
P VERSUS NP AND GEOMETRY

J.M. LANDSBERG

Abstract. I describe three geometric approaches to resolving variants of P v. NP , present
several results that illustrate the role of group actions in complexity theory, and make a first
step towards completely geometric definitions of complexity classes.

1. Introduction

Roughly speaking, a problem in complexity theory is a class of expressions to evaluate (e.g.
count the number of four colorings of a planar graph). An instance of a problem is a particular
member of the class (e.g. count the number of four colorings of the complete graph with four
vertices). P is the class of problems that admit an algorithm that solves any instance of it in
a number of steps that depends polynomialy on the size of the input data. One says that such
problems “admit a polynomial time solution”. NP is the class of problems where a proposed
solution to an instance can be positively checked in polynomial time. The famous Cook’s
hypothesis is P 6= NP.

I will be concerned with two types of evaluations in this article, here is the first: For each n,
let Vn be a complex vector space and assume dim(Vn) grows exponentially with n. It is known
that the pairing

Vn × V ∗
n → C

(v, α) 7→ 〈α, v〉
of the vector space with its dual requires on the order of dim(Vn) arithmetic operations to
perform. However if Vn has additional structure and α, v are in “special position” with respect
to this structure, the pairing can be evaluated faster. A trivial example would be if Vn were
equipped with a basis and v was restricted to be a linear combination of only the first few basis
vectors. I will be concerned with more subtle examples such as the following: let Vn = Λk

C
n,

then inside Vn are the decomposable vectors (the cone over the Grassmannian G(k, Cn)) and
if α, v are decomposable we show (Equation (3.1.1)) that the pairing 〈α, v〉 can be evaluated
in polynomial time in n. From a geometric perspective, this is one of the key ingredients
to L. Valiant’s holographic algorithms discussed in §4. For n large, the codimension of the
Grassmannian is huge, so it would seem highly unlikely that any interesting problem could have
α, v so special. However small Grassmannians are of small codimension. This leads to the
second key ingredient to holographic algorithms. On the geometric side, if [v1] ∈ G(k1,W1) and
[v2] ∈ G(k2,W2), then [v1 ⊗ v2] ∈ G(k1k2,W1 ⊗W2). Thus if our vectors can be thought of as
being built out of vectors in smaller spaces, there is a much better chance of success. Due to the
nature of problems in complexity theory, this is exactly what occurs. The third key ingredient
is that there is some flexibility in how the small vector spaces are equipped with the additional
structure, and I show (Theorem 4.3.2) that even for NP-complete problems there is sufficient
flexibility to allow everything to work up to this point. The difficulty occurs when one tries to
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glue together the small vector spaces compatibly for both Vn and V ∗
n , although even here, it is

surprising (at least to me) that the “only” problem that can occur is one of signs, see §4.4.
The second type of evaluation I will be concerned with is that of sequences of (homogeneous)

polynomials, pn ∈ Sd(n)
C

v(n), where the degee d(n) and the number of variables v(n) are required
to grow at most polynomially with n. A generic such sequence is known to require an exponential
(in n) number of arithmetic operations to evaluate and we are interested in characterizing
the sequences where the evaluation can be done quickly. Again there are sequences such as

pn = x
d(n)
1 + · · ·+ x

d(n)
v(n) where it is trivial to see that there is a polynomial time evaluation, but

there are other, more subtle examples, such as detn ∈ Sn
C

n2

where the fast evaluation occurs
thanks to a group action (Gaussian elimination, see §2.1).

From a geometer’s perspective, it is more interesting to look at the zero sets of the polynomials,
to get sequences of hypersurfaces in projective spaces. Similar to the situation above regarding
signs, if one changes the signs in the expression of the determinant, e.g., to all plus signs to
obtain the permanant, one arrives at a VNP-hard sequence, where VNP is Valiant’s algebraic
analogue of NP, see §6 for a definition.

Problem: Determine geometric properties of sequences of hypersurfaces such that their defin-
ing equations admit polynomial time evaluations.

First steps towards resolving this problem are taken in this paper. A second problem, which
seems more difficult to me at this writing is:

Problem: Determine geometric properties of sequences of hypersurfaces such that their defin-
ing equations are in the class VNP.

A first observation is that if a polynomial is easy to evaluate, then any specialization of it is
also easy to evaluate, or in other words the polynomial associated to any linear section of its
zero set is also easy to evaluate. This leads to Valiant’s conjecture that the permanent sequence
(permm) cannot be realized as a linear projection of the determinant sequence (detn(m)) unless
n grows faster than any polynomial (Conjecture 2.3.3). The best results on this conjecture so far
are due to T. Mignon and N. Ressayre [23] who use local differential geometry. While the local
differential geometry of the detn-hypersurface is essentially understood (see Theorem 2.4.1), a
major difficulty in continuing their program is to distinguish the local differential geometry of
the permm-hypersurface from that of a generic hypersurface. Furthermore, the determinant
hypersurface is so special it may be difficult to isolate exactly which of its properties are the
key to it having a fast evaluation. Suggestions for overcoming this second difficulty are given in
§7.2.

From the geometric point of view, a significant aesthetic improvement towards approaching
Valiant’s conjecture is the Geometric complexity theory (GCT) program proposed by K. Mul-
muley and M. Sohoni. Instead of regarding the determinant itself, one considers its GLn2-orbit

closure in P(Sn
C

n2

) and similarly for the permanent. The problem becomes one to compare two
algebraic varieties that are invariant under a group action. In §7.1 I briefly review the program
and discuss ways of furthering the program, summarizing from [2]. Even with the GCT program,
one still begins with the determinant and permanent, and it might be useful to consider other
sequences as well, as discussed in §7.2.
1.1. Overview. In §2.1 I discuss Valiant’s conjecture regarding the permanent as a projection of
the determinant. There are two new results (Theorems 2.4.1 and 2.4.2) on the local differential
geometry of the hypersurface {detn = 0} relevant for complexity. In §3 I describe how the
big cells in the Grassmannian (resp. the spinor variety) admit interpretations as the set of
vectors of minors (resp. sub-Pfaffians) in preparation for §4, where I review the reformulation of
holographic algorithms of [20] and point out a consequence that all problems in NP are “nearly”
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holographic (Theorem 4.3.2). In §5 I generalize the results of §3 to all cominuscule varieties.
In §6 I review the definitions of Valiant’s complexity classes in preparation for §7 and §8. In
§7 I very briefly review the Geometric Complexity Theory program of Mulmuley and Sohoni
and mention ideas for furthering it. The examples up to this point indicate that sequences in
VP that are not in VPe (and analogously for P) should have some kind of symmetry, but that
symmetry could be hidden. A central goal of this paper is to try to formalize that idea. Another
goal is to begin a discussion of how to have purely geometric definitions of complexity classes.
In §8 this is accomplished for VPe (where joins and multiplicative joins play a role, the latter
perhaps being defined here for the first time), and a first attempt is made to accomplish this
for VP, using the idea of possibly hidden symmetries. Other than as noted above, the various
sections can be read independently.

The results presented in this paper are preliminary but I hope they indicate some of the deep
and beautiful connections between the P v.s NP problem and geometry. For connections with
other areas of mathematics, see, e.g. [44].

Acknowledgements. I thank MEGA for inviting me to give a lecture on this topic in June
2009. This paper follows up on joint work with P. Bürgisser, L. Manivel and J. Weyman on
the GCT program, work with J. Morton and S. Norine on holographic algorithms, and reports
on current work with L. Manivel and D. The. It is a pleasure to thank these collaborators
as well as S. Kumar, L. Valiant and J. Cai for helping me understand the computer science
literature and many useful discussions. The AIM workshop Geometry and representation theory

of tensors for computer science, statistics and other areas July 21-25, 2008, was especially useful
as a starting point for these conversations and I gratefully thank AIM and the other participants
of the workshop.

2. Projecting the determinant to the permanent

2.1. Complexity of (detn). For a vector space V , let SdV denote the space of homogeneous
polynomials of degree d on the dual space V ∗. Let E,F = C

n, and let E ⊗F denote the space
of linear maps E∗ → F . The polynomial detn ∈ ΛnE ⊗ΛnF ⊂ Sn(E ⊗F ) is the unique up
to scale (nonzero) element of the one-dimensional vector space ΛnE ⊗ΛnF . detn is invariant
under the action of SL(E)×SL(F ), as det(axb) = det(a)det(x)det(b). Fix bases in E,F , so we
may identify E ⊗F with the space of n × n matrices and SL(E) as the subgroup of all n × n
matrices with determinant one. If x ∈ E∗ ⊗F ∗ is expressed as a matrix, letting Sn denote the
permutation group on n elements, then

detn(x) =
∑

σ∈Sn

sgn(σ)x1
σ(1), ..., x

n
σ(n).

In the näıve computation of detn, one uses (n − 1)(n!) multiplications and n! − 1 additions.
If one uses Laplace expansions it lowers a little, but is still exponential. Nevertheless, one has
the essentially classical:

Proposition 2.1.1. (detn) ∈ VP. More precisely, detn can be evaluated by performing O(n4)
arithmetic operations.

Fixing bases of E,F and identifying E∗ ⊗F ∗ with the space of n × n matrices, there are
subspaces of E∗ ⊗F ∗ on which det can be evaluated by performing n arithmetic operations, for
example the upper-triangular matrices which we will denote by b.

detn is invariant under the action of the subgroup U ⊂ SL(E) of all upper-triangular matrices
with 1’s on the diagonal as well as the group W of permutation matrices in SL(E).

Proposition 2.1.1 essentially follows from:
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Proposition 2.1.2 (Gaussian elimination). Notations as above, given x ∈ E∗ ⊗F ∗, there exists
g in the group generated by U and W such that g · x ∈ b. Such a g can be computed by
performing a number of arithmetic operations that is polynomial in n = dimE.

proof of Prop. 2.1.1. For sufficently generic matrices the algorithm is clear. For an algorithm
that works for arbitrary matrices, see [1]. �

2.2. The permanent. Define the permanent permn ∈ Sn(E ⊗F ) to be the unique up to scale
element of SnE ⊗SnF ⊂ Sn(E ⊗F ) invariant under the action of the diagonal matrices and
permutation matrices acting on both the left and the right (i.e. the normalizers of the tori in
SL(E) × SL(F )). If x ∈ E∗ ⊗F ∗ is expressed as a matrix, then

permn(x) =
∑

σ∈Sn

x1
σ(1), ..., x

n
σ(n).

2.3. The permanent as a projection of the determinant. A polynomial p(y1, ..., ym) is a
projection of q(x1, ..., xn) if we can set xi = as

iys + ci for constants as
i , ci to obtain p(y1, ..., ym) =

q(as
1ys + c1, ..., a

s
nys + cn). Geometrically, if we homogenize the polynomials by adding variables

y0, x0, we can study the zero sets in projective space. Then p is a projection of q iff Zeros(p) ⊂
CP

m is a linear section of Zeros(q) ⊂ CP
n. This is because if we consider a projection map

V → V/W , then (V/W )∗ ≃ W⊥ ⊂ V ∗.

Theorem 2.3.1. [Valiant][41] Every f ∈ C[x1, ..., xn] of expression size (see §6.1.4) u is both a
projection of detu+3 and permu+3.

In particular, any polynomial is the projection of some determinant.

Example 2.3.2. Let f(x) = x1x2x3 + x4x5x6, then

f(x) = det













0 x1 0 x4 0
0 1 x2 0 0
x3 0 1 0 0
0 0 0 1 x5

x6 0 0 0 1













.

Conjecture 2.3.3 (Valiant). [33] Let n(m) be the smallest integer such that permm can be
realized as a projection of detn(m). Then n(m) grows faster than any polynomial in m.

2.4. Differential invariants of detn. This subsection discusses preliminary results of work
with D. The and L. Manivel.

Let X ⊂ P
n and Y ⊂ P

m be varieties such that there is a linear space L ≃ P
m ⊂ P

n such that
Y = X ∩ L.

Say y ∈ Y = X ∩ L. Then the differential invariants of X at y will project to the differential
invariants of Y at y. A definition of differential invariants adequate for this discussion (assuming
X, Y are hypersurfaces) is as follows: choose local coordinates (x1, ..., xn+1) for P

n at x =
(0, ..., 0) such that TxX = 〈 ∂

∂x1 , ..., ∂
∂xn 〉 and expand out a Taylor series for X:

xn+1 = r2
i,jx

ixj + r3
i,j,kx

ixjxk + · · ·
The zero set of (r2

ijdxi ◦dxj , ..., rk
i1,...,ik

dxi1 ◦ · · · ◦dxik) in PTxX is independent of choices. Write

this zero set as Zeros(F2,x(X), ..., Fk,x(X)). I will refer to the polynomials Fℓ,x(X) although
they are not well defined individually. For more details see, e.g. [16, Chap. 3].

One says that X can approximate Y to k-th order at x ∈ X mapping to y ∈ Y if one can
project the differential invariants to order k of X at x to those of Y at y.

In [23] it was shown that the determinant can approximate any polynomial to second order

if n ≥ m2

2 and that permm is generic to order two, giving the lower bound n(m) ≥ m2

2 . The
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previous lower bound was n(m) ≥
√

2m due to J. Cai [5] building on work of J. von zur Gathen
[43].

One can ask what happens to higher orders.

If X ⊂ PV is a quasi-homogeneous variety, i.e., a group G acts linearly on V and X = G · [v]
for some [v] ∈ PV , then T[v]X is a g([v])-module, where g([v]) denotes the Lie algebra of the
stabilizer of [v] in G.

Let e1, ..., en be a basis of E∗ and f1, ..., fn a basis of F ∗, let v = e1 ⊗ f1 + · · ·+ en−1 ⊗ fn−1,
so [v] ∈ Zeros(detn) and Zeros(detn) = SL(E) × SL(F ) · [v].

Write E′ = v(F ) ⊂ E∗, F ′ = v(E) ⊂ F ∗ and set ℓE = E∗/E′, ℓF = F ∗/F ′. Then, using
v to identify F ′ ≃ (E′)∗, one obtains T[v]Zeros(detn) = ℓE ⊗F ′ ⊕ (F ′)∗ ⊗F ′ ⊕ (F ′)∗ ⊗ ℓF as a
g([v]) − module. Write an element of T[v]Zeros(detn) as a triple (x,A, y). In matrices,

v =











1
. . .

1
0











, T[v] ∼
(

A y
x 0

)

Taking the g([v])-module structure into account, it is straight-forward to show:

Theorem 2.4.1. Let X = Zeros(detn) ⊂ P
n2−1 = P(E ⊗F ), let v = e1 ⊗ f1+· · ·+en−1 ⊗ fn−1 ∈

X. With the notations above, the differential invariants of X at [v] are

Zeros(F2,[v](X)) = Zeros(xy)

Zeros(F2,[v](X), F3,x(X)) = Zeros(xy, xAy)

...

Zeros(F2,[v](X), ..., Fk,x(X)) = Zeros(xy, xAy, ..., xAk−2y).

Since the permanent hypersurface is not quasi-homogeneous, its differential invariants are
more difficult to calculate. It is even difficult to write down a general point in a nice way (that
depends on m, keeping in mind that we are not concerned with individual hypersurfaces, but
sequences of hypersurfaces). For example, the point on the permanent hypersurface chosen in
[23] is not general as there is a finite group that preserves it. To get lower bounds it is sufficient
to work with any point of the permanent hypersurface, but one will not know if the obtained
bounds are sharp. To arrive at n being an exponential function of m, one might expect to
improve the exponent by one at each order of differentiation. The following theorem shows that
this does not happen at order three.

The Mignon-Ressayre result implies that any hypersurface in 2n − 2 variables defined by a
homogeneous polynomial can be approximated to order two at any point by an affine linear

projection of {detn = 0} ⊂ C
n2

.

Theorem 2.4.2. Any hypersurface in n − 1 variables can be approximated to order three at

any point by an affine linear projection of {detn = 0} ⊂ C
n2

.

In particular, {permm = 0} ⊂ C
m2

can be approximated to order three at a general point by

an affine linear projection of {detm2+1 = 0} ⊂ C
(m2+1)2 .

Proof. The rank of F2 for the determinant is 2(n−1), whereas the rank of F2 for the permanent,
and a deprojectivization of a general hypersurface in q variables at a general point is q − 2. so
one would need to project to eliminate (n − 1)2 variables to agree to order two.

Thus it is first necessary to perform a projection so that the matrix A, which formerly had
independent variables as entries is now linear in the entries of x, y, write A = A(x, y). Then the
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projected pair F2, F3 is not generic because it has two linear spaces of dimension n−1 in its zero
set. This can be fixed by setting y = L(x) for L : C

n−1 → C
n−1 a linear isomorphism. At this

point one has F2 = L(x)x, F3 = L(x)A(x,L(x))x. Take L to be the identity map, so the cubic
is of the form

∑

i,j xiAij(x)xj where the Aij(x) are arbitrary. This is an arbitrary cubic. �

3. Detour: Grassmannians and Spinor varieties

3.1. The Grassmannian as a variety parametrizing minors of matrices. I use the sum-
mation convention that repeated indices appearing up and down are to be summed over their
range.

Let W be a vector space and let G(k,W ) denote the Grassmannian of k-planes through the
origin in W . Assume WLOG that k ≤ dimW − k. Recall the Plücker embedding G(k,W ) ⊂
P(ΛkW ).

The cone over the Grassmannian, Ĝ(k,W ) ⊂ ΛkW is the set of v ∈ ΛkW , such that there
exist w1, ..., wk ∈ W with v = w1 ∧ · · · ∧ wk.

The Grassmannian G(k,W ) admits a local parametrization as follows: Write W = E ⊕F
where dimE = k. Let 1 ≤ i, j ≤ k, 1 ≤ s, t ≤ n − k, fix bases e1, ..., ek of E with dual basis
e1, ..., ek of E∗, and f1, ..., fn−k of F with dual basis f1, ..., fn−k. Say E = [v0], v0 ∈ Ĝ(k,W )
and we want to locally parametrize G(k,W ) around [v0]. Choose our basis such that ej = wj

in the description of v above. Let xs
j be linear coordinates on E∗ ⊗F ≃ T[v0]G(k,W ). The local

parametrization about E = [v(0)] is

[v(xs
i )] = [(e1 + xs

1es) ∧ · · · ∧ (ek + xs
kes)].

In what follows I will also need to work with G(k,W ∗), In our dual bases, a local parametrization
about E∗ = 〈e1, ..., ek〉 = [α(0)] is

[α(ys
j )] = [(e1 + y1

se
s) ∧ · · · ∧ (ek + yk

s es)].

I next explain how to interpret the open subset of G(k,W ) described above as the vector of
minors for E∗ ⊗F .

For vector spaces E,F , Λk(E ⊕F ) has the following decomposition as a GL(E) × GL(F )
module:

Λk(E ⊕F ) =(ΛkE ⊗Λ0F )⊕ (Λk−1E ⊗Λ1F )⊕ (Λk−2E ⊗Λ2F )

⊕ · · · ⊕ (Λ1E ⊗Λk−1F )⊕ (Λ0E ⊗ΛkF )

Assume we have a volume form on E so we may identify ΛsE ≃ Λk−sE∗. We have the SL(E)×
GL(F ) decomposition:

Λk(E ⊕F ) =(Λ0E∗⊗Λ0F )⊕ (Λ1E∗ ⊗Λ1F )⊕ (Λ2E∗ ⊗Λ2F )

⊕ · · · ⊕ (Λk−1E∗ ⊗Λk−1F )⊕ (ΛkE∗ ⊗ΛkF )

Recall that ΛsE∗ ⊗ΛsF ⊂ Ss(E∗ ⊗F ) has the geometric interpretation as the space of s × s
minors on E ⊗F ∗, i.e., with any choices of bases, write an element f of E ⊗F ∗ as a matrix,
then a basis of ΛsE∗⊗ΛsF evaluated on f will give the set of s × s minors of f .

To see these minors explicitly, note that the bases of E∗, F induce bases of the exterior powers.
Expanding out v above in such bases, (recall that the summation convention is in use)

v(xs
i ) =e1 ∧ · · · ∧ ek

+ xs
i e1 ∧ · · · ∧ ei−1 ∧ es ∧ ei+1 ∧ · · · ∧ ek

+ (xs
ix

t
j − xs

js
t
i)e1 ∧ · · · ∧ ei−1 ∧ es ∧ ei+1 ∧ · · · ∧ ej−1 ∧ et ∧ ej+1 · · · ∧ ek

+ · · ·
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i.e., writing v as a row vector in the induced basis:

v = (1, xs
i , x

s
i x

t
j − xt

ix
s
j, . . .) = (1,∆i,s(x), ...,∆I,S(x), ..., )

where we use the notation I = (i1, ..., ip) S = (s1, ..., sp) and ∆I,S(x) denotes the corresponding

p × p minor of x. Similarly α = (1, yj
s , y

j
syi

t − yi
sy

j
t , ..., ).

Fix bases so x, y are k × (n − k) matrices. I claim

(3.1.1) 〈α, v〉 = det(IE + txy)

because the characteristic polynomial of a product of a k × ℓ matrix tx with an ℓ × k matrix y
is:

(3.1.2) charpoly(txy)(t) = det(IdE + ttxy) =
∑

I,S

∆I,S(x)∆S,I(y)t|I|.

While (3.1.2) is no doubt classical, I include a proof as I didn’t find one in the literature.
For a linear map f : A → A, recall the induced linear maps f∧k : ΛkA → ΛkA, where, if one

chooses a basis of A and represents f by a matrix, then the entries of the matrix representing
f∧k in the induced basis on ΛkA will be the k × k minors of the matrix of f . In particular, if
dimA = a, then, f∧a is multiplication by a scalar which is det(f).

Recall the decomposition:

End(E∗ ⊕F ) = (E∗ ⊗F )⊕ (E∗ ⊗E)⊕ (F ⊗F ∗)⊕ (F ∗ ⊗E).

To each x ∈ E∗ ⊗F , y ∈ E ⊗F ∗, associate the element

(3.1.3) −x + IdE + IdF + y ∈ End(E∗ ⊕F ).

Note that

det

(

IE −tx
y IF

)

= det(IE + txy).

Consider

(−x + IdE + IdF + y)∧n = (IdE)∧k ∧ (IdF )∧(n−k) + (IdE)∧k−1 ∧ (IdF )∧(n−k−1) ∧ (−x) ∧ y

+ (IdE)∧(k−2) ∧ (IdF )∧(n−k−2) ∧ (−x)∧2 ∧ y∧2 + · · · + (IdF )∧(n−2k) ∧ (−x)∧k ∧ y∧k

Let
e1 ∧ · · · ∧ ek ∧ f1 ∧ · · · ∧ fn−k ∈ Λn(E∗ ⊗F )

be a volume form. All that remains to check is that when we re-order our terms that the signs
work out correctly, which is left to the reader.

3.2. Spinor varieties. For the interpretation of spinor varieties as maximal isotropic subspaces
on a quadric, see any of [13, 15, 19]. Here I simply define the spinor variety as the Zariski closure
of the set of vectors of sub-Pfaffians of a skew-symmetric matrix with variables as entries. See
[18] for the connection with the classical definition.

For x ∈ Λ2
C

2n, the Pfaffian Pf(x) ∈ C is defined by x∧n = Pf(x)n!Ω, where Ω ∈ Λ2n
C

2n is a
volume form - it is a square root of det(x).

Let E be an n-dimensional vector space equipped with a volume form. Define (Ŝ+)0 to be
the image of the map

Λ2E → ΛevenE =: S+

x 7→ v = (1, xi
j , ...,PfI(x), ..., ) =: sPf(x)

as |I| varies over the even numbers from 0 to x
n
2 y. The space of sub-Pfaffians of size 2p is

parametrized by Λ2pE. If n is even, S+ is self dual, and if n is odd, its dual is S− := ΛoddE
because E is equipped with a volume form, so Λ2pE∗ = Λn−2pE.
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Recall the decomposition

Λ2(E ⊕E∗) = Λ2E ⊕E ⊗E∗ ⊕Λ2E∗.

Consider x + IdE + y ∈ Λ2(E ⊕E∗). Observe that

(x + IdE + y)∧n =
n

∑

j=0

(IdE)∧(n−j) ∧ x∧j ∧ y∧j ∈ Λ2n(E ⊕E∗)

Let Ω = e1 ∧ e1 ∧ e2 ∧ e2 ∧ · · · ∧ en ∧ en ∈ Λ2n(E ⊕E∗) be a volume form. The coefficient of the
j-th term is the sum

∑

|I|=2j

sgn(I) PfI(x) PfI(y).

where for an even set I ⊆ [n], define σ(I) =
∑

i∈I i, and define sgn(I) = (−1)σ(I)+|I|/2. Put
more invariantly, the j-th term is the pairing

〈y∧j , x∧j〉.
For a matrix z define a matrix z̃ by setting z̃i

j = (−1)i+j+1zi
j . Let z be an n×n skew-symmetric

matrix. Then for every even I ⊆ [n],

PfI(z̃) = sgn(I) PfI(z).

For |I| = 2p, p = 1, . . . , ⌊n
2 ⌋,

PfI(z̃) = (−1)i1+i2+1 · · · (−1)i2p−1+i2p+1 PfI(z) = sgn(I) PfI(z).

Thus:

Theorem 3.2.1. [20] Let z, y be skew-symmetric n × n matrices. Then

〈sPf(z), sPf ∨(y)〉 = Pf(z̃ + y).

In particular, the pairing S+×S∗
+ → C restricted to Ŝn×Ŝn∗ → C can be computed in polynomial

time.

The first few spinor varieties are classical varieties in disguise (corresponding to coincidences
of Lie groups in the first two cases and triality in the third):

S2 = P
2 ⊂ P

2

S3 = P
3 ⊂ P

3

S4 = Q6 ⊂ P
7

In particular, although the codimension grows very quickly, it is small in these cases. The next
case S5 ⊂ P

15 is not isomorphic to any classical homogeneous variety.

4. Holographic algorithms and spinors

4.1. Counting problems as vector space pairings A∗×A → C. For simplicity of exposition,
I restrict to the complexity problem of counting the number of solutions to equations cs over
F2 with variables xi. This problem is called SAT in the complexity literature. (In complexity
theory one usually deals with Boolean variables and clauses, which is essentially equivalent to
equations over F2 but some care must be taken in the translation.)

To convert a counting problem to a vector space pairing, proceed as follows:

Step 1. To an instance of a problem construct a bipartite graph Γ = (Vx, Vc, E) that encodes
the problem. Here Vx, Vc are the two sets of vertices and E is the set of edges. Vx corresponds
to the set of variables, Vc to the set of equations, and there is an edge eis joining the vertex of
the variable xi to the vertex of the equation cs iff xi appears in cs.
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Step 2. Construct “local” tensors that encode the information at each vertex. To do this first
associate to each edge eis a vector space Ais = C

2 with basis ais|0, ais|1 and dual basis αis|0, αis|1

of A∗
is. Next, to each variable xi associate the vector space

Ai :=
⊗

{s|eis∈E}

Ais

and the tensor

(4.1.1) gi := ⊗ {s|eis∈E}ais|0 + ⊗ {s|eis∈E}ais|1 ∈ Ai

which will encode that xi should be consistently assigned either 0 or 1 each time it appears.
Now to each equation cs we associate a tensor in A∗

s := ⊗ {i|eis∈E}A
∗
is that encodes that cs is

satisfied. For example, say xi, xj , xk appear in cs and that

cs(xi, xj , xk) = xixj + xixk + xjxk + xi + xj + xk + 1

which is satisfied over F2 as long as the variables xi, xj, xk are not all 0 or all 1. (This equation is
called 3NAE in the computer science literature.) More generally, say cs has xi1 , ..., xids

appearing
and cs is dsNAE, then one associates the tensor

(4.1.2) rs :=
∑

(ǫ1,...,ǫds)6=(0,...,0),(1,...,1)

αi1,s|ǫ1⊗ · · · ⊗ αids ,s|ǫds
.

Step 3. Tensor all the local tensors from Vx (resp. Vc) together to get two tensors in dual
vector spaces with the property that their pairing counts the number of solutions. That is,
consider G := ⊗ igi and R := ⊗ srs respectively elements of the vector spaces A := ⊗ eAe and
A∗ := ⊗ eA

∗
e. Then, the pairing 〈G,R〉 counts the number of solutions.

Remark 4.1.1. Up until now I could have just taken each Ais = Z2. The reason I used complex
numbers was to allow a group action. This group action will destroy the local structure but leave
the global structure unchanged. Valiant’s inspiration for doing this was quantum mechanics,
where particles are replaced by wave functions.

Also note that so far we have replaced our original counting problem with the problem of
computing a pairing A × A∗ → C where the dimension of A is exponential in the size of the
input data. If we had arbitrary vectors, then there is no way to perform this pairing in a
number of steps that is polynomial in the size of the original data. We saw that if one is
lucky, the pairing can be computed quickly. We now try to make local changes of bases that
simultaneously put each gi and rs into spinor varieties.

4.2. Computing the vector space pairing in polynomial time. To try to move both
G,R to special position so that the pairing can be evaluated quickly, identify all the Ae with
a single C

2, and allow SL2C to act. This action is very cheap, and of course if we have it act
simultaneously on A and A∗, the pairing 〈G,R〉 will be unchanged. This step cannot always be
carried out, otherwise we would have proved P = NP.

To illustrate, we now restrict to 3SAT − NAE, which is still NP-hard.
The tensor gi corresponding to a variable vertex xi is (4.1.1). The tensor corresponding to a

NAE clause rs is (4.1.2) and ds = 3 for all s. Let

T =

(

1 1
1 −1

)

be the basis change, the same in each Ae, sending ae|0 7→ ae|0 + ae|1 and ae|1 7→ ae|0 − ae|1 which

induces the basis change αe|0 7→ 1
2(αe|0 + αe|1) and αe|1 7→ 1

2(αe|0 − αe|1) in A∗
e. Applying T ,
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gives

T (ai,si1
|0⊗ · · · ⊗ ai,sidi

|0+ai,si1
|1⊗ · · · ⊗ ai,sidi

|1) = 2
∑

{(ǫ1,...,ǫdi
)|

P

ǫℓ=0 (mod 2)}

ai,si1
|ǫ1⊗ · · · ⊗ ai,sidi

|ǫdi
.

Similarly

T





∑

(ǫ1,ǫ2,ǫ3)6=(0,0,0),(1,1,1)

αi1,s|ǫ1 ⊗αi2,s|ǫ2 ⊗αi3,s|ǫ3





= 6αi1,s|0 ⊗αi2,s|0 ⊗αi3,s|0 − 2(αi1,s|0 ⊗αi2,s|1 ⊗αi3,s|1 + αi1,s|1 ⊗αi2,s|0 ⊗αi3,s|1 + αi1,s|1 ⊗αi2,s|1 ⊗αi3,s|0)

After this change of basis gi ∈ S#{s|eis∈E} and rs ∈ S4 for all i, s!

4.3. NP, in fact #P is pre-holographic.

Definition 4.3.1. Let P be a counting problem. We will say that P is pre-holographic if it
admits a formulation such that the vectors gi, rs are all simultaneously representable as vectors
of sub-Pfaffians.

The following was proved (although not stated) in [20]:

Theorem 4.3.2. Any problem in NP, in fact #P is pre-holographic.

Proof. To prove the theorem it suffices to exhibit one #P complete problem that is pre-
holographic. Counting the number of solutions to 3SAT − NAE is one such. �

4.4. What goes wrong. While for 3SAT − NAE it is always possible to give V and V ∗

structures of the spin representations S+ and S∗
+, so that [G] ∈ PV and [R] ∈ PV ∗ both lie in

spinor varieties, these structures may not be compatible! What goes wrong is that the ordering
of pairs of indices (i, s) that is good for V may not be good for V ∗. The “only” thing that can
go wrong are the signs of the sub-Pfaffians, see [20] for details. Since the same problem occurs
in the case of the permanent, one might speculate that the difference between P or VP and NP

or VNP is a matter of a finite group.
In [20] we determine sufficient conditions for there to be a good ordering of indices and show

that if the bipartite graph Γ was planar, then these sufficient conditions hold.

4.5. History. In Valiant’s original formulation of holographic algorithms (see [35, 36, 37, 38,
39, 40]), the step of forming Γ is the same, but then Valiant replaced the vertices of Γ with
weighted graph fragments to get a new weighted graph Γ′ in such a way that the number of
(weighted) perfect matchings of Γ′ equals the answer to the counting problem. Then, if Γ′ is
planar, one can appeal to the famous FKT algorithm [17, 32] to compute the number of weighted
perfect matchings in polynomial time. Valiant also found certain algebraic identities that were
necessary conditions for the existence of such graph fragments.

Cai [6, 7, 8, 9, 10, 11, 12] recognized that Valiant’s procedure could be reformulated as a
pairing of tensors as in steps two and three, and that the condition on the vertices was that the
local tensors gi rs could, possibly after a change of basis, be realized as a vector of sub-Pfaffians.
In Cai’s formulation one still appeals to the existence of Γ′ and the FKT algorithm in the last
step.

5. Exponential pairings in polynomial time

5.1. Cominscule varieties. In this section we show that the same phenomenon that we ob-
served above for Grassmannians and spinor varieties holds for all cominuscule varieties.
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Theorem 5.1.1. Let V be a vector space of dimension
(n
k

)

, 2n−1,
(2n

k

)

−
( 2n
k−2

)

, pn, or
(n+p−1

n

)

.
In each case there are explicit systems of degree two polynomial equations on V, V ∗, such that
if α ∈ V ∗ and v ∈ V satisfy these equations, the pairing 〈α, v〉, which näıvely requires O(dimV )
arithmetic operations, can be computed in O(n4) operations.

Theorem 5.1.1 is an immediate consequence of:

Theorem 5.1.2. Let V = V (n) be a cominuscule G = G(n)-module with G/P ⊂ PV the closed
orbit and G/P ′ ⊂ PV ∗ the corresponding closed orbit in the dual space. Here n is the rank of G.

Then the pairing V × V ∗ → C restricted to Ĝ/P × Ĝ/P ′ can be computed in O(n4) arithmetic
operations without divisions.

The non-trivial cases are (where for notational convenience we use the rank of G plus one in
the An−1 = SLn-case):

V dimV G G/P g/p

ΛkW
(

n
k

)

SL(W ) = SLn G(k,W ) E∗ ⊗F
S+ 2n−1 Dn = Spin2n S+ Λ2E

Λ〈n〉W
(2n

n

)

−
( 2n
n−2

)

Sp(2n, C) = Sp(W,ω) GLag(n, 2n) S2E

E1⊗ · · · ⊗ En pn SL(E1)× · · · × SL(En) Seg(PE1× · · · × PEn) ⊕jE
′
j

SnE
(

n+p−1
n

)

SL(E) vn(PE) E′ ◦ ℓn−1

Explanations of V : W is a vector space of dimension n in the first case, 2n in the third, S+ is
the (positive) half-spin representation of Spin2n, Λ〈n〉W = ΛnW/(Λn−2W ∧ ω) where ω ∈ Λ2W
is a symplectic form. E,Ej are vector spaces of dimension p in the last two cases.

Explanations of G/P : G(k,W ) denotes the Grassmannian of k-planes in its Plucker embed-
ding, S+ the “pure spinors” or spinor variety, GLag(n, 2n) denotes the Lagrangian Grassmannian
of n-planes isotropic for the symplectic form ω ∈ Λ2

C
2n, Seg(PE1× · · · × PEn) denotes the Segre

product, the projectivization of the set of decomposable tensors in E1⊗ · · · ⊗ En and vn(PE)
denotes the Veronese variety of the projectivization of homogeneous polynomials of degree n on
E∗ that are n-th powers of a linear form.

Explanations of g/p: g, p are the Lie algebras of G,P . Let G0 denote the Levi-factor of P .
G0 is respectively S(GL(E) × GL(F )), GL(E), GL(E), GL(E′

1)× · · · × GL(E′
n), GL(E′). As a

G0-module, g/p is the tangent space to G/P at the point of G/P corresponding to Id ∈ G. I
have written F = W/E. Fix vectors ej ∈ Ej , e ∈ E and let ℓj, ℓ respectively denote the lines
they span, then E′

j = ℓ1⊗ · · · ⊗ ℓj−1 ⊗Ej/ℓj ⊗ ℓj+1⊗ · · · ⊗ ℓn and E′ = E/ℓ.

In each case g/p is a space of endomorphisms and V as a G0-module is the sum of the spaces
of all minors (of all sizes) of g/p, except in the spinor case, where one takes all sub-Pfaffians.
⊕jS2jE = ⊕jS2···2E denotes the irreducible GL(E)-submodule of ΛjE ⊗ΛjE giving minors on
S2E ⊂ E ⊗E.

It remains to prove the cases of the Lagrangian Grassmannian, the Segre and the Veronese.

5.2. Lagrangian Grassmannian case. The Lagrangian Grassmannian GLag(n, 2n) ∈ PΛ〈n〉W

is a linear section of G(n, 2n) ⊂ PΛnW . Here Λ〈n〉W = ΛnW/(Λn−2W ∧ω) = W
Sp(2n,W )
ωn and the

quotient may be viewed as the complement to Λn−2W ∧ ω ⊂ ΛnW to obtain the linear section.
The interpretation of an open subset (the “big cell”) of GLag(n,W ) is as the set of vectors of

(non-redundant) minors of symmetric matrices. The symplectic form enables the identification
of W/E ≃ E∗ and the linear subspace of

E∗ ⊗E∗ = Λ2E∗ ⊕S2E∗

corresponding to the tangent space is just S2E∗. See [19] for details.



12 J.M. LANDSBERG

The subspace of ΛjE∗ ⊗ΛjE∗ giving rise to a non-redundant set of minors corresponds to the
sub-module S2jE∗ ⊂ ΛjE∗ ⊗ΛjE∗.

For the Lagrangian Grassmannian case it suffices in (3.1.3) to take

−x + IdE + y ∈ S2(E ⊕E∗) = S2E ⊕E ⊗E∗ ⊗S2E∗.

5.3. Segre and Veronese cases. The Segre is parametrized by a map φ

(xj
s) 7→ (a1

0 + xj
1a

1
j )⊗ (a2

0 + xj
2a

2
j)⊗ · · · ⊗ (an

0 + xj
nan

j ) = (1, xj
s1

, xj
sx

k
s2

, · · · x1
s1
· · · xp

sp
),

where in each term s1 < · · · < sq. Let φ∨ denote the map to the dual Segre.
If α = φ(x), v = φ∨(y) then

〈α, v〉 =
∑

I,S

xI
SyI

S

where I = (i1, ..., iq), i1 ≤ · · · ≤ iq, 1 ≤ q ≤ p, and S = (s1, ..., sr), s1 < · · · < sr, 1 ≤ r ≤ n.
Here :

〈α, v〉 = det

























































In

−x1
1

. . .

−x1
n

−x2
1

. . .

−x2
n

· · ·
−xp

1
. . .

−xp
n

y1
1

. . .

y1
n

In

y2
1

. . .

y2
n

In

...
. . .

yp
1

. . .

yp
n

In

























































.

The Veronese is parametrized by (xj) 7→ (a0 + xjaj)
p and the same matrix as above works

replacing xj
s with xj for all s and similarly for y.

6. Definitions of VP, VNP and VPe

6.1. VPe. An elementary measure of the complexity of a (homogeneous) polynomial p is as
follows: given an expression for p, count the total number of additions plus multiplications
present in the expression, and then take the minimum over all possible expressions.

Aside 6.1.1. Here there are two types of multiplications, multiplying a variable by a variable,
and a variable by a scalar. For questions we will be concerned with it doesn’t matter whether or
not one counts the multiplications of a scalar times a variable, although, it is the multiplication
of variables that is far more costly for a computer. Multiplication of variables is also more
complicated than addition of variables - but the order of complexity will not be significant for
us so we will count them both equally or just count multiplications.

Example 6.1.2.

pn(x, y) = xn + nxn−1y +

(

n

2

)

xn−2y2 +

(

n

3

)

xn−3y3 + · · · + yn
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This expression for pn involves n(n + 1) multiplications and n additions, but one can also write

pn(x, y) = (x + y)n

which requires n multiplications and one addition to evaluate.

Definition 6.1.3. An arithmetic circuit C is a finite, acyclic, directed graph with veritices of
in-degree 0 or 2 and exactly one vertex of out degree 0. In degree 0, inputs are labelled by
elements of C ∪ {x1, ..., xn} and in degree 2, vertices are called computation gates and labelled
with + or ∗. The size of C is the number of vertices. From a circuit C, one can construct a
polynomial pC in the variables x1, ..., xn.

If C is a tree (i.e., all out degrees are at most one), then the size of C equals the number of
+’s and ∗’s used in the formula constructed from C.

Definition 6.1.4. For f ∈ Sd
C

m, the expression size E(f) is the smallest size of a tree circuit
that computes f . Define the class VPe to be the set of sequences (pn) such that there exists a
sequence (Cn) of tree circuits, with the size of Cn bounded by a polynomial in n, such that Cn

computes pn.

It turns out that expression size is too näıve a measurement of complexity, as consider Example
6.1.2, we could first compute z = x + y, then w = z2, then w2 etc... until the exponent is close
to n, for a significant savings in computation.

6.2. VP, VPws and closures. Allowing circuits more general than trees allows us the possi-
bility of remembering the results of previous calculation and gives rise to the class VP:

Definition 6.2.1. The class VP is the set of sequences (pn) of polynomials of degree d(n) in
v(n) variables where d(n), v(n) are bounded by polynomials in n and such that there exists a
sequence of circuits (Cn) of polynomially bounded size such that Cn computes pn.

Definition 6.2.2. A problem P is hard for a complexity class C if all problems in C can be
reduced to P (i.e. there is an algorithm to translate any instance of a problem to an instance of
P with comparable input size). A problem P is complete for C if it is hard for C and if P ∈ C.

A famous example of a sequence in VP is detn ∈ Sn
C

n2

, despite its apparently huge expression
size. While it is known that (detn) ∈ VP, it is not known whether or not it is VP-complete.
On the other hand, it is known that (detn) is VPe-hard, although it is not known whether or
not (detn) ∈ VPe. When complexity theorists and mathematicians are confronted with such a
situation, what else do they do other than make another definition?

Definition 6.2.3. The class VPws is the set of sequences (pn) where deg(pn) is bounded by a
polynomial and such that there exists a sequence of circuits (Cn) of polynomially bounded size
such that Cn represents pn, and such that at any multiplication vertex, the component of the
circuit of one of the two edges coming in is disconnected from the rest of the circuit by removing
the multiplication vertex.

In [22] they show that (detn) is VPws-complete, so Conjecture 2.3.3 may be rephrased as
conjecturing VPws 6= VNP.

Remark 6.2.4. It is considered a major open question to determine whether or not (detn) ∈ VPe.

Definition 6.2.5. Given a complexity class C defined in terms of sequences of polynomials, we
define a sequence (pn) to be in C if there exists a curve of sequences qn,t, such that for each
fixed t0 6= 0, (qn,t0) ∈ C and for all n, lim t → 0qn,t = pn.
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6.3. VNP. The class VNP essentially consists of polynomials whose coefficients can be deter-
mined in polynomial time. Consider a sequence h = (hn) ∈ C[x1, ..., xn]≤n of (not necessarily
homogeneous) polynomials of the form

(6.3.1) hn =
∑

e∈{0,1}n

gn(e)xe1

1 · · · xen
n

where (gn) ∈ VP. Define VNP to be the set of all sequences that are projections of sequences
of the form h. For equivalent definitions, see e.g., [4, §21.2].
Proposition 6.3.1. [33] (permn) ∈ VNP, in fact is VNP-complete.

Conjecture 6.3.2. [34] [Valiant’s hypothesis] VP 6= VNP.

It is known that P 6= NP would imply VP 6= VNP.

7. Geometric Complexity Theory approach to VPws v. VNP

7.1. Description of the program. In a series of papers [30, 31, 28, 29, 27, 25, 26, 24], K.
Mulmuley and M. Sohoni outline an approach to prove VPws 6= VNP. Let ℓ be a linear coordi-

nate on C, and take any linear inclusion C⊕C
m2 ⊂ C

n2

to have ℓn−mpermm be a homogeneous

degree n polynomial on C
n2

. Mulmuley and Sohoni observe that VPws 6= VNP is equivalent
to the assertion that the smallest function ñ(m) such that [ℓñ−mpermm] ∈ GLñ2 · [detñ] grows
faster than any polynomial, or equivalently:

Conjecture 7.1.1. [30] Let ñ(m) be the smallest number such that GLñ2 · [ℓñ−mpermm] ⊂
GLñ2 · [detñ], then ñ(m) is not a polynomial in m.

For a complex projective variety X ⊂ PV , let I(X) ⊂ Sym(V ∗) be the ideal of polynomials
vanishing on X. Let C[X] = Sym(V ∗)/I(X) denote the homogeneous coordinate ring. For
complex projective varieties X,Y ⊂ P

N = PV , one has X ⊂ Y iff C[Y ] surjects onto C[X] (by
restriction of functions). Mulmuley and Sohoni set out to prove:

Conjecture 7.1.2. [30] Let u(m) be a polynomial. There is a sequence of irreducible modules

Mm for GLu(m)2 such that Mm appears in C[GLu(m)2 · [ℓu(m)−mpermm]] but not in C[GLu(m)2 · [detu(m)]].

There are several paths one could take to try to find such a sequence of modules. The path
Mulmuley and Sohoni choose in [31] is to consider SLn2 ·detn and SLm2 ·permm because on the
one hand their coordinate rings can be determined in principle using representation theory, and
on the other hand they are closed affine varieties. They observe that any SLn2-module appearing
in C[SLn2 ·detn] must also appear in C[GLn2 · detn]k for some k. Regarding the permanent, for
n > m, SLn2 · ℓn−mpermm is not closed, so they develop machinery to transport information

about C[SLm2 · permm] to C[GLn2 · ℓn−mpermm], including a notion of partial stability.
Mathematical aspects of this program are discussed in [2]. The representation-theoretic in-

formation Mumuley and Sohoni propose to exploit is studied in detail. In particular [2, Thm
5.7.1] is a precise description of conditions on Kronecker coefficients that would imply Conjec-
ture 7.1.2. In addition, suggestions are made for further geometric information that one could
take into account that might imply a more tractible problem in representation theory.

The price of using SLn2 instead of GLn2 is that one loses the grading of the coordinate rings.
On the other hand, in order to use GLn2 , one must solve, or at least partially solve, an extension

problem, which to even begin work on, means that one must determine the codimension one
components of the boundaries in the orbit closures. Nevertheless, it seems this harder work is
essential as is explained in the following examples.
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7.2. Beyond determinant and permanent. Instead of considering detn, one could take a
sufficiently generic gn ∈ GLn2 and consider pn := detn + gn · detn. Then G(pn) will be the same
as that for a generic polynomial, although pn is still VPws-complete. Thus just looking at the
orbit, there would be fewer modules appearing in C[SLn2 · [pn]] than in C[SLn2 · [permn]]. In
particular the orbit closure is larger than that of the permanent. More generally, let r(n) be a

polynomial and take a sequence of points in pn ∈ σr(n)(GLn2 · [detn]), the r-th secant variety

of GLn2 · [detn]. One could study the differential invariants of these varieties to see how they
project to the permanent as in §2 and consider GCT program using the varieties GLn2 · pn.

More examples of sequences of polynomials are given by the immanants defined by Littlewood
in [21]. Immanants generalize the determinant and permanent. Given a partition π = (p1, ..., pr)
of n, and a vector space V of dimension at least r, let SπV denote the corresponding irreducible

GL(V )-module. IMπ ∈ Sn
C

n2

may be defined as follows: consider C
n2

= E ⊗F , where E,F =
C

n. Then Sn(E ⊗F ) = ⊕ πSπE ⊗SπF as a GL(E) × GL(F ) module. Let DE ⊂ GL(E),
DF ⊂ GL(F ) denote the tori, i.e., the groups of diagonal matrices. Let SE

n ,SF
n denote the

groups of permutation matrices acting on the left and right, and let ∆(Sn) ⊂ SE
n ×SF

n denote
the diagonal embedding. Then IMπ ∈ SπE ⊗SπF is the unique (up to scale) element acted on
trivially by (DE × DF ) ⋉ ∆(Sn).

In [45], building on work in [14], it is shown that for all π 6= (1n), (n), that G(IMπ) =
((DE × DF ) ⋉ ∆(Sn)) ⋉ Z2, where Z2 acts by sending a matrix to its transpose.

Consider IM(n−1,1) and IM(2,1n−1). The first is VNP-complete and the second is in VP,
see [3], so we could attempt to apply the GCT program to them. By [45] G(IM(n−1,1)) =
G(IM(2,1n−1)) so C[SLn2 · [IM(n−1,1)]] = C[SLn2 · [IM(2,1n−1)]]. Without examining the bound-

aries of GLn2 · [IM(n−1,1)] and GLn2 · [IM(2,1n−1)] there is no way to distinguish them.
Such investigations will be the subject of future work.

8. Towards geometric definitions of complexity classes

As mentioned several times, symmetry, sometimes in hidden form, appears to play a central
role in characterizing sequences in VP that are apparently not in VPe. Another issue mentioned
several times is that to make a good geometric study of complexity, one should have coordinate
free definitions. In this section I give a coordinate free and geometric definition of the class
VPe. I then give a coordinate free and geometric definition of a class VPhs which is perhaps a
close approximation to VP. Unfortunately at this writing I have no idea for a proposed purely
geometric definition of VNP. (S. Basu and M. Shub, in separate personal communications,
have proposed that VNP should somehow be viewed as a bundle over VP, but I have been
unable to make this precise.)

8.1. Joins and multiplicative joins. The join of projective varieties X1, ...,Xr ⊂ PV , J(X1, ...,Xr) ⊂
PV , is the Zariski closure of the points of the form [p1 + · · · + pr] with [pj ] ∈ Xj . The expected

dimension of J(X1, ...,Xr) is min(
∑

dimXj + r − 1,dimPV ). Let T̂[p]X ⊂ V denote the affine
tangent space of X at [p] ∈ X. Terracini’s lemma says that if ([p1], ..., [pr ]) ∈ X1× · · · × Xr is a
general point, then

T̂[p1+···+pr]J(X1, ...,Xr) = T̂[p1]X1 + · · · + T̂[pr]Xr.

One can similarly define joins in affine space. The expressions are the same without the
brackets.

Definition 8.1.1. Let X ⊂ PSaV , Y ⊂ PSbV be varieties. Define the multiplicative join of X
and Y , MJ(X,Y ), by

MJ(X,Y ) := {[p ◦ q] | [p] ∈ X, [q] ∈ Y } ⊂ PSa+bV.
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For varieties Xj ⊂ PSdjV , define MJ(X1, ...,Xr) ⊂ SdV similarly (or inductively as MJ(X,Y,Z) =
MJ(X,MJ(Y,Z))). In the special case Xj = PV ⊂ PS1V , MJ(PV, ..., PV ) is the Chow variety
of polynomials that decompose into a product of linear factors.

Similarly, let Ad,v denote the space of all polynomials of degree at most d in v variables. For
affine varieties X ⊂ Ad1,v, Y ⊂ Ad2,v, MJ(X,Y ) ⊂ Ad1+d2,v is defined in the same way without
brackets.

Proposition 8.1.2. Let Xj ⊂ PSdjV be varieties and let ([p1], ..., [pr ]) ∈ X1× · · · × Xr be a
general point. Then

T̂[p1◦···◦pr ]MJ(X1, ...,Xr) = T̂[p1]X1 ◦ p2 ◦ · · · ◦ pr + · · · + p1 ◦ · · · ◦ pr−1 ◦ T̂[pr]Xr

In particular, the expected dimension of MJ(X1, ...,Xr) is min(dimX1+· · ·+dimXr,dimPSdV ).

Proof. Let pj(t) be a curve in Xj with pj(0) = pj. Differentiate the expression p1(t) ◦ · · · ◦ pr(t)
at t = 0 to get the result. �

Question 8.1.3. What are the degenerate multiplicative joins, i.e., those that fail to be of the
expected dimension?

8.2. A geometric characterization of VPe. Recall that the expression size E(p) of a poly-
nomial p ∈ Ad,v is given by the number of internal nodes of the smallest tree circuit computing

p. Define E(p) to be the smallest integer such that there is a curve pt with lim t → 0pt = p0 and
such that E(pt) = E(p) for t 6= 0. By definition, a sequence (pn) ∈ Ad(n),v(n) is in VPe (resp.

VPe) if there exists a polynomial r(n) such that E(pn) ≤ r(n) (resp. E(pn) ≤ r(n).).

To a tree circuit Γ associated to a polynomial p associate an algebraic variety as follows: first
form an new tree circuit Γ′ by collapsing all pairs of input nodes that are joined by a + to a
single input node, and then repeating as many times as necessary until no pairs of input nodes
are joined by a +. (I take this first step to eliminate the choice of coordinates involved in making
the circuit.) Associate to each input node a copy of V .

Thus on Γ′, if any two input nodes are joined, they are joined by a ∗-node. Now perform
a step by step procedure to eliminate all ∗-nodes joining pairs of input nodes. Take a ∗-node
joined to two input nodes, and form a subtree containing all other ∗-nodes joined to it and an
input node. Say there are j1 − 1 such. Record the variety MJj1 := MJ(V, ..., V ) of j1 copies of
V . Collapse the subtree to a single input node and associate MJj1 to this input node. Now start
again, say we arrive at j2 − 1 nodes in the subtree and record the variety MJj2 = MJ(V, ..., V )
of j2 copies of V . Continue until we have recorded p varieties of multiplicative joins of V of
various sizes.

We arrive at a new graph Γ′′ all of whose p input nodes have varieties MJji
associated to

them and when input nodes are paired together by an internal node, the node is a +-node. Now
perform a step by step procedure to eliminate all +’s joining pairs of input nodes. Take the first
+, say that the variety MJji1

is one of the input nodes and form a subtree consisting of all other

+’s joined to it. Say there are k − 1 such. Record the variety J(MJji1
, ...,MJjik

). Collapse the

subtree to a single input node and associate J(MJji1
, ...,MJjik

) to this input node. Continue
until we have varieties of joins of multiplicative joins of various sizes as our new input nodes
with all pairings of input nodes ∗-nodes.

Now continue as we did with Γ′, taking multiplicative joins (of the joins of multiplicative
joins) until the further collapsed graph has all pairings of input nodes +’s, then go back to
taking joins etc...

This process terminates after a number of steps fewer than the number of nodes of Γ, and
one arrives at a variety ΣΓ of successive joins and multiplicative joins. By construction p ∈ ΣΓ.
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Note that for each such variety, there are many Γ that are associated to it, but each has, up
to the initial v times the number of initial input nodes, the same expression size.

Let Σd,v
R denote the union of all the varieties obtainable from a graph of at most R internal

nodes computing an element of Ad,v. There is a finite number of such, so Σd,v
R is an algebraic

variety. The above discussion implies

Theorem 8.2.1. Let pn ∈ Ad(n),v(n) be a sequence with d, v polynomials. Then (pn) ∈ VPe iff

there exists a polynomial R(n) and pn ∈ Σ
d(n),v(n)
R(n) . In other words the complexity class VPe is

characterized by a sequence of algebraic varieties.

Remark 8.2.2. One has to use the class VPe instead of VPe because when taking joins one
must include limits. It is not necessary to include limits when taking multiplicative joins.

Corollary 8.2.3. A sequence (pn) ∈ Ad(n),v(n) is in VPe if either d or v is constant. A generic

sequence in Ad(n),v(n) is not in VPe if both d, v grow at least linearly with respect to n.

Proof. dimΣd,v
R ≤ (v + 1)(R + 1). �

8.3. Towards a geometric understanding of VP. It is not unreasonable to think that any
(putative) difference between VP and VPe is captured by the determinant, which has the

property that for each n there is a subspace bn ⊂ C
n2

, such that detn |bn
∈ VPe and moreover

G(detn) · bn = C
n2

. This perspective motivates the following definitions.
Define VPprim to be the set of sequences pn ∈ Ad(n),v(n), where for each n, there exists

a linear subspace Σn ⊂ C
v(n), such that the sequence (pn)|Σn lies in VPe, and letting G(n)

denote the subgroup of GLv(n) preserving (pn), ask moreover that G(n) · Σn = C
v(n). Clearly

VPprim ⊂ VP as the action of G(n) is cheap. VPprim is modeled on (detn) where Σn is
the upper-triangular matrices. Define VPhs to be set of sequences (pn) such that there exists
another sequence (rn) with (rn) ∈ VPe, a polynomial q(n), and sequences (pn,j), j = 1, ..., q(n)

such that (pn,j) ∈ VPprim and p(n) = rn(pn,1, ..., pn,q(n)). Then VPhs ⊆ VP.

Question 8.3.1. What is the gap, if any, between VP and VPhs?
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