

we conclude that SkV ∗ is the space of homogeneous order k differential operators

with constant coefficients on {x1, . . . , xn}.

Definition 2.32. Let P ∈ SkV , let Pd,k−d ∈ Sk−dV ⊗SdV be the tensor P considered

as an element of Sk−dV ⊗ SdV . The linear map Pd,k−d is called a (d-th) standard

flattening of P and is defined as follows

Pd,k−d : SdV ∗ → Sk−dV

α 7→ α
¬
P

where α¬P is differentiation of P by α.

Remark 2.33. The catalecticants introduced by Sylvester in [Syl51a] are standard

flattenings. There, Sylvester observes how the rank of standard flattenings has im-

plications on Waring rank. This observation is explained at the end of this section.

Example 2.34. Let V ∼= C2 and let P = x2y + 3xy2. The matrix representing the

linear map P2,1 : S2V ∗⊗ → V is

P2,1 =

∂2
x ∂x∂y ∂2

y
x 0 2 6

y 2 6 0
.

Earlier we defined the border rank for a tensor T via secant varieties. In par-

ticular, we were interested in secant varieties of the Segre variety. Attention is now

turned towards an analogous definition for symmetric tensors P ∈ SkV .
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Definition 2.35. The Veronese variety is the image of the map

vk : PV → PSkV

[x] 7→ [xk].

Definition 2.36. Let P ∈ SkV . The symmetric border rank of P is the minimal r

such that

P ∈ σr(vk(PV )).

Symmetric border rank of P is denoted Rs(P ).

Remark 2.37. An element in vk(PV ) can be written in the form [`k] where ` ∈ V . If

P is a polynomial such that P ∈ ⋃x1,...,xr∈vk(PV )〈x1, . . . , xr〉, then one may write

P =
r∑
i=1

`ki

where `i ∈ V is a linear form. If r is minimal for P then r is called its symmetric

rank or Waring rank is denoted Rs(P ).

Since σr(vk(PV )) = ⋃
x1,...,xr∈vk(PV )〈x1, . . . , xr〉, if P /∈ σr(vk(PV )), then

P 6=
r∑
i=1

`ki

for any choice of linear forms `i ∈ V . If we know a polynomial that vanishes on

σr(vk(PV )) and that same polynomial does not vanish on P , then P /∈ σr(vk(PV )).

Therefore Rs(P ) > r and furthermore Rs(P ) > r.

It is not a coincidence that if Rs(P ) > r then Rs(P ) > r. In fact, it is known

that for any polynomial Rs(P ) ≤ Rs(P ).
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Remark 2.38. An alternate definition of Rs(P ) is that it is the minimal r such that P

can be written as a limit of polynomials Pt with Rs(Pt) = r. This is a consequence of

the fact that the Euclidean closure of X0, a Zariski open subset of a variety X ⊆ PV ,

is X see, e.g., [Mum95, p. 38].

Example 2.39. The simplest example of a polynomial P such that Rs(P ) < Rs(P )

is P = x2y. We see that P = 1
6(x + y)3 − 1

6(x − y)3 − 1
3y

3. It remains to be shown

that P 6= (ax+ by)3 +(cx+dy)3 for any a, b, c, d ∈ C. Assuming there exists a choice

of a, b, c, d ∈ C satisfying P = (ax + by)3 + (cx + dy)3, we get the following system

of equations:

a3 + c3 = 0

a2b+ c2d = 1

ab2 + cd2 = 0

b3 + d3 = 0

Let I = (a3 + c3, a2b + c2d − 1, ab2 + cd2, b3 + d3) ⊆ C[a, b, c, d] be an ideal. The

variety in C[a, b, c, d] cut out by I is the set of solutions to this system. Define a row

vector

M =
(
a3 + c3 a2b+ c2d− 1 ab2 + cd2 b3 + d3

)
.
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Using Macaulay2 [GS14] we find a column vector

N =



−a2bc3d3 − ab2c2d− a2bcd2

−a2bc4d2 + a3c3d3 + ab2c3 − 2a2bc2d+ a3cd2 − a2b− c2d− 1

2a2bc5d+ a3c4d2 + 2a2bc3 + 3a3c2d+ a3 + c3

−2a3c5d− 3a3c3



such that the product MN = (1). This implies 1 ∈ I. Conclude that there does not

exist a choice of a, b, c, d such that P = (ax+ by)3 + (cx+ dy)3. However,

P = lim
t→0

1
3t [(x+ ty)3 − x3] = lim

t→0

1
3y

3t2 + xy2t+ x2y = x2y

which shows that P = x2y is the limit of polynomials with symmetric rank 2 and

demonstrates that P has symmetric border rank strictly less than its symmetric rank.

Rank conditions on flattenings of a tensor T provided information about border

rank of a tensor T . There is an analogous idea for polynomials using standard

flattenings. This idea appears as early as Sylvester’s work in [Syl51a, Syl51b]. Let

P ∈ SkV , then Rs(P ) ≥ rank(Pd,k−d). Assume

P = `k1 + · · ·+ `kr .

Flattening both the left hand side and right hand side we see

Pd,k−d = [`k1]d,k−d + · · ·+ [`kr ]d,k−d.

From basic linear algebra, if a linear map f may be written f = g + h where g and
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h are also linear maps, then rank(f) ≤ rank(g) + rank(h). Applying this we get

rank(Pd,k−d) ≤ rank([`k1]d,k−d) + · · ·+ rank([`kr ]d,k−d).

We note that rank([`ki ]d,k−d) = rank([xk1]d,k−d). The image of the flattening [xk1]d,k−d

is in the span of xk−d1 implying rank([xk1]d,k−d) = 1. This then shows that

rank(Pd,k−d) ≤ r.

Therefore Rs(P ) ≥ rank(Pd,k−d).

We now present a final generalization of flattenings offered by Landbserg and

Ottaviani in [LO13]. Landsberg and Ottaviani demonstrated that these flattenings,

like the previously defined flattenings, can be used to define equations for secant

varieties of the Veronese variety and furthermore prove lower bounds on symmetric

border rank of a polynomial.

Definition 2.40. Given a polynomial P ∈ SkV and a Schur module SµV ⊂ SλV ⊗

SkV a Young flattening is the linear map Fλ,µ(P ) : SλV → SµV obtained from the

projection of the Pieri product SλV ⊗ P to SµV .

Proposition 2.41. [LO13, Prop. 4.1] Let [xk] ∈ vk(PV ). Assume rank(Fλ,µ(xk)) =

t. If Rs(P ) ≤ r, then rank(Fλ,µ(P )) ≤ rt. In particular,

Rs(P ) ≥ rank(Fλ,µ(P ))
rank(Fλ,µ(xk)) .
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3. A BRIEF SURVEY OF RANK PROBLEMS

This section of the dissertation provides a summary of the progress made on

the polynomial Waring problem and we describes the history of some related rank

problems. The Waring problem was stated in the late 1700’s by Edward Waring and

remained open until David Hilbert answered the question in the affirmative in 1909.

While existence had been answered, the particular number associated to any power

d remained open.

The account presented here of the progress of the polynomial Waring problem and

related rank problems shows that the variant of the Waring problem to polynomials

follows similar developments. Even though a solution to the problem was provided

for generic polynomials by Alexander and Hirschowitz in a series of papers concluding

in 1995 with [AH95], many questions about Waring (symmetric) rank remain open.

In particular, no efficient methods exist for identifying the rank of any particular

polynomial P .

This section of the dissertation is broken up in the following way: Subsection 3.1

focuses on works leading up to the solution of the polynomial Waring problem for

generic polynomials. That subsection also discusses articles which followed and sim-

plified the original proofs. In subsection 3.2, applications of (symmetric) rank, (sym-

metric) border rank and tensor decomposition are discussed. Rank of a polynomial

may be higher than the generic rank. Subsection 3.3 highlights questions of maximum

rank. Subsection 3.4 covers known results on algorithms computing decompositions

of symmetric tensors and uniqueness of such decompositions. When attention is re-

stricted to polynomials with a low number of variables and low degree, much is known

about questions of rank and decomposition. Additionally, restricting to particular
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families of polynomials such as monomials or determinants is also an approach used

to study rank and decomposition. Subsection 3.5 highlights what is known for rank

problems for polynomials in low degree or with few variables, monomials, and the

determinant.

3.1 The rank of generic polynomials

Among rank questions for polynomials, the case of the generic polynomial has a

rich history. The full solution of this problem is given in a series of papers by au-

thors Alexander and Hirschowitz [Ale88, AH92a, AH92b, AH95, Hir85]. The authors

provide some simplifications to their earlier work in [AH97].

Remark 3.1. Let V be a vector space of dimension n, the affine dimension of SkV

is
(
n+k−1

k

)
, as this is the number of monomials with degree k in n variables. The

expected dimension of σr(vk(PV )) is min{rn−1,
(
n+k−1

k

)
−1} see, e.g., [Lan12, p. 123].

This may be seen by counting the degrees of freedom involved in determining a point

on a plane spanned by r points on vk(PV ). There are dim(vk(PV )) = n− 1 degrees

of freedom in selecting each of the r points on vk(PV ) spanning the plane. The plane

spanned by these points also contributes r − 1 additional degrees of freedom. This

totals to r(n − 1) + r − 1 = rn − 1 degrees of freedom. The smallest r such that

the expected dimension of σr(vk(PV )) is at least as large as
(
n+k−1

k

)
− 1 is called the

expected generic rank of polynomials in SkV . Therefore the expected generic rank

of a polynomial in SkV is


(
n+k−1

k

)
n

 .
Theorem 3.2 (Alexander-Hirschowitz [AH95]). Let V be a vector space of dimension

n, the rank of a generic polynomial P ∈ SkV is the expected generic rank
⌈(n+k−1

k )
n

⌉
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except when k = 2 for any n, k = 3 with n = 4, and k = 4 with n = 3, 4, or 5.

Remark 3.3. In the exceptional cases where k = 2, the generic rank is n. In the

remaining exceptional cases, the generic rank is
⌈(n+k−1

k )
n

⌉
+ 1.

Chandler streamlines the proof of the Alexander-Hirschowitz theorem in [Cha01,

Cha02]. Postinghel provides an alternative proof in [Pos12]. For a more complete

account of the history of the Alexander-Hirschowitz theorem and a more succinct

proof of the case k = 3, one may look in [BO08].

3.2 Applications of (symmetric) tensor decomposition

Symmetric tensor decomposition, and tensor decomposition in general, is finding

an increasingly large variety of applications outside of pure mathematics. These

applications range from theoretical computer science to applications in statistics and

engineering through signal processing. This section gives a brief summary of a few

of these applications.

Tensors and the decompositions of tensors have found natural applications in

statistics. In [DSS09] the authors discuss many of the ways these topics or closely

related topics in algebraic geometry arise in algebraic statistics. One topic discussed

in this dissertation was the Segre variety, viewed as the variety of rank one tensors.

One idea in algebraic statistics is to look at tensors P = ∑
i1,i2 pi1,i2 = 1 where

0 ≤ pi1,i2 . If X1, X2 are independent random variables, then their joint probabilities

correspond to such P on the Segre variety [DSS09, p. 9]. Secant varieties also arise

naturally in algebraic statistics as they relate to statistical models called mixture

models. These mixture models are semi-algebraic sets contained inside the secant

variety and are defined by taking convex combinations of points on a subset of a

vector space as opposed to the entire span [DSS09, ch. 4]. In [GSS05], the authors

study applications of algebraic geometry to Bayesian networks and discuss how secant
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varieties of the Segre variety arise in this context.

The study of (symmetric) tensors is an area of increasing interest in computer

science. Many applications towards complexity theory have been found involving

tensors. For instance, matrix multiplication is a tensor, and the rank of this tensor

corresponds to the number of multiplications needed to multiply a matrix. This appli-

cation of tensors dates back to the work of Strassen [Str69] in 1969 with his proof that

an algorithm for 2× 2 matrix multiplication exists involving only 7 multiplications,

as opposed to the naive algorithm which involved 8. This improvement to 7 multipli-

cations leads to an algorithm for multiplying two n×n matrices with a complexity of

O(n2.8) and motivated numerous projects studying the matrix multiplication tensor

and its rank. For further reference on applications of tensor decomposition towards

matrix multiplication see [BCRL79, Lan06, LO15, LR15, Smi13, Smi15, Win71] and

the references within.

It is also interesting to note the application of flattenings of (symmetric) tensors

in complexity theory. For instance, [LO15] uses Young flattenings to prove a lower

bound on the border rank of the matrix multiplication tensor. Flattenings can also be

found in [NW97] where they are used to evaluate lower bounds for arithmetic circuit

complexity. In [GKKS14, GKQ13, KS15] we see the application of Young flattenings

to obtain various results on arithmetic circuits. In [GKKS14] the authors use shifted

partials to gain understanding on the complexity of arithmetic circuits computing

the permanent and determinant when the bottom fan-in is bounded, where the num-

ber of inputs of a gate is its fan-in. These shifted partials exhibited in [GKKS14]

are examples of Young flattenings. Shifted partials are again used in the context of

complexity theory in [ELSW15]. The authors of [ELSW15] prove that shifted par-

tials alone cannot separate the padded m×m permanent in the GLn2-orbit closure

of detn for m ≤ 1.5n2. See Figure 3.1 for an example of the Young tableaux corre-
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sponding to the shifted partial P2,4[3] where the notation P2,4[3] follows the notation

presented in [ELSW15] and P ∈ S6V with dim(V ) = 4. This shifted partial maps

→

Figure 3.1: Example of the Young tableaux associated for the shifted partial map
P2,4[3] : S2V ∗ ⊗ S3V → S7V , where dim(V ) = 4 and P ∈ S6V .

α⊗ Q 7→ (α¬P )Q where (α¬P )Q ∈ S7V . Since dim(V ) = 4 the complement of the

partition (2) is (23) and S2V ∗ ∼= S(23)V as SL(V )-modules. Observe that S(5,22)V

is contained in S(23)V ⊗ S3V . We note S(9,23)V ⊆ S(5,22)V ⊗ S6V and as SL(V )-

modules S(9,23)V ∼= S7V . Thus we see that S7V ⊆ S(5,22)V ⊗ S6V and therefore

we see P2,4[3] is a Young flattening corresponding to the tableaux in Figure 3.1. It

should be noted that there are two other Schur modules S(4,22,1)V and S(3,23)V which

are both contained in S(23)V ⊗ S3V . Furthermore, S7V ⊆ S(4,22,1)V ⊗ S6V and

S7V ⊆ S(3,23)V ⊗ S6V ; however, the Young flattening from S(5,22)V → S7V cor-

responds to the shifted partial P2,4[3] as the completion of the first 2 columns of the

partition (5, 22) with two boxes from (6) corresponds to taking a second derivative

of P . The flattenings S(4,22,1)V → S7V and S(3,23)V → S7V do not involve the

differentiation (α¬ P ) where α ∈ S2V ∗.

3.3 Maximum rank of forms

Polynomials may have rank higher than the generic rank. Studying how high

this rank may be for a polynomial of degree k in n variables is interesting. Let V be

a vector space of dimension n and let rgen(SkV ) be the rank of generic polynomials
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P ∈ SkV provided by the Alexander-Hirschowitz theorem. Let rmax(SkV ) denote

the maximum rank that could be achieved by a P ∈ SkV . The problem of maximum

rank has received recent attention.

Ballico and De Paris present an upper bound for maximum rank of

rmax(SkV ) ≤
(
n+ k − 2
k − 1

)
−
(
n+ k − 7
k − 4

)
−
(
n+ k − 6
k − 3

)

in [BD13]. This is shown by Ballico and De Paris using an induction similar to that

presented in [BBS08, Jel14], which both present bounds for maximum rank.

In [BT15], Blekherman and Teitler provide a bound on maximum rank that

asymptotically outperforms the previously mentioned bounds. This upper bound

does not require the inductive framework developed and improved by Bia lynicka-

Birula and Schinzel, Jelisiejew, and Ballico and De Paris to be proven and only

requires the elementary observation by Blekherman and Teitler that any polynomial

is the sum of two generic polynomials. This observation demonstrates

rmax(SkV ) ≤ 2 rgen(SkV ).

3.4 Algorithms and uniqueness of decompositions

With the decomposition of (symmetric) tensors appearing in many applications,

there is a growing interest in ways to algorithmically decompose these tensors.

Brachat, Comon, Mourrain, and Tsigaridas present, in [BCMT10], an extension of

Sylvester’s classically known algorithm for decomposing binary forms to n-ary forms.

However, in the paper’s conclusion, the authors state the complexity of this algo-

rithm has not been evaluated. Oeding and Ottaviani present another symmetric

tensor decomposition algorithm in [OO13] which incorporates the use of algebraic
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geometry and eigenvectors of tensors. Oeding and Ottaviani state that their algo-

rithm only succeeds for forms of small enough rank; however, bounds on ranks where

this algorithm is successful are provided by the authors.

A question that arises once a decomposition has been obtained is whether that

decomposition is unique or whether other decompositions exist. In [RS00], Ranestad

and Schreyer define a variety called the variety of sums of powers for a hypersurface

in order to study this question. Later the variety of sums of powers is used by

Buczyńska, Buczyński, and Teitler in [BBT13] to identify conditions determining the

uniqueness of decompositions for monomials. Mella provides conditions on degree

and number of variables for uniqueness of decompositions in [Mel09].

3.5 Ranks of specific forms

The question of determining the (symmetric) rank and (symmetric) border rank

of any explicit tensor or polynomial is difficult. As a result, it is common to re-

strict attention to tensors or polynomials of a particular format. For instance, many

researchers have restricted their attention to polynomials of a particular degree or

those with a particular number of variables. Restricting attention to a particular

family of polynomials such as monomials, determinants, or permanents is another

method that has been used to produce results on questions of rank.

Many of the earliest results on decomposing symmetric tensors and determining

the rank of symmetric tensors are attributed to the works of Sylvester. His results

in [Syl51a, Syl51b, Syl86] which date back to the mid 1800’s provided significant

contributions to our understanding of polynomials in two variables.

Comas and Seiguer have a more modern approach to the study of symmetric

rank and symmetric border rank of binary forms in [CS11]. This paper examines

sets of forms with constant rank and shows that the set of degree k binary forms
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with border rank r is the union of the set of degree k binary forms with symmetric

rank r and the set of degree k binary forms with symmetric rank k − r + 2.

Remarkable progress has been made by restricting attention to the case of mono-

mials. In [RS11], Ranestad and Schreyer prove that if P = (x1 · · ·xn)k then Rs(P ) =

(k+1)n−1. Shortly following, a complete result for the symmetric rank of monomials

was given by Carlini, Catalisano, and Geramita in [CCG12]. This later result showed

Rs(xk1
1 · · ·xknn ) = 1

k1 + 1

n∏
i=1

(ki + 1)

where k1 ≤ k2 ≤ . . . ≤ kn.

Results on symmetric rank of the determinant are of particular interest for this

dissertation. Using catalecticants introduced by Sylvester in [Syl51a], classical lower

bounds for the symmetric border rank of the n× n determinant polynomial were

Rs(detn) ≥
(

n

bn/2c

)2

.

There have been numerous improvements on lower bounds for symmetric rank and

symmetric border rank of detn. In addition to other results, Landsberg and Teitler

show in [LT10] that

Rs(detn) ≥
(

n

bn/2c

)2

+ n2 − (bn/2c+ 1)2.

Further lower bounds on symmetric rank are provided by Shafiei in [Sha15] and by

Derksen and Teitler in [DT15] which investigate the notion of cactus rank, a variant

of rank defined via schemes denoted krank(P ). These two papers prove lower bounds

on krank(detn) and consequently provide lower bounds on the symmetric rank of the
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determinant as it is known that

Rs(P ) ≥ krank(P ).

This is similar to the inequality Rs(P ) ≥ Rs(P ). While it is true that both symmetric

border rank and cactus rank are, at most, as large as the symmetric rank, examples

of polynomials exist having cactus rank larger than symmetric border rank, [BB15],

but also examples of polynomials exist with symmetric border rank larger than cactus

rank, [BR13]. In [Sha15], it is shown that

Rs(detn) ≥ krank(detn) ≥ 1
2

(
2n
n

)
.

Derksen and Teitler show in [DT15] that

Rs(detn) ≥ krank(detn) ≥
(

2n
n

)
−
(

2n− 2
n− 1

)
.

Derksen provides an upper bound on symmetric rank and therefore also an upper

bound on symmetric border rank in [Der13]. In this paper he shows

Rs(detn) ≤
(5

6

)bn/3c
2n−1n!.
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4. LOWER BOUNDS VIA KOSZUL-YOUNG FLATTENINGS∗

This section focuses on results on the polynomial Waring problem of the deter-

minant. Let detn denote the polynomial obtained from taking the determinant of an

n× n matrix of indeterminate forms. We write this polynomial

detn = ∑
τ∈Sn

sgn(τ)x1
τ(1) · · · xnτ(n).

This section is adapted from a published work [Far16] by the author to serve as a

section of this dissertation. The results presented here are lower bounds for Rs(detn)

for all n ≥ 3.

In subsection 4.1 we prove a lower bound for Rs(det4). The proof follows the

same reasoning and techniques as for the case where n ≥ 5. However, this case is

smaller and easier to demonstrate, so it is presented before the larger case.

In subsection 4.2, we present lower bounds for the case when n ≥ 5. This case is

proven using similar techniques to those used in subsection 4.1; however, a few more

details need to be addressed.

The case n = 3 is handled last as its proof technique differs from the case n = 4

and the case n ≥ 5. This result using computer software provides a new lower

bound for Rs(det3). This technique also calculates a new lower bound for Rs(perm3).

The permanent is a polynomial defined similarly to the determinant making the

∗Reprinted with permission from “Koszul-Young flattenings and symmetric border rank of the
determinant” by Cameron Farnsworth, 2016. Journal of Algebra, vol. 447, pages 663-676, Copyright
2015 Elsevier Inc. DOI: http://dx.doi.org/10.1016/j.jalgebra.2015.11.011.
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permanent interesting to study. This polynomial is defined as

permn = ∑
τ∈Sn

x1
τ(1) · · · xnτ(n).

A corollary to the lower bound for Rs(perm3) is Rs(perm3) can be only one of three

possible values.

4.1 The case n = 4

To make the method of proof clear, we present a preliminary result proving a

lower bound for the case n = 4. By Proposition 2.41, to find a high lower bound

for Rs(detn), we need to define a flattening such that rank(F(detn)) is big and

rank(F(xn)) is small. Given vector spaces A and B both of dimension n, and α ∈

Sd(A⊗B)∗, we will write α¬ detn to denote differentiation of detn by α.

Remark 4.1. If α is a minor of the determinant in the dual space (A ⊗ B)∗, then

α
¬ detn is a nonzero multiple of the minor on the complementary indices in the

primal space.

For a tensor β ∈ Sn−d(A⊗B), let β̂ ∈ (A⊗B)⊗Sn−d−1(A⊗B) be the image of β

under partial polarization. Let X i
j = ai⊗ bj and for I, J ⊂ [n] with |I| = |J | = n−d,

let ∆I
J denote the (n− d)× (n− d) minor on the indices in I and J .

Remark 4.2. ∆̂I
J = ∑

i∈I
j∈J

(−1)i+jX i
j ⊗∆Ir{i}

Jr{j}

Remark 4.3. The ‘standard’ flattening of the determinant is detd,n−d : Sd(A⊗B)∗ −→

Sn−d(A ⊗ B) defined by α 7→ α
¬ detn. Then Im(detd,n−d) is spanned by the (n −

d)× (n− d) minors of the determinant.

Define the Young flattening

det∧1
d,n−d : (A⊗B)⊗ ∧n−dA⊗ ∧n−dB −→ ∧2(A⊗B)⊗ ∧n−d−1 A⊗ ∧n−d−1 B
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on elements v ⊗∆I
J by

v ⊗∆I
J 7→

∑
i∈I
j∈J

(−1)i+jv ∧X i
j ⊗∆[n−d]r{i}

[n−d]r{j}

and extend linearly.

Lemma 4.4. Im(det∧1
d,n−d) is contained in

S2,1n−d−1A⊗ S1n−d+1B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕S2,1n−d−1A⊗ S2,1n−d−1B.

Proof. The decomposition of ∧n−dA⊗ ∧n−dB ⊗ A⊗B as a GLn ×GLn-module is

S2,1n−d−1A⊗ S1n−d+1B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕S2,1n−d−1A⊗ S2,1n−d−1B ⊕ S1n−d+1A⊗ S1n−d+1 ,

and ∧n−d−1 A⊗ ∧n−d−1 B ⊗ ∧2(A⊗B) as GLn ×GLn-module decomposes as

S1n−d+1A⊗ S3,1n−d−2B ⊕ S2,1n−d−1A⊗ S3,1n−d−2B

⊕S2,2,1n−d−3A⊗ S3,1n−d−2B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕(S2,1n−d−1A⊗ S2,1n−d−1B)⊕2 ⊕ S2,2,1n−d−3A⊗ S2,1n−d−1B

⊕S3,1n−d−2A⊗ S1n−d+1B ⊕ S3,1n−d−2A⊗ S2,1n−d−1B

⊕S3,1n−d−2A⊗ S2,2,1n−d−3B ⊕ S2,1n−d−1A⊗ S1n−d+1B

⊕S2,1n−d−1A⊗ S2,2,1n−d−3B.

The irreducible modules in Lemma 4.4 are the only irreducible modules appear-

ing in both decompositions. By Schur’s lemma, we conclude that the module in
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Lemma 4.4 must contain Im(det∧1
d,n−d).

It must now be verified for each irreducible module in Lemma 4.4 that det∧1
d,n−d is

not the zero map on the module. Since each irreducible module appears with multi-

plicity 1, for a given irreducible module with highest weight π, finding any highest

weight vector v ∈ (A⊗B)⊗ ∧n−dA⊗ ∧n−dB of weight π such that det∧1
d,n−d(v) 6= 0

proves det∧1
d,n−d is nonzero on the entire module.

Lemma 4.5. The flattening det∧1
d,n−d is an isomorphism on the irreducible module

S2,1n−d−1A⊗ S2,1n−d−1B.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S2,1n−d−1A⊗S2,1n−d−1B has a highest weight vector a1∧ · · · ∧an−d⊗a1⊗ b1∧

· · · ∧ bn−d ⊗ b1. The projection of this vector into (A ⊗ B) ⊗ ∧n−dA ⊗ ∧n−dB is a

nonzero multiple of

X1
1 ⊗∆[n−d]

[n−d].

Then

det∧1
d,n−d(X1

1 ⊗∆[n−d]
[n−d])

= ∑
i∈[n−d]
j∈[n−d]

(−1)i+jX1
1 ∧X i

j ⊗∆[n−d]r{i}
[n−d]r{j}.

The term X1
1 ∧X1

2 ⊗∆[n−d]r{1}
[n−d]r{2} will not cancel in the sum.

Lemma 4.6. The flattening det∧1
d,n−d is an isomorphism on the irreducible module

S2,1n−d−1A⊗ S1n−d+1B and by symmetry on S1n−d+1A⊗ S2,1n−d−1B.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S2,1n−d−1A ⊗ S1n−d+1B has a highest weight vector a1 ∧ · · · ∧ an−d ⊗ a1 ⊗
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b1 ∧ · · · ∧ bn−d+1. The projection of this vector into (A⊗B)⊗ ∧n−dA⊗ ∧n−dB is a

nonzero multiple of

∑
j∈[n−d+1]

(−1)jX1
j ⊗∆[n−d]

[n−d+1]r{j}.

Then

det∧1
d,n−d(

∑
j∈[n−d+1](−1)jX1

j ⊗∆[n−d]
[n−d+1]r{j})

= ∑
j∈[n−d+1]

∑
i∈[n−d]

k∈[n−d+1]r{j}

(−1)j(−1)i+k̃X1
j ∧X i

k ⊗∆[n−d]r{i}
[n−d+1]r{j,k}

where

k̃ =


k, k < j

k − 1, j < k.

The term X1
1 ∧X1

2 ⊗∆[n−d]r{1}
[n−d+1]r{1,2} does not cancel in the sum.

Taking d = bn/2c gives:

Theorem 4.7. For n ≥ 3, the following are lower bounds on the symmetric border

rank of the determinant, Rs(detn).

For n even:

Rs(detn) ≥
(

1 + 4
(−1 + n)(2 + n)2

)(
n

n/2

)2

.

For n odd:

Rs(detn) ≥
(

1 + 8
(−1 + n)(3 + n)2

)(
n

(n− 1)/2

)2

.
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Remark 4.8. Theorem 4.7 is only optimal for the Young flattenings we attempted

when n = 4.

4.2 The case n ≥ 5

We prove better lower bounds for Rs(detn) when n ≥ 5 with a slightly different

Koszul-Young flattening than that used for the proof of Theorem 4.7.

Theorem 4.9. Let n ≥ 5, then:

For n even:

Rs(detn) ≥
(

1 + 8(−8 + 6n2 + n3)
(−1 + n)(2 + n)(4 + n)2(−2 + n2)

)(
n

n/2

)2

.

For n odd:

Rs(detn) ≥
(

1 + 16(9 + 8n+ n2)
(3 + n)(5 + n)2(−2 + n2)

)(
n

(n− 1)/2

)2

.

Remark 4.10. Asymptotically, our bound is

Rs(detn) & 22n+1

π·n + 22n+1

π·n4

whereas the previous lower bounds are approximately Rs(detn) & 22n+1

π·n .

To prove Theorem 4.9, we use the map

det∧2
d,n−d : ∧2(A⊗B)⊗ ∧n−dA⊗ ∧n−dB −→ ∧3(A⊗B)⊗ ∧n−d−1 A⊗ ∧n−d−1 B

defined by

v ∧ w ⊗∆I
J 7→

∑
i∈I
j∈J

(−1)i+jv ∧ w ∧X i
j ⊗∆[n−d]r{i}

[n−d]r{j}
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and extended linearly. It remains to find the rank of det∧2
d,n−d.

Lemma 4.11. Im(det∧2
d,n−d) is contained in

S3,1n−d−1A⊗ S1n−d+2B ⊕ S1n−d+2A⊗ S3,1n−d−1B ⊕ S3,1n−d−1A⊗ S2,1n−dB

⊕S2,1n−dA⊗ S3,1n−d−1B ⊕ S3,1n−d−1A⊗ S2,2,1n−d−2B

⊕S2,2,1n−d−2A⊗ S3,1n−d−1B ⊕ S2,1n−d+1A⊗ S2,1n−d+1B

⊕S2,1n−d+1A⊗ S2,2,1n−d−1B ⊕ S2,2,1n−d−1A⊗ S2,1n−d+1B.

Proof. Decomposing ∧2(A ⊗ B) ⊗ ∧n−dA ⊗ ∧n−dB and ∧3(A ⊗ B) ⊗ ∧n−d−1 A ⊗∧n−d−1 B as GLn × GLn-modules, one sees that only the irreducibles listed in the

lemma appear in both decompositions and that the minimum multiplicity each ap-

pears with is 1. By Schur’s Lemma, no other irreducible may be in the image.

The above lemma gives an idea as to the largest lower bound that this particular

flattening could achieve. To proceed, for each irreducible module in the lemma we

find a highest weight vector and compute det∧2
d,n−d on this vector. Since each module

appears with multiplicity 1, finding a single highest weight vector of the correct

highest weight on which the flattening is nonzero is sufficient.

Lemma 4.12. The flattening det∧2
d,n−d is an isomorphism on the irreducible module

S3,1n−d−1A⊗ S1n−d+2B and by symmetry on S1n−d+2A⊗ S3,1n−d−1B.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S3,1n−d−1A⊗S1n−d+2B has a highest weight vector a1 ∧ · · · ∧ an−d⊗ a1⊗ a1⊗

b1 ∧ · · · ∧ bn−d+2. The projection of this vector into ∧2(A⊗B)⊗∧n−dA⊗∧n−dB is

a nonzero multiple of

∑
1≤i<j≤n−d+2

(−1)i+jX1
i ∧X1

j ⊗∆[n−d]
[n−d+2]r{i,j}.
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Then

det∧2
d,n−d

( ∑
1≤i<j≤n−d+2

(−1)i+jX1
i ∧X1

j ⊗∆[n−d]
[n−d+2]r{i,j}

)

= ∑
1≤i<j≤n−d+2

(
n−d∑
h=1

∑
k∈[n−d+2]r{i,j}

(−1)k̃+h(−1)i+jX1
i ∧X1

j ∧Xh
k ⊗∆[n−d]r{h}

[n−d+2]r{i,j,k}

)

where

k̃ =



k, k < i < j

k − 1, i < k < j

k − 2, i < j < k.

The term X1
1 ∧X1

2 ∧X1
3 ⊗∆[n−d]r{1}

[n−d+2]r{1,2,3} does not cancel in the sum.

Lemma 4.13. The flattening det∧2
d,n−d is an isomorphism on the irreducible module

S3,1n−d−1A⊗ S2,1n−dB and by symmetry on S2,1n−dA⊗ S3,1n−d−1B.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S3,1n−d−1A⊗ S2,1n−dB has a highest weight vector a1 ∧ · · · ∧ an−d⊗ a1⊗ a1⊗

b1 ∧ · · · ∧ bn−d+1⊗ b1. The projection of this vector to ∧2(A⊗B)⊗∧n−dA⊗∧n−dB
is a nonzero multiple of

n−d+1∑
i=2

(−1)iX1
1 ∧X1

i ⊗∆[n−d]
[n−d+1]r{i}.

Then

det∧2
d,n−d

(
n−d+1∑
i=2

(−1)iX1
1 ∧X1

i ⊗∆[n−d]
[n−d+1]r{i}

)

=
n−d∑
k=1

n−d+1∑
i=2

∑
j∈[n−d+1]r{i}

(−1)i(−1)j̃+kX1
1 ∧X1

i ∧Xk
j ⊗∆[n−d]r{k}

[n−d+1]r{i,j}
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where

j̃ =


j, j < i

j − 1, i < j.

Now X1
1 ∧X1

3 ∧X1
2 ⊗∆[n−d]r{1}

[n−d+1]r{2,3} does not cancel, proving the lemma.

Lemma 4.14. The flattening det∧2
d,n−d is an isomorphism on the irreducible module

S3,1n−d−1A⊗ S2,2,1n−d−2B and by symmetry on S2,2,1n−d−2A⊗ S3,1n−d−1B.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S3,1n−d−1A⊗S2,2,1n−d−2B has a highest weight vector a1∧· · ·∧an−d⊗a1⊗a1⊗

b1∧· · ·∧bn−d⊗b1∧b2. The projection of this vector to ∧2(A⊗B)⊗∧n−dA⊗∧n−dB
is a nonzero multiple of

X1
1 ∧X1

2 ⊗∆[n−d]
[n−d].

Then

det∧2
d,n−d

(
X1

1 ∧X1
2 ⊗∆[n−d]

[n−d]

)
=

n−d∑
i,j=1

(−1)j+iX1
1 ∧X1

2 ∧X i
j ⊗∆[n−d]r{i}

[n−d]r{j}.

This is not zero since the term X1
1 ∧X1

2 ∧X1
3 ⊗∆[n−d]r{1}

[n−d]r{3} appears in the sum only

once.

Lemma 4.15. The flattening det∧2
d,n−d is an isomorphism on the irreducible module

S2,1n−dA⊗ S2,1n−dB.

Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S2,1n−dA⊗ S2,1n−dB has a highest weight vector a1 ∧ · · · ∧ an−d+1 ⊗ a1 ⊗ b1 ∧
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· · · ∧ bn−d+1 ⊗ b1. The projection of this vector to ∧2(A⊗ B)⊗ ∧n−dA⊗ ∧n−dB is

a nonzero multiple of

n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX1
1 ∧X i

j⊗∆[n−d+1]r{i}
[n−d+1]r{j}+

n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX i
1∧X1

j ⊗∆[n−d+1]r{i}
[n−d+1]r{j}.

Then

det∧2
d,n−d

(
n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX1
1 ∧X i

j ⊗∆[n−d+1]r{i}
[n−d+1]r{j}

+
n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX i
1 ∧X1

j ⊗∆[n−d+1]r{i}
[n−d+1]r{j}

)

=
n−d+1∑
i=1

n−d+1∑
j=2

∑
k∈[n−d+1]r{i}
l∈[n−d+1]r{j}

(−1)i+j(−1)k̃+l̃X1
1 ∧X i

j ∧Xk
l ⊗∆[n−d+1]r{i,k}

[n−d+1]r{j,l}

+
n−d+1∑
i=1

n−d+1∑
j=2

∑
k∈[n−d+1]r{i}
l∈[n−d+1]r{j}

(−1)i+j(−1)k̃+l̃X i
1 ∧X1

j ∧Xk
l ⊗∆[n−d+1]r{i,k}

[n−d+1]r{j,l}

where

k̃ =


k, k < i

k − 1, i < k

and

l̃ =


l, l < j

l − 1, j < l.

Since X1
1 ∧X1

2 ∧X2
1 ⊗∆[n−d+1]r{1,2}

[n−d+1]r{2,1} does not cancel the lemma is proven.

Lemma 4.16. The flattening det∧2
d,n−d is an isomorphism on the irreducible module

S2,2,1n−d−2A⊗ S2,1n−dB and by symmetry on S2,1n−dA⊗ S2,2,1n−d−2B.

41



Proof. Let a1, . . . , an be a basis of A and b1, . . . , bn be a basis of B. The irreducible

module S2,2,1n−d−2A⊗S2,1n−dB has a highest weight vector a1∧ · · · ∧ an−d⊗ a1∧ a2⊗

b1 ∧ · · · ∧ bn−d+1 ⊗ b1 as a highest weight vector. The projection of this vector to∧2(A⊗B)⊗ ∧n−dA⊗ ∧n−dB is a nonzero multiple of

n−d+1∑
i=1

(−1)iX1
1 ∧X2

i ⊗∆[n−d]
[n−d+1]r{i} +

n−d+1∑
i=1

(−1)iX1
i ∧X2

1 ⊗∆[n−d]
[n−d+1]r{i}

Then

det∧2
d,n−d

(
n−d+1∑
i=1

(−1)iX1
1 ∧X2

i ⊗∆[n−d]
[n−d+1]r{i} +

n−d+1∑
i=1

(−1)iX1
i ∧X2

1 ⊗∆[n−d]
[n−d+1]r{i}

)

=
n−d∑
k=1

n−d+1∑
i=1

∑
j∈[n−d+1]r{i}

(−1)i(−1)j̃+kX1
1 ∧X2

i ∧Xk
j ⊗∆[n−d]r{k}

[n−d+1]r{i,j}

+
n−d∑
k=1

n−d+1∑
i=1

∑
j∈[n−d+1]r{i}

(−1)i(−1)j̃+kX1
i ∧X2

1 ∧Xk
j ⊗∆[n−d]r{k}

[n−d+1]r{i,j}

where

j̃ =


j, j < i

j − 1, i < j.

Observing that X1
1 ∧X2

1 ∧X1
2 ⊗∆[n−d]r{1}

[n−d+1]r{1,2} does not cancel proves the lemma.

In summary:

Lemma 4.17. The image of det∧2
d,n−d consists of all of the irreducible modules in the

decomposition in Lemma 4.11.

Lemma 4.18. dim(Im(det∧2
d,n−d)) has a maximum at d = bn2 c.

Proof. Factor dim(Im(det∧2
d,n−d)) into the form f(n, d)

(
n
d

)2
, where f(n, d) is a rational

function of n and d.
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f(n, d) = (n+ 2)(n+ 1)(n− d)(d)(d− 1)
(n− d+ 2)2(n− d+ 1) + (n+ 2)(n+ 1)2(n− d)(d)

(n− d+ 2)2

+ (n+ 2)(n+ 1)2(n− d)(n)(n− d− 1)
2(n− d+ 2)(n− d+ 1) + (n+ 1)2(n)(n− d− 1)(d)

(n− d+ 1)(n− d+ 2)

+ (n+ 1)2(d)2

(n− d+ 2)2 .

Consider

f(n, d)
(
n

d

)2

− f(n, d+ 1)
(

n

d+ 1

)2

and rewrite it as

(
f(n, d)− f(n, d+ 1)(n− d)2

(d+ 1)2

)(
n

d

)2

.

Notice that f(n, d) − f(n, d + 1) (n−d)2

(d+1)2 < 0 for d = bn2 c − 1 and f(n, d) − f(n, d +

1) (n−d)2

(d+1)2 > 0 for d = bn2 c and conclude.

Remark 4.19. The requirement for n ≥ 5 in the main theorem, is so that the length

of all partitions S1n−d+2A, S2,1n−dA, S3,1n−d−1A, and S2,2,1n−d−2A (respectively B) do

not exceed dim(A) = dim(B) = n. Hence, all of the irreducible modules in the

decomposition in Lemma 4.11 occur when d = bn2 c.

Remark 4.20. rank([(X i
j)
n]∧2
d,n−d) =

(
n2−1

2

)
: the of contraction α ∈ Sd(A ⊗ B)∗ with

(X i
j)n is in the span of (X i

j)n−d and ̂(X i
j)
n−d

is in the span of (X i
j)n−d−1⊗X i

j. Hence

Im([(X i
j)
n]∧2
d,n−d)) = Span{(X i

j)n−d−1 ⊗X i
j ∧ v ∧ w|v, w /∈ Span{X i

j}}.

The main theorem follows by substituting bn2 c into f(n, d) from the proof of

Lemma 4.18, dividing by
(
n2−1

2

)
which is the rank from Remark 4.20, and simplifying.
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4.3 The case n = 3 and a result on the permanent

Define the partitions πn = ((n−1)n+1, (n−2)n+1, . . . , 1n+1) and π̃n = (n, πn). For

example, π3 = (24, 14) and π̃3 = (3, 24, 14). Note that dim(Sπ3C9) = dim(Sπ̃3C9) =

1050. For a polynomial φ ∈ S3C9, define the Young flattening

Fπ3,π̃3(φ) : Sπ3C9 → Sπ̃3C9

by the labeled Pieri product restricted to shape π̃3

Tπ3 ⊗ φ =
∑

cTπ3 ,T̃π̃3
T̃π̃3

where Tπ3 and T̃π̃3 are semistandard fillings of tableaux of shape π3 and π̃3 respec-

tively and where cTπ3 ,T̃π̃3
is obtained by adding boxes to π3 to obtain a tableau of

shape π̃3 and for each monomial in φ, label the boxes with the variable names in all

permutations and straighten. cTπ3 ,T̃π̃3
is the coefficient of T̃π̃3 .

Consider (x3,3)3 ∈ S3C9. If Tπ3 has any box labeled x3,3, then Tπ3 is in the kernel

of Fπ3,π̃3((x3,3)3). Since this is the only restriction of tableaux,

dim Im(Fπ3,π̃3((x3,3)3)) = dimSπ3C8 = 70.

By Proposition 2.41, if [x3] ∈ v3(PC9) has rankFµ,ν(x3) = p, then for [φ] ∈ PS3C9

with rank r, rank(Fµ,ν(φ)) ≤ rp. Thus the maximum lower bound on symmetric

border rank on polynomial φ ∈ S3C9 this method may achieve is

Rs(φ) ≥ 15

when dim Im(Fπ3,π̃3(φ)) = 1050. Applying this flattening to det3 and perm3 and
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using the Macaulay2 [GS14] package PieriMaps developed by Steven Sam [Sam09]

we get

dim Im(Fπ3,π̃3(det3)) = 950

and

dim Im(Fπ3,π̃3(perm3)) = 934.

The ranks of these flattenings prove the following lower bounds.

Theorem 4.21. The polynomials det3 and perm3 have the following lower bounds

on symmetric border rank

Rs(det3) ≥ 14

and

Rs(perm3) ≥ 14.

These are improvements on the classical lower bounds for the determinant and

the permanent of 9. In addition to the improvement to the lower bound on symmetric

border rank of the determinant, we prove an interesting corollary.

Definition 4.22. Let P ∈ SdV . We define the Chow rank of P , rankChow(P ), as

rankChow(P ) = min{k : P =
k∑
i=1

`i1 . . . `id | `ij ∈ V }.

In [IT15] it is shown that rankChow(perm3) = 4. Prior to this it was known
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that rankChow(perm3) ≤ 4 [Gly10, Rys63]. Given rankChow(perm3) = 4, results from

[CCG12] and [BBT13] proving Rs(x1 · · ·xd) ≤ 2d−1 show Rs(perm3) ≤ 16. This

observation is summarized by the following corollary.

Corollary 4.23. 14 ≤ Rs(perm3) ≤ 16.

The Macaulay2 script used to compute the ranks of the flattenings for the n = 3

case of the determinant and the permanent is provided in Appendix A.
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5. SUMMARY

The Waring problem is a classical problem motivated by questions of Edward

Waring in the late 1700’s [War82, p. 349]. Since the onset of the question it has been

generalized in numerous ways.

Perhaps one of the most interesting generalizations to this centuries old question

is to polynomials and their ranks. A significant case of the question was solved by

Alexander-Hirschowitz in [AH95] yet the problem remains open for explicit poly-

nomials. The determinant is an example of a polynomial for which this problem

remains open. The work presented in this dissertation improves previously known

lower bounds for symmetric border rank of this polynomial by using methods of

[LO13]. The improvements demonstrated here for lower bounds on symmetric bor-

der rank of the determinant and those for the 3 × 3 permanent motivate further

questions.

5.1 Further questions

Question 5.1. What lower bounds may be proven for the symmetric border rank

of the permanent by using the Young flattening method developed by Landsberg and

Ottaviani in [LO13]?

The Young flattening method was used in this dissertation to prove new lower

bounds for the symmetric border rank of the n × n determinant polynomial for all

values n. In addition to the results on the determinant, for the permanent we proved

Rs(perm3) ≥ 14 by computer calculations using Macaulay2 [GS14].

Young flattenings for the permanent differ from those of the determinant due to

the flattenings of the permanent being a Sn × Sn-module homomorphisms rather

thanGLn×GLn-module homomorphisms. The irreducible modules for Sn have much
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smaller dimension than those of GLn. As a consequence of the smaller dimensional

irreducible modules, irreducible Sn×Sn modules appearing in the decomposition of a

Young flattening of the permanent likely occur with high multiplicity. Understanding

how to deal with these high multiplicities would be necessary to evaluate such Young

flattenings.

Question 5.2. We saw in Corollary 4.23 a result on the border rank of the 3 × 3

permanent stating:

14 ≤ Rs(perm3) ≤ 16.

What is the exact border rank of the 3× 3 permanent?

This is the smallest nontrivial case of the permanent, yet surprisingly its sym-

metric border rank is still unknown. Previously, the list of possible border ranks

was between 9 and 16, but now it is certain that the only possibilities are 14, 15, or

16. With such a small list of possibilities it is reasonable that one could identify the

symmetric border rank of the 3× 3 permanent.
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[BB15] W. Buczyńska and J. Buczyński. On differences between the border rank

and the smoothable rank of a polynomial. Glasg. Math. J., 57(2):401–

413, 2015.

[BBS08] A. Bia lynicki-Birula and A. Schinzel. Representations of multivariate

polynomials by sums of univariate polynomials in linear forms. Colloq.

Math., 112(2):201–233, 2008.
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APPENDIX A

MACAULAY2 SCRIPT

This appendix provides the Macaulay2 script originally appearing in [Far16] to

prove Theorem 4.21 of this dissertation. The script directly follows.

loadPackage"PieriMaps"

A=QQ[x_(0,0)..x_(2,2)]

time MX = pieri({3,2,2,2,2,1,1,1,1},{1,5,9},A);

rank diff(x_(0,0)ˆ3,MX)

f = det genericMatrix(A,x_(0,0), 3,3)

rank diff(f,MX)

g = x_(0,2)*x_(1,1)*x_(2,0)+x_(0,1)*x_(1,2)*x_(2,0)+

x_(0,2)*x_(1,0)*x_(2,1)+x_(0,0)*x_(1,2)*x_(2,1)+

x_(0,1)*x_(1,0)*x_(2,2)+x_(0,0)*x_(1,1)*x_(2,2)

rank diff(g,MX)
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