(1) Let $X \subset \mathbb{P} V=\mathbb{P}^{N}$ be a projective variety, and let $y \in \mathbb{P} V$ be a point. Define the cone over X with vertex y,

$$
J(X, y):=\bigcup_{x \in X}\langle x, y\rangle
$$

where $\langle x, y\rangle$ is the projective span of x and y (a \mathbb{P}^{1} if $x \neq y$). Show that one does not need the Zariski closure in the definition if $y \notin X$.
(2) Assume $y=[1,0, \cdots, 0]$. Show that $P \in \mathcal{I}_{J(X, y)}$ if and only if $\frac{\partial^{j} P}{\left(\partial x_{1}\right)^{j}} \in \mathcal{I}_{X}$ for all $0 \leq j \leq$ $\operatorname{deg}(P)$.
Remark 0.1. More generally for $X, Z \subset \mathbb{P} V$, one can define $J(X, Z)$, the join of X and Z to be

$$
J(X, Z):=\bigcup_{x \in X, z \in Z}\langle x, y\rangle .
$$

When $X=Z, J(X, X)$ is called the secant variety of X and is denoted $\sigma(X)=\sigma_{2}(X)$. More generally, one defines $\sigma_{r}(X):=J\left(X, \sigma_{r-1}(X)\right)$, the variety of secant \mathbb{P}^{r-1} 's to X. How would you find the ideals of these varieties given the ideals of X and Z ?

