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Chapter 1

Classical and
probabilistic
computing

1.1. 2025

In January 2016, and in more detail in October, the NSA released a docu-
ment warning the world that current encryption algorithms will be no longer
secure as early as 20251. At that point in time there may be operational
quantum computers. What is all the fuss about?

The main way banks, governments, etc. communicate securely now is
using the RSA cryptosystem. RSA relies on the assumption that it is difficult
to factor a large number N into its prime factors. In 1994 [Sho94] (also
see [Sho97]) P. Shor described an algorithm to factor numbers quickly on
a “quantum computer”.

Why can’t we factor numbers quickly already? What is a quantum
computer?

Before addressing these questions, we need to address more basic ones:

What computations can we do quickly on a computer? What is a clas-
sical computer and what can it do?

1See http://www.math.tamu.edu/∼jml/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
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2 1. Classical and probabilistic computing

1.2. Surprising algorithms

1.2.1. Logarithms: fast multiplication of numbers. Until the 1600’s,
when people had to do astronomical predictions (the king was very interested
in knowing his horoscope, see [Lyo09]), a difficult step was the multiplica-
tion of large numbers. In 1614 John Napier revolutionized computation by
writing a book of lists of numbers to implement a transform that swaps mul-
tiplication for addition: the logarithm. Kepler used Naiper’s book to make
astronomical tables on the order of 30 times more accurate of previous tables
[Gle11, p87].

Even in this example, there is something modern to learn: if the difficult
step of a calculation (in this case taking logs and exponentiation) can be
precomputed and stored in a database, it becomes essentially “free”.

Exercise 1.2.1: Show that if we are allowed the binary operations ⊕ and
AND (multiplication), we can multiply integers m,n using O(mn) opera-
tions. (Expand m,n in binary.)

Exercise 1.2.2: The famous mathematician Kolmogorov conjectured that
one could not multiply two n digit numbers using less than n2 one-digit
multiplications. His student Karatsuba showed in fact that one can use less
than n1.6 one-digit multiplications. Look up Karatsuba’s algorithm (e.g., on
Wikipedia) and use it to compute 42597× 3232.

1.2.2. The DFT: Fast multiplication of polynomials. Say a(x), b(x)

are polynomials of degree at most d. Write a(x) =
∑d

i=0 aix
i, b(x) =∑d

j=0 bjx
j . Write a = (a0, . . . , ad)

t and similarly for other coefficients. Writ-

ing a(x)b(x) =
∑2d

k=0 ckx
k, one has

(1.2.1) ck =
∑
i+j=k

aibj .

(One says c is the convolution of a and b.) To obtain the coefficient vector c
by this standard method, one needs to perform on the order of d2 arithmetic
operations (i.e., +’s and ∗’s). In this situation, we will writeO(d2) arithmetic
operations, see §1.3.1 below for the precise definition of O(d2).

Quantum algorithms will be expressed as a sequence of matrix vector
multiplications, and we may do so here as well to facilitate comparisons.
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To express this calculation in terms of matrix-vector multiplication, note
that the vector c is the product

a0 0 · · · 0
a1 a0 0 · · · 0

a2 a1 a0
. . .

...
...

ad ad−1 · · · a0
0 ad ad−1 · · · 0
...

. . .

0 · · · 0 ad




b0
b1
...
bd

 .

Here we have broken the symmetry between a(x) and b(x). The symmetry
will be restored momentarily.

Now we explain a trick to reduce the amount of computation, which was
discovered by Schönhage and Strassen [SS71]. Pay attention as a variant
of this trick will be critical to Shor’s quantum algorithm for factoring. As
with the multiplication of numbers, the key will be to do a transformation
that re-organizes the input data of the two polynomials.

Up until now I have not mentioned what the coefficients of the polynomi-
als are: they could be integers, rational numbers, real numbers or complex
numbers. To simplify what comes next, I will allow complex numbers. Since
deg(ab) ≤ 2d, instead of working in the space of all polynomials, we can work
in the ring C[x]/(xN − 1) of polynomials quotiented by the ideal generated
by the polynomial xN − 1 for any N > 2d. (Elements of this ring are
equivalence classes of polynomials, where xN ≡ 1 generates the equivalence
relation.) For the moment, to fix ideas set N = 2d + 1, but later we will
take N to be a power of two. We can then write a (2d+ 1)× (2d+ 1) matrix
for a(x) (allowing it now to have larger degree) as

a0 a2d a2d−1 · · · a2 a1
a1 a0 a2d · · · a3 a2

a2 a1 a0
. . .

...
...

ad ad−1 · · · ad+2 ad+1

ad+1 ad ad−1 · · · ad+3 ad+2
...

. . .

a2d · · · a1 a0


and similarly for b(x) (although we only need the first column of the prod-
uct).
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Note that the first d+ 1 columns of this matrix is our old matrix. This
looks like we are making our problem more complicated. However, now that
we have a square matrix, call it A, we can diagonalize it. Call the diag-
onalized matrix Â. Even better, and to restore symmetry, we could write
the corresponding matrix for b(x), and we observe that A,B are simulta-
neously diagonalizable. This is because a(x)b(x) = b(x)a(x), in both the
usual multiplication of polynomials and as elements of the C[x]/(xN − 1),
and if commuting matrices are diagonalizable, they are simultaneously di-
agonalizable. (In other words, the map C[x]/(xN − 1)→MatN×N is a ring
homomorphism, which insures the corresponding matrices will commute.)

Thus to compute the matrix Ĉ, we only need to perform N = O(d) scalar
multiplications instead of O(d2)!

Exercise 1.2.3: Show that if two diagonalizable matrices commute, then
they are simultaneously diagonalizable. }

Exercise 1.2.4: Is the same true if one has three diagonalizable commuting
matrices? Give a sufficient condition that makes it true.

However, this seems like a very bad idea: the cost of a change of basis
is worse than O(d2)! Moreover, we will have to un-diagonalize Ĉ to get
the coefficients of c(x) (which are the elements of the first column of C).
The punch line will be that there is a relatively cheap way to carry out the
diagonalization.

Consider the linear map that sends the coefficient vector of a polynomial
of degree at most N to the vector consisting of eigenvalues of the correspond-
ing N ×N matrix as above. Let DFTN : CN → CN denote this linear map.
(DFT stands for discrete Fourier transform.) Write â = DFTNa (where we
have padded the coefficient vector of a(x) with zeros to make it have length

N), and similarly b̂ = DFTNb. Given â and b̂, the vector ĉ can be computed

using N scalar multiplications as ĉk = âk b̂k. Finally c = DFTN
−1ĉ.

Notation. Throughout this book we set i =
√
−1.

Proposition 1.2.5. The matrix representing DFTN is given by

(1.2.2) (DFTN )jk = (e
2πi
N )jk

and its inverse is given by (DFTN
−1)jk = 1

N (e
2πi
N )−jk. Here use index ranges

0 ≤ j, k ≤ N − 1.

Proof. The j-th column vector of (1.2.2) is an eigenvector for multiplication

by x with eigenvalue e
−j2πi
N . To see this consider (the equivalence class of)

x(1+e
j2πi
N x+e

2j2πi
N x2+ · · ·+e

(N−1)j2πi
N xN−1) and notice that e

(N−1)j2πi
N xN ≡

e
−j2πi
N (1). �
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Exercise 1.2.6: Show that there is an isomorphism between Z/NZ and

{e
2πiu
N |0 ≤ u ≤ N − 1} under multiplication of complex numbers.

Exercise 1.2.7: Write computer code to verify that DFT4 indeed diago-
nalizes matrices corresponding to elements of C[x]/(x4 − 1) and use it to
multiply two degree one polynomials.

Remark 1.2.8. For those familiar with representation theory, the DFT is
the change of basis matrix from the standard basis of the regular functions
on the cyclic group of order N , ZN = Z[x]/(xN − 1) to the character basis.
(The roots of unity appearing in the DFT matrix are the characters of the
cyclic group.) Thus using representation theory, it is straight-forward to
derive the DFT matrix.

Now we come to a great discovery of Gauss in 1810 [Gau], rediscov-
ered by several people, including Cooley-Tukey in 1965 [CT65], who are
responsible for its modern implementation the revolutionized signal pro-
cessing: the DFT matrix factors as a product of sparse matrices. Explicitly,
if N = 2k, DFTN may be written as a product of k matrices, each with only
2N nonzero entries. The cost of matrix-vector multiplication of a sparse
matrix with S nonzero entries is O(S), so the cost of performing our DFT
is O(log2(N)N) instead of O(N2). Performing three such, plus the diagonal
matrix multiplication does not change the order of this total cost.

Explicitly,

(1.2.3) DFT2M =

(
DFTM ∆MDFTM
DFTM −∆MDFTM

)
Π

where, setting ω = e
2πi
2M , ∆M = diag(1, ω, ω2, . . . , ωM−1) and Π is a per-

mutation matrix corresponding to the inverse of the shuffle permutation
(1, . . . , 2M) 7→ (1, 3, 5, . . . , 2M − 1, 2, 4, 6, . . . , 2M).

Exercise 1.2.9: Write DFT4 as a product of two matrices, one of which
has only four nonzero entries. Write DFT8 as a product of three matrices,
respectively with 8, 32 and 16 nonzero entries. })

Exercise 1.2.10: Verify Equation (1.2.3).

Exercise 1.2.11: Show that DFT2k may be factored as a product S1 · · ·Sk
where the total number of nonzero entries in the k matrices is O(k2k+1) =
O(log(d)d), and thus multiplication of two polynomials of degree at most d =
2k−1 may be computed using O(k2k+1) = O(log(d)d) arithmetic operations.
}

Remark 1.2.12. You may have seen Fourier transforms of periodic func-
tions, where convolution in the original space corresponds to multiplication
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Figure 1.2.1. Graph representing product of three 8× 8 matrices
that gives DFT8. Vertices in each row represent indices from 1 to
8, and edge from i to j at level k ∈ {1, 2, 3} means the (i, j)-th
entry of the k-th matrix is nonzero.

in the transform space. This is the analogous transform when the group is
the circle.

More explicitly, write the unit circle in R2 as S1 = {(cos(θ), sin(θ)) |
θ ∈ [0, 2π)} ⊂ R2. Introduce complex notation C = R2, so S1 = {eiθ | θ ∈
[0, 2π)} ⊂ C. Then for (e.g., continuous) functions f(θ) on the unit circle,
we may write

f(θ) =

∞∑
n=−∞

cne
inθ
2 , where cn =

1

4π

∫ 2π

0
f(θ)e−

inθ
2 dθ.

Since nonzero complex numbers form a group under multiplication, and
the product of elements of length one is of length one, S1 is naturally a
group. In signal processing, we need to digitize (e.g. sound waves), so we
approximate a periodic function by sampling it at say N equally spaced

points on the circle, e.g., the points e
k2πi
N , 0 ≤ k ≤ N − 1. Note that these

points form a subgroup, in fact the cyclic group of order N , Z[x]/(xN − 1).
Tracing through the calculation, the DFT really is the discretization of the
Fourier transform on the circle, exactly what one needs in signal processing.

Aside 1.2.13. For those familiar with tensors and their ranks, the structure
tensor of A = C[x]/(xN − 1) has minimal tensor rank N , and the DFT is a
change of basis that rewrites the structure tensor TA ∈ A∗⊗A∗⊗A as a sum
of rank one tensors.

Aside 1.2.14. One might wonder if there is an even more efficient way
of computing the operation a 7→ DFTNa. This question, and a path to
resolving it, were presented by L. Valiant in [Val77]. There is interesting
algebraic geometry related to the question, see [KLPSMN09, GHIL16].

1.2.3. Integer multiplication. The same Schönhage-Strassen idea above
can be used to multiply integers a, b, if a, b < 2

n
2 , multiply them in the ring
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Z/2nZ. The result, if each addition and multiplication of bits has unit cost,
is O(n log(n) log(log(n))).

**exercises here to realize***

1.2.4. Matrix multiplication. Another surprising algorithm deals with
matrix multiplication. The usual algorithm for multiplying two n×n matri-
ces uses O(n3) arithmetic operations. Strassen [Str69] discovered an algo-
rithm that uses O(n2.81) arithmetic operations and it has been conjectured
that as n grows, it becomes nearly as easy to multiply matrices as it is to
add them, that is for any ε > 0, one can multiply matrices using O(n2+ε)
arithmetic operations.

1.3. Notation, probability and linear algebra

1.3.1. Big/Little O etc. notation. For functions f, g of a real variable
(or integer) x:

f(x) = O(g(x)) if there exists a constant C > 0 and x0 such that
|f(x)| ≤ C|g(x)| for all x ≥ x0,

f(x) = o(g(x)) if limx→∞
|f(x)|
|g(x)| = 0,

f(x) = Ω(g(x)) if there exists a constant C > 0 and x0 such that
C|f(x)| ≥ |g(x)| for all x ≥ x0,

f(x) = ω(g(x)) if if limx→∞
|g(x)|
|f(x)| = 0, and

f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

We write ln for the natural logarithm and log for log2.

1.3.2. Probability. Let X = {a1, a2, ...} be a countable set and let p :
X → [0, 1] be a function such that

∑
j p(aj) = 1. Such p is called a dis-

crete probability distribution on X . A function X : X → R is called a
discrete random variable and it defines a probability distribution with dis-
crete support on R by pX(z) =

∑
j|X(aj)=z

p(aj) so pX(z) = 0 if z 6∈ X(X ).

Similarly, random variables X,Y define a probability distribution pX,Y (x, y)
with discrete support on R × R, and similarly n random variables define a
probability distribution with discrete support on Rn. If f : R → R is a
function, then f ◦ X is also a random variable. If P is a probability dis-
tribution on X × X ′, one defines the marginals by PX (x) =

∑
y∈X ′ P (x, y)

and PX ′(y) =
∑

x∈X P (x, y), which are probability distributions on X , X ′
respectively.

1.3.3. Linear algebra. Terms such as vector space, linear map etc.. will
be assumed. For a vector space V , over a field F, recall the dual space
V ∗ := {f : V → F | f is linear}. If V = Fn is the space of column vectors,
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then V ∗ may be identified with the space of row vectors. If V is finite
dimensional, there is a canonical isomorphism V → (V ∗)∗, so we may also
think of V as the space of linear maps V ∗ → F. Following physics convention,
we will usually denote elements of V by |v〉 and elements of V ∗ by 〈α|, and
their pairing by 〈α|v〉. In bases, if

|v〉 =

v1...
vn

 ,

we may write 〈α| = (α1 · · ·αn), and 〈α|v〉 =
∑

j α
jvj is row-column matrix

multiplication. Let End(V ) denote the space of linear maps V → V .

Define the tensor product V⊗W of vector spaces V andW to be the space
of bi-linear maps V ∗×W ∗ → F, and more generally for a collection of vector
spaces V1, . . . , Vm, V1⊗ · · ·⊗Vm is the space of m-linear maps V ∗1 ×· · ·×V ∗m →
F. If we work in bases, and dimVj = vj , then V1⊗V2 is the space of v1×v2-
matrices and V1⊗V2⊗V3 may be visualized as the space of v1×v2×v3 “three
dimensional matrices”.

Given a linear map f : V → W , we may define a second linear map
f t : W ∗ → V ∗, by, for β ∈ W ∗, f t(β)(v) = β(f(v)). This is the coordinate
free definition of the transpose of a matrix. One may also define a bilinear
map W ∗ × V → C, by (β, v) 7→ β(f(v)) which extends to a linear map
W ∗⊗V → C. Thus we may also think of V⊗W as the set of bilinear maps
V ∗×W ∗ → C. Consider a 2× 3 matrix and its roles respectively as a linear
map C3 → C2, a linear map C2∗ → C3∗ and a bilinear map C2∗ × C3 → C:(

a b c
d e f

)xy
z

 =

(
ax+ by + cz
dx+ ey + fz

)
,
(
s t

)(a b c
d e f

)
=

sa+ td
sb+ te
sc+ tf

 ,

(
s t

)(a b c
d e f

)xy
z

 = sax+ tdx+ sby + tey + scz + tfz.

1.4. Classical Complexity

Classical complexity works in binary: one deals with strings of 0’s and 1’s.
The set {0, 1} is called a bit: it can encode “one bit” of information.

1.4.1. Circuits. We will mostly deal with circuits: Boolean circuits for
classical computation, Boolean circuits with access to randomness for prob-
abilistic computation, and quantum circuits for quantum computation.

Let F2 denote the field with two elements {0, 1}. A Boolean function is
a map f : Fn2 → F2, or more generally Fn2 → Fm2 . We agree on some basic
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Boolean functions, whose complexity is designated as having unit cost, e.g.,
addition ⊕ (also called XOR) where a ⊕ b is addition in F2 (i.e., 0 ⊕ 0 =
1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1), ¬ (NOT) negation, which swaps 0 and 1,
(OR) a ∨ b where 0 ∨ 0 = 0 and all other a ∨ b = 1, (AND= multiplication
in F2) a ∧ b = ab, where 1 ∧ 1 = 1 and all other a ∧ b = 0. I will call such a
collection a (logic) gate set.

A Boolean circuit is a representation of a Boolean function f : Fn2 → Fm2
as a directed graph with n input edges, vertices labeled by elements of some
fixed gate set, with edges going in and out, and m output edges. The size
of a circuit is the number of edges in it.

Call a gate set a universal gate set if any Boolean function can be com-
puted with a circuit whose vertices are labeled with gate set elements.2

Figure 1.4.1 depicts a Boolean circuit for the addition of two two digit
(in binary) numbers:

y y

z z

x x

z

+

+

+ +

3

2 1 2 1

2 1

*
*

*

Figure 1.4.1. Circuit for y2y1 + x2x1

We began by saying factorization is not known to have an efficient algo-
rithm. We can now make that precise: a classical algorithm for a task (such
as factoring) is efficient if there exists a polynomial p, such that if the input
(in the case of factoring, the number to be factored N expressed in binary)
is of size M (in the case of factoring, the expression of N in binary has at
most M = logN digits), then there exists a Boolean circuit of size p(M)
that accomplishes the task. We now rephrase this more formally:

1.4.2. P/poly, P and NP. Fix a universal gate set G. A natural com-
plexity measure for a Boolean function is then the minimal size of a Boolean

circuit that computes it. Let p(n) be a polynomial and let Fn : Fn2 → Fp(n)2

be a sequence of functions (Fn). (We often will just have p(n) = 1.) We
consider the the growth with n of the size of a circuit needed to compute
Fn. The critical issue, according to complexity theorists, is whether or not

2In some of the literature a gate set is sometimes called a “basis” (despite being unrelated
to bases of vector spaces) and a universal gate set is called a “complete basis”.
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this growth is bounded by a polynomial. If it grows like a polynomial we
say the sequence (Fn) is in the class P/poly with respect to G.

Exercise 1.4.1: Show that membership in P/poly with respect to G is
independent of the choice of the finite universal gate set G.

Thus we will just say that the sequence (Fn) is in the class P/poly.

Another way to phrase the class P/poly is that for each n, there exists
a circuit of size poly(n) that solves the problem, but the circuits are allowed
to be different for each n. (In particular the description of the circuit may
grow exponentially.)

The famous complexity class P is the standard model for feasible com-
putations, and it is unfortunate that P/poly, with a simple description, has
a different definition than P. The definition is less restrictive, but not so
much less so, and it can be used as a substitute for P, see [AB09, Chap.
6]. It is known that P ( P/poly, however membership in P/poly for many
problems of interest is not known.

The class P is usually defined in terms of a different model of computa-
tion, namely Turing machines. We will avoid defining them, and assume the
reader has at least a passing familiarity with them. A function F is in P if it
is in P/poly and there exists a Turing Machine TM such that the circuits Cn
computing Fn are constructed by TM in time poly(n), see [KSV02, Thm.
2.3].

The famous class NP essentially consists of problems whose proposed
solutions can be verified quickly, i.e., in polynomial time. For example the
traveling salesman problem, where if someone claims to have a route to
visit 30 cities traveling less than 2000 miles, it is easy to verify the claim
by examining the route, but the only known way of finding such a route is
essentially by a brute force search. Another problem in NP is “SAT”: one
is handed a Boolean circuit and wants to know if it ever outputs 1. (If it
does, to convince you it does, someone just needs to hand you an input that
works, and you can quickly check if it outputs 1.) SAT is NP-complete,
which means one could define NP to be the collection of problems that can
be reduced (in polynomial time) to SAT, see, e.g., [AB09, Chap. 2]. In
other words, there is a polynomial time algorithm for SAT if and only if
P = NP.

1.4.3. How does a (classical) computer work? One can build mechan-
ical devices that implement the classical gates. In our computers, logic gates
are made out of electrical circuits. Input is either a 5 volt impulse for 1 and
no impulse for 0. For example, the NOT gate is realized by a the following
diagram **** from top to bottom, there is a voltage source, a connection to
an output wire the input source, and a ground ......
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the NAND gate is realized by the following diagram A voltage source is
connected .....

1.4.4. Reversible classical computation. We will see that the gates
of a quantum circuit (other than the measurements) must be reversible.
Before quantum computing, researchers were concerned that the second law
of thermodynamics would have the consequence that as computers got more
powerful, they would generate too much heat (entropy) from erasing bits.
One way out of this would be to have reversible computation, see [Lan61],
so one could argue for it independent of quantum computation. Of the gates
we saw, NOT is clearly reversible as ¬¬x = x. At the cost of adding an
extra bit, one can make addition and multiplication reversible. Consider the
following gate, called to Toffoli gate Tof :

(1.4.1) |x, y, z〉 7→ |x, y, z ⊕ (x ∗ y)〉 = |x, y, z ⊕ (x ∧ y)〉

Note that if we send in |x, y, 0〉 we obtain x ∗ y in the third slot (register)
and if we send in |x, 1, y〉 we obtain x⊕ y.

Exercise 1.4.2: Show that Tof ◦ Tof = Id, so Tof is indeed reversible.

The gate set {Tof,¬}, is universal and reversible, so there is no loss in
computing power restricting to reversible classical computation.

1.5. Probabilistic computing

We will develop quantum mechanics as a generalization of probability, and
we will view quantum computing as a generalization of probabilistic com-
puting.

We will want to see the improvement of quantum computing to classical
computing, so we should understand the what can be computed efficiently
on a computer with access to randomness. Quantum computing itself is
probabilistic, so we will need to implement notions from probability. Rather
than introduce both the quantum-ness and the probabilistic nature at the
same time, it will be easier to digest them one at a time.

1.5.1. BPP. It might increase our computational power if we exploit ran-
domness. (Assuming we have a method to generate random numbers - more
on this later.) For example, if someone hands you a complicated expression
for a polynomial, e.g., in terms of an (algebraic) circuit, it can be very dif-
ficult to determine if the polynomial is just the zero polynomial in disguise.
If we test the polynomial at a point, and its evaluation is non-zero, then
we know it is not the zero polynomial. If if does evaluate to zero, then we
have no information. For a polynomial of degree d in one variable, it is
sufficient to test d+ 1 distinct points, but as the number of variables grows,
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the number of points one needs to check grows exponentially. However, if
we are allowed to test at a random point and it evaluates to zero, then with
high probability over finite fields and probability one over Z, the polynomial
is the zero polynomial. Over finite fields, we can make this probability as
high as we want by testing on several random points.

These observations motivate the class BPP (short for “bounded-error
probabilistic polynomial time”), where one works with a Turing machine
with access to randomness, and instead of asking for a correct answer on
any input in polynomial time, one asks for a correct answer with probability
strictly greater than 1

2 on any input in polynomial time. (So that if one runs
the program enough times, one can get a correct answer on any input with
probability as high as one wants.)

Another motivation for probabilistic computation is that physical com-
puters sometimes make mistakes (e.g. short circuit, input misread), so in
the real world we are never completely sure of our answers.

Remark 1.5.1. It is actually subtle to know if one has a random sequence
of numbers (e.g., take the last digit of the temperature in binary or similar).
For example, the first digit of the number 2n is far from a random element
of {1, . . . , 9}, see [Ad89, §16, Ex. 4]. It is a subtle problem to make a ma-
chine to generate random numbers for us. Fortunately, for most situations,
pseudo-random numbers suffice, see [AB09, §9.2.3].

Aside 1.5.2. If we are given additional information about the polynomial,
then under certain circumstances one can test if the polynomial is zero
by testing a reasonable number of points. This subject PIT (polynomial
identity testing) is an active area of research, see [AB09, §7.2.3]. For a
geometric perspective see [Lan17, §7.7].

Probabilistic computation however cannot be made reversible on a clas-
sical computer, as we will see in §1.6.3.

1.6. Computation via linear algebra

(Following [AB09, Exercise 10.4]) We will encode computation of a circuit
as a sequence of matrix-vector multiplications.

1.6.1. Tensor products of spaces. Give R2 basis |0〉, |1〉, which induces
the basis |i〉⊗|j〉, i, j ∈ {0, 1} of (R2)⊗2 and |I〉 := |i1〉⊗ · · · ⊗|iN 〉 of (R2)⊗N ,
iα ∈ {0, 1}, 1 ≤ α ≤ N . E.g., if our bit string is 00101100, we represent it

by the vector |00101100〉 ∈ R28 .

Sometimes it is also convenient to represent vectors as column vectors.
There is no canonical change of basis to the basis |I〉 to the standard basis
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of column vectors, we’ll simply use the lexicographic one, so the vector

a|00〉+ b|01〉+ c|10〉+ d|11〉 ∈ R2⊗R2 ' R4

would get identified with the column vector
a
b
c
d

 .

and the linear map

(
0 1
1 0

)
⊗ Id2 would be written as the 4× 4 matrix


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

1.6.2. Reversible classical computation. Say f : Fn2 → Fm2 can be
computed by a reversible Boolean circuit C. We describe how to rephrase the
computation as a sequence of restricted linear operations on a vector space
containing R2n in anticipation of what will come in quantum computation.
The restrictions will be:

(1) Each matrix must be invertible and take a vector representing a
sequence of bits to a sequence of bits. Such matrices are permuta-
tion matrices. That is, each row and column has exactly one entry
equal to one, and all other entries zero.

(2) In order to deal with finite gate sets, we will require that each
matrix only alters a small number of entries. For simplicity we

assume it alters at most three entries, i.e., it acts on at most R23

and is the identity on all other factors in the tensor product.

Each map will imitate some Boolean gate. For example, say we want to
effect the Toffoli gate,

|x, y, z〉 7→ |x, y, z ⊕ (x ∗ y)〉 = |x, y, z ⊕ (x ∧ y)〉

and act as the identity on all other basis vectors (sometimes called registers).
Here, if the Toffoli gate is to compute x ∗ y and z will be a “workspace bit”:
x, y will come from the input to the problem and z will be set to 0 in the
input. In the basis |000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, |111〉, of R8,
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the matrix is

(1.6.1)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

Call this matrix the Toffoli matrix.

The negation gate ¬ may be defined by the linear map R2 → R2 given
by the matrix

σx =

(
0 1
1 0

)
.

Exercise 1.6.1: Write matrices for (x, y, z) 7→ (x, y, z⊕(x⊕y)) and (x, y, z) 7→
(x, y, z ⊕ (x ∨ y)).

In summary, the computation of a Boolean function f : Fn2 → Fm2 via a
reversible classical circuit has input |x, I〉 ∈ Rn+s, where x is the input and
I some initialization (often just a string of zeros), and the output is of the
form |y, J〉 where the y ∈ Fm2 is the desired answer.

1.6.3. Probabilistic computation via linear algebra. If on given in-
put, a probabilistic computation outputs 0 with probability p and 1 with
probability 1 − p, we could encode this with the vector p|0〉 + (1 − p)|1〉,
and then obtain either 0 or 1 by flipping a biased coin that gives heads with
probability p.

Say f : Fn2 → F2 can be computed correctly with probability greater
than 1

2 by a Boolean circuit C that is allowed to access randomness. (In
particular, we can compute f correctly with probability as close as we want
to one by repeating the computation enough times.) To represent a coin flip
in terms of linear algebra, introduce the matrix:(

1
2

1
2

1
2

1
2

)
.

(Classicial) probabilistic computation cannot be made reversible. This is
indicated by the fact that this matrix is not invertible.

Consider {0, 1}m ⊂ R2m . A probability distribution on {0, 1}m may be
encoded as a vector in R2m : Give R2 basis |0〉, |1〉 and (R2)⊗m = R2m basis
|I〉 where I ∈ {0, 1}m. If the probability distribution assigns probability pI
to I ∈ {0, 1}m, assign to the distribution the vector v =

∑
I pI |I〉 ∈ R2m .
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For probabilistic computation via linear algebra we will require the fol-
lowing of our matrices:

(1) Each linear map must take vectors representing probability dis-
tributions to vectors representing probability distributions. This
implies the matrices are stochastic: the entries are non-negative
and each column sums to 1.

(2) In order to deal with finite gate sets, we will require that each
linear map only alters a small number of entries. For simplicity we

assume it alters at most three entries, i.e., it acts on at most R23

and is the identity on all other factors in the tensor product.

We will work with R2n+s+r where r is the number of times we want to
access a random choice and s are “workspace bits” as before.

Exercise 1.6.2: In probabilistic algorithms we will want to choose an el-
ement uniformly at random from a a set of M elements. How can we ap-
proximately realize this choice with the above matrices? (We can realize it
exactly when M is a power of two.)

A probabilistic computation of f : Fn → Fm, viewed this way, starts
with |x0r+s〉, where x ∈ Fn2 is the input. One then applies a sequence
of admissible stochastic linear maps to it, and ends with a vector |v〉 =∑
pI |I〉 that encodes a probability distribution on {0, 1}n+s+r. One then

takes the marginal distribution on the first m copies of R2, i.e., write I =
(i1, . . . , in+r+s) = (J, L), where J = (i1, . . . , im), and take∑

J

(
∑
L

pJ,L|J〉.

The algorithm then outputs J ∈ {0, 1}m with probability
∑

L pJ,L. Note
that even if our calculation was “feasible” (i.e., polynomial in n size circuit),
to write out the original output vector that we truncate would be exponential
in cost because of the rational coefficients. (More precisely the coefficients
are rational numbers whose denominators are powers of two.) A stronger
variant of this phenomenon will occur with quantum computing, where the
result will be obtained with a polynomial size calculation, but one does
not have access to the vector created, even using an exponential amount of
computation.

To further prepare for the analogy with quantum computation, define a
probabilistic bit (a pbit) to be an element of the set

{p0|0〉+ p1|1〉 | pj ∈ [0, 1] and p0 + p1 = 1} ⊂ R2.

Note that the set of pbits is a convex set, and the basis vectors are the
extremal points of this convex set.
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Exercise 1.6.3: Show that if we have two problems to solve, one in (R2)⊗m

and another in (R2)⊗n, and we want to solve them simultaneously via linear
algebra, then we should work in (R2)⊗m⊗(R2)⊗n = (R2)⊗n+m.

1.6.4. What is known. P ⊆ BPP ⊆ P/Poly = BPP/Poly.

The inclusion BPP ⊆ P/Poly is Adelman’s theorem [Adl78]. The key
observation is that “off-line” computations are not counted in the complexity
assessment. So one can create, for any given n, a library of “random” a’s to
test on. For example, to correctly determine the primality of 32-bit numbers,
it is enough to test a = 2, 7, and 61.

Does randomness really help? At the moment, we don’t know. See
[AB09, Chap. 20] for a discussion.

1.6.5. BQP. We are not yet in a position to define it, but the class BQP
will be the quantum analog of BPP, the problems that can be solved ef-
ficiently, with high probability, on a quantum computer. Pbits will be re-
placed by qubits, which are unit vectors in C2 subject to an equivalence
relation. The matrices will be allowed to have complex entries, they will
be required to be unitary instead of stochastic, and at the end of the com-
putation, one will not have the resulting vector in hand, but the result of
a projection operator applied to it. The probability of obtaining I0 from∑

I zI |I〉 will be |zI0 |2. There is no analog of P for a quantum computer as
answers will always have a probability of being incorrect.

A subtlety about quantum gate sets is that the notion of a “universal
quantum gate set” will have a different meaning, namely that one can ap-
proximate any unitary map arbitrarily closely by elements of the gate set,
not that one can perform the map exactly. This is similar to, but stronger
than, the situation in probabilistic computation, where we can only exactly
achieve probability distributions with numerators that are powers of two.

1.6.6. The Church-Turing theses. The Church-Turing thesis (made ex-
plicitly by Church in [Chu36]) is:

Any algorithm can be realized by a Turing machine.

So far there has been no challenge to this - e.g., any computation that
can be done on a quantum computer can be done with a sufficiently large
Turing machine.

The quantitative (sometimes called strong) Church-Turing thesis [VSD86]
is:

Any algorithmic process can be simulated efficiently by a Turing machine

or
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Any algorithmic process can be simulated efficiently by a probabilistic
Turing machine

Shor’s algorithm challenges this thesis. On the other hand, there are
experts who think that factoring could be in P, because unlike, say SAT or
the traveling salesman problem, the problem is highly structured.





Chapter 2

Quantum mechanics
for quantum computing

This chapter covers basic quantum mechanics needed for quantum comput-
ing. I present quantum mechanics as a generalization of probability and
quantum computing will be viewed as a generalization of probabilistic com-
puting.

2.1. Quantum mechanics via probability

2.1.1. A wish list. In §1.6 we saw that any f : {0, 1}n → {0, 1}m that
could be computed correctly with probability say at least 2

3 on any I ∈
{0, 1}n with a circuit of size s and r coin flips, could be computed with the
same probability via a sequence of linear operators on (R2)⊗n+r+s. Each
linear operator was stochastic, so it took probability distributions to prob-
ability distributions, and acted on at most three registers via the action of
one of the gates from the gate set used to construct the circuit. To get the
output, after performing the linear operations, one throws away all but the
first m entries of the output vector. The resulting vector encodes a non-
normalized probability distribution, i.e., is of the form |v〉 =

∑
|I|=p(n) qI |I〉

with qI ≥ 0 and
∑
qI ≤ 1. One then renormalizes, dividing each coefficient

by
∑
qI , to obtain a vector

∑
|I|=m pI |I〉 with pI ≥ 0 and

∑
pI = 1. Then

the algorithm outputs I with probability pI .

Here is a wish list for how one might want to improve upon this set-up:

(1) Allow more general kinds of linear maps to get more computing
power, while keeping the maps easy to compute.

19
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(2) Have reversible probabilistic computation: we saw that classical
computatation can be made reversible, but the coin flip was not.
This property is motivated by physics, where many physical theo-
ries require time reversibility.

(3) Also motivated by physics, one would like to have a continous evo-
lution of the probability vector, more precisely, one would like the
probability vector to depend on a continuous parameter t such that
if |ψt1〉 = X|ψt0〉, then there exist admissible matrices Y,Z such
that |ψt0+ 1

2
t1
〉 = Y |ψt0〉 and |ψt1〉 = Z|ψt0+ 1

2
t1
〉 and X = ZY . A

physicist would say “time evolution is described by a semi-group”.

Let’s start with wish (2). One way to make the coin flip reversible is,
instead of making the probability distribution be determined by the sum of
the coefficients, one could take the sum of the squares. That is, before we
had |v〉 =

∑
pI |I〉 with pI ≥ 0 and

∑
I pI = 1 and the probability of getting

output I was pI . Instead we may take
∑
qI |I〉 where

∑
q2I = 1 and the

probability of getting I is q2I . If we do this, there is no harm in allowing the
entries of the output vectors to become negative, and one could use

H :=
1√
2

(
1 1
1 −1

)
for the coin flip applied to |0〉. The matrix H is called the Hadamard matrix
or Hadamard gate in the quantum computing literature. It could just as well
be called the quantum coin flip. The stochastic matrices (those that map the
set of vectors with non-negative coefficients that sum to one to themselves),
must be replaced with the matrices that map vectors of length one in the

L2-norm (the L2-norm of |v〉 =
∑
vI |I〉 is defined to be |v| :=

√∑
v2I ),

namely the orthogonal matrices: O(n) = {A ∈ Matn×n | AAt = Id} With
this change, we obtain our second wish as orthogonal matrices are invertible,
they form a group (as Id ∈ O(n), A ∈ O(n) implies A−1 ∈ O(n) and A,B ∈
O(n) implies AB ∈ O(n)). Moreover many operations are “continous”. For
example, rotation matrices are orthogonal and any rotation matrix has a
square root.

Exercise 2.1.1: We have seen the matrix H without the 1√
2

normalization

before - where?

Remark 2.1.2. One indication that generalized probability may be related
to quantum mechanics is that the interference patterns observed in the fa-
mous two slit experiments is manifested in generalized probability: We ob-
tain a “random bit” by applying H to |0〉: H|0〉 = 1√

2
(|0〉+ |1〉). However, if

we apply a second quantum coin flip to the vector, we loose the randomness
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as H2 = Id, which, as pointed out in [Aar13], could be interpreted as a
manifestation of interference.

Our third property will not be completely satisfied, as the matrix(
1 0
0 −1

)
which represents a reflection, does not have a square root in O(2).

To have the third wish satisfied, we will allow ourselves vectors with
complex entries. From now on, set i =

√
−1. For a complex number z =

x+ iy, let z = x− iy denote its complex conjugate and |z|2 = zz the square
of its norm. For a vector |v〉 =

∑
zI |I〉, where zI ∈ C, defined the length of

v to be |v| :=
√∑

I |zI |2.
We now start with vectors |v〉 =

∑
zI |I〉, where zI ∈ C and

∑
zIzI = 1.

The probability of obtaining I is now |zI |2. The set of admissible matrices
is now the unitary group:

U(n) := {A ∈Matn×n(C) | |Av| = |v| ∀|v〉 ∈ Cn}.

Claim: U(n) satisfies the third wish on the list. More precisely:

Proposition 2.1.3. For all A ∈ U(n), there exists a matrix B ∈ U(n)
satisfying B2 = A. In particular, fix any ε > 0. Then any A ∈ U(n) may
be written as a product of k = k(ε, A) unitary matrices A = A1 · · ·Ak with

|Ak − Id | < ε (where |X| :=
√∑

ij |xij |2).

Proposition 2.1.3 is proved in §2.1.2 below.

Consider wish 1: it is an open question! However we can at least see
that our generalized probabilistic computation includes our old probabilistic
computation by the following easy exercise:

Exercise 2.1.4: Show that quantum coin flip H, the not (¬) matrix and
the Toffoli matrix (1.6.1) are unitary.

Moreover, we will see quantum algorithms that are better than any
known probabilistic algorithms.

So we go from pbits, {p|0〉+ q|1〉 | p, q ≥ 0 and p+ q = 1} to qubits

{α|0〉+ β|1〉 | α, β ∈ C and |α|2 + |β|2 = 1}.

The set of qubits, considered in terms of real parameters, looks at first
like the 3-sphere S3 in R4 ' C2. However, the probability distributions
induced by |ψ〉 and eiθ|ψ〉 are the same so it is really S3/S1 (the Hopf
fibration), i.e., the two-sphere S2. Physicists call this S2 the “Bloch sphere”.
Geometrically, it would be more natural (especially since we have already



22 2. Quantum mechanics for quantum computing

seen the need to re-normalize in probalisitic computation) to work with
projective space CP1 ' S2 as our space of qubits, instead of a subset of C2.
For v = (v1, . . . , vn) ∈ Cn, write |v|2 = |v1|2 + · · ·+ |vn|2. The norm induces
a Hermitian inner product 〈v|w〉 := v1w1 + · · · + vnwn. Note the physicst
convention (which I use in this book) is the reverse of the mathematician
one because the product is conjugate linear in the first factor and linear in
the second.

2.1.2. Exercises on the unitary group. The unitary group will play a
central role in all that follows. For those readers not familiar with it, here
are some basic exercises.

Exercise 2.1.5: Let A ∈ U(n)) and let λ be an eigenvalue of A. Show
|λ| = 1. In particular, we may write λ = eiθ for some θ ∈ [0, 2π).

Exercise 2.1.6: Let A ∈ U(n)) and let λ be an eigenvalue of A with eigen-
vector v. Set v⊥ :=}w ∈ U(n) | 〈w, v〉 = 0. Show that Av⊥ = v⊥.

Exercise 2.1.7: Notation as above. Show that A has a basis v1, . . . , vn of
eigenvectors that are orthogonal to one another, i.e., 〈vi|vj〉 = δij for all i, j.
}

Exercise 2.1.8: Show that a unitary matrix is diagonalizable.

Exercise 2.1.9: Show that if A ∈ U(n), then 〈v|w〉 = 〈Av|Aw〉 for all
v, w ∈ Cn.

Exercise 2.1.10: Show that U(n) = {A ∈Matn×n(C) | At
A = Id}

Proof of Proposition 2.1.3. Let A be a unitary matrix and let |v〉 be an
eigenvector for A with eigenvalue λ. Since |v| = |Av| = |λv| = |λ||v|, we
see |λ| = 1, i.e., λ = eiθ for some θ ∈ R. Note that A must have a basis
of eigenvectors, |v1〉, . . . , |vn〉, as otherwise, let |w〉 be a putative generalized
eigenvector, i.e., A|w〉 = λ|w〉+ |u〉. Since |λ| = 1, |Aw| 6= |w|.

Let |v1〉, . . . , |vn〉 be an eigenbasis of A ∈ U(n) where |vj〉 has eigenvalue

eiθj . Let B : Cn → Cn be the matrix with the property that B|vj〉 = ei
θj
2 |vj〉.

Then B preserves the lengths of the eigenvectors, and thus of all vectors since
the eigenvectors form an orthogonal basis by Exercise 2.1.11 below, and is
therefore unitary, and clearly satisfies B2 = A. �

Exercise 2.1.11: Show that if A is unitary, eigenvectors corresponding to
distinct eigenvalues are orthogonal. }
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2.2. Postulates of quantum mechanics and relevant linear
algebra

Here are the standard postulates of quantum mechanics and relevant defi-
nitions from linear algebra.

2.2.1. Relevant definitions from linear algebra.

Definition 2.2.1. A Hilbert space H is a complex vector space equipped
with a non-degenerate Hermitian inner-product, h : H ×H → C, where by
definition h is conjugate linear in the first factor and linear in the second,
h(|v〉, |w〉) = h(|w〉, |v〉), and h(|v〉, |v〉) > 0 for all |v〉 6= 0. (As mentioned
above, this is the physicists’ convention.)

Since our vector spaces will all be finite dimensional, one might ask why
we need this general definition when our Hilbert spaces will just be Cn for
some n? The reason is that our vector spaces will not always arise naturally
as the space of column vectors with its standard bases. For example, spaces
of linear maps and tensors will often have a natural Hilbert space structure,
and if one writes these as column vectors, it is hard to keep track of the
extra structure they have as linear maps or tensors.

The Hermitian inner-product h allows an identification of H with H∗ by
|w〉 7→ 〈w| := h(·, |w〉). This identification will be used repeatedly. We write

h(|v〉, |w〉) = 〈v|w〉v and |v| =
√
〈v|v〉 for the length of |v〉.

IfH = Cn with its standard basis, where |v〉 = (v1, . . . , vn)t, the standard
Hermitian innner-product on Cn is 〈w|v〉 =

∑n
j=1wjvj . We will always

assume Cn is equipped with its standard Hermitian inner-product.

Remark 2.2.2. Generally in quantum mechanics one needs to deal with
infinite dimensional Hilbert spaces, but fortunately this is not necessary in
quantum computing and quantum information theory.

Definition 2.2.3. The adjoint of an operator X ∈ End(H), to be the oper-
ator X† ∈ End(H) such that h(|X†v〉, |w〉) = h(|v〉, |Xw〉), i.e., 〈X†v|w〉 =
〈v|Xw〉. Call X Hermitian if X = X†.

When H = Cn, so End(H) is the space of n×n matrices, then X† = X
t
,

where t denotes transpose.

Exercise 2.2.4: Show that the eigenvalues of a Hermitian matrix are real.

Remark 2.2.5. Physicists tend to use the letter H for the Hamiltonian,
but since we already use H for the Hadamard matrix, I do not adopt this
convention.
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2.2.2. Postulate 1: State space. The first postulate describes the space
one works in:

P1. Associated to any isolated physical system is a Hilbert space H, called
the state space. The system is completely described at a given moment by
a unit vector |ψ〉 ∈ H, called its state vector, which is well defined up to a
phase eiθ with θ ∈ R. Alternatively one may work in projective space PH.

Remark 2.2.6. Note the first postulate is identical to what one gets with
generalized probability.

Remark 2.2.7. This definition looks bad from Hardy’s perspective. Later,
in ***, we will see how to associate more than a 2n − 2-real-dimensional
space of states to an n-dimensional Hilbert space. In fact, we will be able
to associate an n2-real-dimensional space of states using density operators.
Moreover, the set of density operators will more closely resemble the set of
probability distributions in that it will be a convex set.

2.2.3. Postulate 2: Evolution. The second postulate describes how a
state vector evolves over time:

P2. The state of an isolated system evolves with time according to the
Schrödinger equation

i~
d|ψ〉
dt

= X|ψ〉

where ~ is a constant (Planck’s constant) and X is a fixed Hermitian oper-
ator, called the Hamiltonian of the system.

Relation to generalized probability. Recall that in generalized proba-
bility theory, transformations are unitary. For a general Hilbert space, define
the Unitary group

U(H) := {U ∈ End(H) | |Uv| = |v| ∀|v〉 ∈ H}.

When H = Cn we have U(Cn) = U(n).

How do unitary operators from generalized probability lead to Schrödinger’s
equation? Recall that in generalized probability we are allowed to break
up our action of an element U ∈ U(H) into a product of elements of
U(H). More precisely, for each ε > 0, there exists k = k(ε, U), such that
U = U1 · · ·Uk with each Uj a distance at most ε from the identity. Similarly,
we may find a curve from the identity to U in U(H).
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Now say we have a smooth curve U(t) ⊂ U(H) with U(0) = Id. Write
U ′(0) = d

dt |t=0U(t). Consider

0 =
d

dt
|t=0〈v|w〉

=
d

dt
|t=0〈U(t)v|U(t)w〉

= 〈U ′(0)v|w〉+ 〈v|U ′(0)w〉.(2.2.1)

Remark 2.2.8. The trick of writing 0 as the derivative of a constant func-
tion is ubiquitous in differential geometry.

Thus U ′(0) behaves almost like a Hermitian operator, which instead
satisfies 0 = 〈Xv|w〉 − 〈v|Xw〉.
Exercise 2.2.9: Show that iU ′(0) is Hermitian.

We are almost at Schrödinger’s equation.

Let u(H) := {X ∈ End(H) | 〈Xv|w〉+ 〈v|Xw〉 = 0∀v, w ∈ H}. In other
words, by (2.2.1), u(H) = TIdU(H), the tangent space to the unitary group
at the identity. The vector space u(H) is called the Lie algebra of U(H).
Note that u(H) is a real vector space, not a complex one, because complex
conjugation is not a complex linear map.

Thus iu(H) ⊂ End(H) is the space of Hermitian endomorphisms.

Write u(n) = u(Cn).

Exercise 2.2.10: Verify independently that both u(n) and the space of
hermitian matrices have (real) dimension n2.

For those familiar with dimensions of manifolds, Exercise 2.2.10 also
shows dim U(n) = n2.

For X ∈ End(H), write Xk ∈ End(H) for X · · ·X applied k times. Write
eX :=

∑∞
k=0

1
k!X

k. This sum converges to a fixed matrix, essentially for the
same reason it does in the dimH = 1 case.

Exercise 2.2.11: Show that the sum indeed converges, assuming the scalar
case. }

Proposition 2.2.12. If X is Hermitian, then eiX ∈ U(H).

Exercise 2.2.13: Prove Proposition 2.2.12. }

Postulate 2 implies the system will evolve unitarily, by (assuming we
start at t = 0), |ψt〉 = U(t)|ψ0〉, where

U(t) = e
−itX

~ .

We conclude Postulate 2 is indeed predicted by generalized probability.
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2.2.4. Postulate 3: measurements. In our first two postulates we dealt
with isolated systems. In reality, no system is isolated and the whole uni-
verse is modeled by one enormous Hilbert space. In practice, parts of the
system are sufficiently isolated that they can be treated as isolated systems.
However, they are occasionally acted upon by the outside world, and we need
a way to describe this outside interference. For our purposes, the isolated
systems will be the Hilbert space attached to the input in a quantum algo-
rithm and the outside interference will be the measurement at the end. That
is, after a sequence of unitary operations one obtains a vector |ψ〉 =

∑
zj |j〉

and as in generalized probability:

P3. If |ψ〉 =
∑

j zj |j〉, and a measurement is taken, the output is j with

probability |zj |2.

2.2.5. Postulate 4: composite systems. A typical situation in quantum
mechanics and quantum computing is that there are two or more isolated
systems, say HA,HB that are brought together (i.e., allowed to interact
with each other) to form a larger isolated system HAB. The larger system
is called the composite system. In classical probability, the composite space
is {0, 1}NA ×{0, 1}NB . We have already seen in our generalized probability,
the correct composite space is (C2)⊗NA⊗(C2)⊗NB = (C2)⊗NA+NB (Exercise
1.6.3).

P4. The state of a composite system HAB is the tensor product of the
state spaces of the component physical systems HA,HB: HAB = HA⊗HB.

When dealing with composite systems, we will allow partial measure-
ments whose outcomes are of the form |I〉⊗φ.

This tensor product structure gives rise to the notion of entanglement,
which, in the next few sections, we will see accounts for phenomenon outside
of our classical intuition.

Definition 2.2.14. A state |ψ〉 ∈ H1⊗ · · ·⊗Hn is called separable if it
corresponds to a rank one tensor, i.e., |ψ〉 = |v1〉⊗ · · · ⊗|vn〉 with each |vj〉 ∈
Hj . Otherwise it is entangled.

Remark 2.2.15. Later, in §??, we will discuss how to derive the postulates
of quantum mechanics as a natural generalization of probability, by just
insisting on having operations arbitrarily close to the identity.

2.2.6. Further Exercises. For X,Y ∈ End(H), let [X,Y ] := XY −Y X ∈
End(H) denote their commutator.

Exercise 2.2.16: For X,Y ∈ u(H) show that [X,Y ] ∈ u(H), showing that
u(H) is indeed an algebra with the multiplication given by the commutator.



2.3. Super-dense coding 27

Exercise 2.2.17: Show that if H = Cn, then X† = X
t
, where the t denotes

transpose.

Exercise 2.2.18: Show that if Y ∈ End(H) is arbitrary, then Y Y † and Y †Y
are Hermitian.

Exercise 2.2.19: Show that the eigenvalues of a Hermitian operator are
real.

Exercise 2.2.20: Prove the spectral decomposition theorem for Hermitian
operators: Hermitian operators are diagonalizable and the eigenspaces of a
Hermitian operator M are orthogonal. In particular we may write M =∑

λ λPλ where λ are the eigenvalues of M and the Pλ are commuting pro-
jection operators: PλPµ = PµPλ and P 2

λ = Pλ. }

Exercise 2.2.21: Show that

U(H) = {U ∈ End(H) | 〈Uv|Uw〉 = 〈v|w〉 ∀|v〉, |w〉 ∈ H},

and that if U ∈ U(H), then U−1 = U †.

Exercise 2.2.22: Show that U(2) acts transitively on lines in C2, i.e, given
any nonzero v, w ∈ C2 there exists U ∈ U(2) such that U |v〉 = λ|w〉 for
some λ ∈ C∗. }

A reflection in a hyperplane Cn−1 ⊂ Cn is the linear map that, writing
|v〉 ∈ Cn as |v〉 = |v1〉 + |v2〉 with |v1〉 ∈ Cn−1 and |v2〉 ⊥ Cn−1, sends
|v〉 7→ |v1〉 − |v2〉.
Exercise 2.2.23: Show that U(n) contains the reflections.

Exercise 2.2.24: Show that the product of two reflections is a rotation.
More precisely, show that if |v〉, |w〉 are vectors in Cn, the composition of
a reflection in the hyperplane perpendicular to |v〉, followed by a reflection
in the hyperplane perpendicular to |w〉, is a rotation in the |v〉, |w〉 plane
by an angle equal to twice the angle between |v〉 and |w〉 (and the identity
elsewhere).

2.3. Super-dense coding

In this section, we show that with a shared entangled state one can transmit
two bits of classical information by transmitting a vector in just one qubit,
which has led to the term “super1-dense coding”. Super-dense coding was
introduced in [BW92].

Physcists describe their experiments in terms of two characters, Alice
and Bob. We generally follow this convention.

1Physicists use the word “super” in the same way American teenagers use the word “like”.
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Let H = C2⊗C2 = HA⊗HB, and let |epr〉 = |00〉+|11〉√
2

(called the EPR

state in the physics literature, named after Einstein-Podosky-Rosen) Assume
this state has been created, both Alice and Bob are aware of it, Alice is in
possesion of (i.e., can manipulate) the first qubit, and Bob the second. This
all happens before the experiment begins. They are allowed to agree on
a protocol in advance. Then they are separated, but have a “quantum
channel” along which they can transmit qubits. (Such will be explained in
***.)

Now say Alice wants to transmit a two classical bit message to Bob, i.e.,
one of 00, 01, 10, 11. She is allowed to act on her half of |epr〉 by unitary
transformations and then send it to Bob. (Later we will establish a gate set
she must choose from, but it will include the gates we need below.) They
agree in advance that once Bob is in possesion of it, he will act on the
four-dimensional space HA⊗HB by the unitary operator that performs the
following change of basis:

|epr〉 =
1√
2

(|00〉+ |11〉) 7→ |00〉

1√
2

(|00〉 − |11〉) 7→ |01〉

1√
2

(|10〉+ |01〉) 7→ |10〉

1√
2

(|10〉 − |01〉) 7→ |11〉

and then will measure.

If Alice wants to send 00, she just does nothing as then when Bob mea-
sures he will get |00〉 with probability one. Similarly, if she wants to send
01, she acts by

σx :=

(
1 0
0 1

)
so Bob will be in possesion of the state 1√

2
|00〉 − |11〉, so when he performs

the change of basis and measures, he will get |01〉 with probability one.

Exercise 2.3.1: What are the other two matrices Alice should act by to
transmit the other two-bit messages?

In summary, with preparation of an EPR state in advance, plus trans-
mission of a single qubit, one can transmit two classical bits of information.

2.4. Quantum Teleportation

A similar phenomenon is quantum teleportation, where again Alice and Bob
share half of an EPR state. This time Alice is in possesion of a qubit
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|ψ〉 = α|0〉+ β|1〉, and wants to “send” |ψ〉 to Bob. However Alice only has
access to a classical channel that sends bits to Bob. Can she transmit |ψ〉
to Bob, and if so, how many classical bits does she need to transmit to do
so? Write the state of the system as

1√
2

[α|0〉⊗(|00〉+ |11〉) + β|1〉⊗(|00〉+ |11〉)]

where Alice can operate on the first two qubits.

Exercise 2.4.1: Show that if Alice acts on the first two qubits by Id1⊗
(

0 1
1 0

)
then H⊗ Id2 = 1√

2

(
1 1
1 −1

)
⊗ Id2 (where the subscripts on Id indicate

which factor the identity acts). She obtains

1

2
[|00〉⊗(α|0〉+ β|1〉) + |01〉⊗(α|1〉+ β|0〉) + |10〉⊗(α|0〉 − β|1〉) + |11〉⊗(α|1〉 − β|0〉)] .

Notice that Bob’s coefficient of Alice’s |00〉 is the state ψ that is to
be transmitted. Alice performs a measurement. If she has the good luck to
obtain |00〉, then she knows Bob has |ψ〉 and she can tell him classically that
he is in possesion of |ψ〉. But say she obtains the state |01〉: the situation
is still good, she knows Bob is in possession of a state such that, if he acts

on it with

(
0 1
1 0

)
, he will obtain the state |ψ〉, so she just needs to tell

him classically to apply σx. Since they had communicated the algorithm in
the past, all Alice really needs to tell Bob in the first case is the classical
message 00 and in the second case the message 01.

Exercise 2.4.2: Write out the other two different actions Bob should take
depending on the possible bit pairs Alice could send him.

In summary, a shared EPR pair plus sending two classical bits of infor-
mation allows one to transmit one qubit.

Remark 2.4.3. The name “teleportation” is misleading because informa-
tion is transmitted at a speed slower than the speed of light.

2.5. Bell’s game

The 1934 Einstein-Podosky-Rosen paper [EPR35] challenged quantum me-
chanics with the following thought experiment that they believed implied
instaneous communication across distances, in violation of principles of rel-
ativity: Alice and Bob prepare |epr〉 = 1√

2
(|00〉+ |11〉), then travel far apart.

Alice measures her bit. If she gets 0, then she can predict with certainty
that Bob will get 0 in his measurement, even if his measurement is taken a
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second later and they are a light year apart. (The essential property of the
state is that Alice’s measurement makes Bob’s state classical as well.)

Ironically, this thought experiment has been made into an actual exper-
iment designed by Bell [Bel64] and realized. The modern interpretation is
that there is no paradox because the system does not transmit information
faster than the speed of light, but rather they are acting on information
that has already been shared. What follows is a version from [CHSH69],
adapted from the presentation in [AB09].

To show that neither classical nor probabilistic reasoning can account for
the experimental results, they are often described as a game: Alice and Bob
are on the same team and Charlie is a referee. Charlie chooses x, y ∈ {0, 1}
at random and sends x to Alice and y to Bob. Based on this information,
Alice and Bob, without communicating with each other, get to choose bits
a, b and send them to Charlie. They win if a ⊕ b = x ∧ y, i.e., either
(x, y) 6= (1, 1) and a = b or (x, y) = (1, 1) and a 6= b.

2.5.1. Classical version. Note that if Alice and Bob both always choose
0, they win with probability 3

4 .

Theorem 2.5.1. [Bel64] Regardless of the classical or probabilistic strategy
Alice and Bob use, they never win with probability greater than 3

4 .

The idea of the proof is that one first reduces a probabilisitic strategy
to a classical one, because after repeated rounds of the game, one can just
adopt the most frequent choice for each possible x, y. Then there are only 24

possible strategies and each can be analyzed. See, e.g., [AB09, Thm 20.2]
for more detail.

2.5.2. Quantum version. Alice and Bob prepare |epr〉 = |00〉+|11〉√
2

in ad-

vace, and Alice takes the first qubit and Bob the second. When Alice gets
x from Charlie, if x = 1, she applies a rotation by π

8 to her quibit, and
if x = 0 she does nothing. When Bob gets y from Charlie, he applies a
rotation by −π

8 to his qubit if y = 1 and if y = 0 he does nothing. (The
order these rotations are applied does not matter because the operators on
(C2)⊗2 commute.) Both of them measure their respective qubits (again, the
order will not matter) and send the values obtained to Charlie.

Theorem 2.5.2. With this strategy, Alice and Bob win with probability at
least 4

5 .

Proof. If (x, y) = (0, 0), then they are measuring |epr〉, so the measurement
either yields 0 for both or 1 for both and 0⊕ 0 = 1⊕ 1 = 0 = 0 ∧ 0, so they
always win in this case.
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If (x, y) = (1, 0), then they are measuring

1√
2

(
cos(

π

8
)|00〉+ sin(

π

8
)|10〉 − sin(

π

8
)|01〉+ cos(

π

8
)|11〉

)
,

and the outputs are equal with probability (12 + 1
2) cos2(π8 ) ≥ 17

20 , and simi-
larly if (x, y) = (0, 1).

If (x, y) = (1, 1), then they are measuring

1√
2

[ cos(
π

8
)(cos(−π

8
)|00〉+ sin(−π

8
)|01〉) + cos(

π

8
)(− sin(−π

8
)|00〉+ cos(−π

8
)|01〉)

+ sin(
π

8
)(cos(−π

8
)|10〉+ sin(−π

8
)|11〉) + sin(

π

8
)(− sin(−π

8
)|10〉+ cos(−π

8
)|11〉)

− sin(
π

8
)(cos(−π

8
)|00〉+ sin(−π

8
)|01〉)− sin(

π

8
)(− sin(−π

8
)|00〉+ cos(−π

8
)|01〉)

+ cos(
π

8
)(cos(−π

8
)|10〉+ sin(−π

8
)|11〉) + cos(

π

8
)(− sin(−π

8
)|10〉+ cos(−π

8
)|11〉)]

=
1

2
[|00〉+ |01〉+ |10〉+ |11〉],

so they win with probability 1
2 , as all coefficients have the same norm.

In sum, the overall chance of winning is at least 1
4(1) + 1

4(1720) + 1
4(1720) +

1
4(12) = 4

5 . �

Exercise 2.5.3: Show that this strategy can be improved. What is its limit?
}





Chapter 3

Algorithms

This chapter covers the basics of quantum computing, and the standard
quantum algorithms. We begin with a probabilistic algorithm, the Miller-
Rabin primality test, as ideas from its proof appear in Shor’s algorithm.
We next present the algorithms of Grover and Simons. We then discuss ad-
missible quantum gates, and then, after considerable preliminaries, present
Shor’s algorithm. For those not familiar with basic facts regarding groups
and rings, I suggest starting with the Appendix §3.8.

3.1. Primality testing

In this section we discuss the problem: Given an integer N , determine if N
is prime. Of course one could just test if any of the numbers 2, . . . , b

√
Nc

divide N , but this is not efficient to compute (it is not polynomial time).
Remarkably, there was no efficient algorithm known until the 1970’s when
an efficient probabilistic algorithm was developed.

Recall what I mean by this: an algorithm such that, given input an inte-
ger N and access to randomness, correctly outputs whether N is composite
or prime with probability > 1

2 .

I present the famous Miller-Rabin test [Rab80]. and its proof because
parts of the proof will be used for Shor’s algorithm.

Let Z/NZ denote the ring of integers mod N . Write mmodN for the
equivalence class of m. Just as with the problem of multiplying polynomials,
where we arrived at an efficient computation working in a quotient of the
polynomial ring, here we will obtain our efficient algorithm by working in a
quotient of the ring of integers.

33
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Recall from Exercise 1.2.1 that the näıve algorithm for computing ak uses
O(ak) operations, and one can do a little better using Karatsuba’s algorithm
(Exercise 1.2.2). The key to the efficiency is the following exercise:

Exercise 3.1.1: Prove that for k ∈ {0, . . . , N − 1}, ak modN can be com-
puted by a classical circuit of size O(N3) (where bit addition and bit mul-
tiplication have unit cost). Show that with a little more work, one can get
O(N2 log(N)). What about if one uses Shönhage-Strassen (§1.2.3)? }

The Chinese remainder theorem asserts that, for primes p, q, there is a
ring isomorphism Z/pqZ ' Z/pZ× Z/qZ.

Exercise 3.1.2: Verify the map mmod pq 7→ (mmod p,mmod q) defines a
ring isomorphism.

More generally if N = pa11 · · · p
ak
k with pj distinct primes, there is a ring

isomorphism (Z/NZ) = (Z/pa11 Z) × · · · × (Z/pakk Z). For a ring R, let R∗

denote its invertible elements under multiplication, which form a group. We
also have (Z/NZ)∗ = (Z/pa11 Z)∗ × · · · × (Z/pakk Z)∗.

Here is a warm-up: an efficient test to see if N is prime, that works for
“most” N .

Recall that if p is prime, then the multiplicative group (Z/pZ)∗ is a cyclic
group of order p − 1. As a consequence, if x 6≡ 0 mod p then xp−1 ≡ 1 =
x0 mod p (the little Fermat theorem). In other words, if we find x such that
xN−1 6≡ 1 modN , then we know N is composite.

Exercise 3.1.3: Show that if p is prime, then for all integers m,n, (m +
n)p ≡ mp + np mod p.

Exercise 3.1.4: Prove the little Fermat theorem. }

Call the following probabilistic algorithm the Fermat test: Choose a
uniformly at random from {2, . . . , N − 1} and compute aN−1 modN . It will
be clear that for this and the algorithm that follows, the tests will always
report that N is prime when it is prime, so say N is composite. Under what
circumstances do we correctly determine compositeness with probability at
least 1

2? Consider the following two cases:

(1) gcd(a,N) = d 6= 1. (This occurs with low probability.) Then the
test detects that N is composite as in this situation a ≡ 0 mod d,
and hence aN−1 6≡ 1 modN .

(2) gcd(a,N) = 1, so a ∈ (Z/NZ)∗.

We need to determine what happens in the second case.

Lemma 3.1.5. If there exists a ∈ (Z/NZ)∗, such that aN−1 6≡ 1 modN ,
then the Fermat test detects the compositeness of N with probability ≥ 1

2 .
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Before giving the proof, introduce the following groups associated to an
abelian group G: For any natural number m, consider the group homomor-
phism φm : G→ G, φm(x) = xm, and let

(3.1.1) G(m) = Imageφm and G(m) = kerφm,

both of which are abelian groups. Note that if a is uniformly distributed
over an abelian group G then am is uniformly distributed over G(m) defined
in (3.1.1).

In this language, the a’s for which the Fermat test fails are those in
(Z/NZ)∗(N−1).

Proof. The hypothesis is that (Z/NZ)∗(N−1) 6= (Z/NZ)∗ and we need to

show most elements of (Z/NZ)∗(N−1) are not in (Z/NZ)∗. Since N > 3, the

quotient (Z/NZ)∗/(Z/NZ)∗(N−1) has cardinality at least 2. Thus aN−1 6≡
1 modN for at least half of the elements of (Z/NZ)∗ and we conclude. �

It is possible that aN−1 ≡ 1 modN for all a ∈ (Z/NZ)∗. So we will need
an additional test to apply when the Fermat test fails to get our desired
algorithm.

Exercise 3.1.6: Show that N = 561 = 3 ∗ 11 ∗ 17 is such that aN−1 ≡
1 modN for all a ∈ (Z/NZ)∗.

The second test uses the following proposition:

Proposition 3.1.7. If there exists a natural number b such that b2 ≡
1 modN and b 6≡ ±1 modN , then N is composite with nontrivial factors
in common with both b+ 1 and b− 1.

Proof. In this case b2− 1 = (b− 1)(b+ 1) is a multiple of N but b− 1, b+ 1
are not, so N must have nontrivial factors in common with both b+ 1 and
b− 1. �

Here is the Miller-Rabin algorithm: to avoid trivialities, assume N is
odd.

Choose a ∈ {2, . . . , N − 2} uniformly at random.

Step 1: Test if aN−1 6≡ 1 modN . If so, then N is composite by the Little
Fermat theorem and one concludes. Otherwise go to step 2:

Step 2: Let 2k be the largest power of 2 that divides N − 1 and write

N − 1 = 2kl. Compute the sequence al, a2l, a4l, . . . , a2
kl, all modN . If this

sequence contains a 1 preceded by anything except ±1, i.e., if there exists j

such that a2
j l 6≡ ±1 modN and (a2

j l)2 ≡ 1 modN , then N is composite by
Proposition 3.1.7. Otherwise the algorithm replies “N is prime”.
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One can check that the total circuit size of this algorithm is O(log(N)3).
The only subtlety is that taking exponentially many powers of a would
violate this size, but we are only taking powers modN .

Proposition 3.1.8. The Miller-Rabin algorithm succeeds on any input with
probability at least 1

2 .

Proof. It is clear that if N is prime, the algorithm always indicates that it
is prime, so assume N is composite and odd. Start the algorithm, get some
a ∈ {2, . . . , N − 2} chosen uniformly at random. If gcd(a,N) > 1, then step
1 shows that N is composite, so assume this does not happen, which implies
a is uniformly distributed over (Z/NZ)∗. (This last assertion holds because
for any group homomorphism of finite groups f : G→ H, all fibers have the
same cardinality. We will use this repeatedly in what follows.)

In order for step 1 to work with probability at least 1
2 , it is enough that

there is one x ∈ {2, . . . , N − 1} such that xN−1 6≡ 1 modN . The following
exercise shows that if N is a power of an odd prime, then there is such an
x.

Exercise 3.1.9: Show that if N = pc for some odd prime p, and some
c ≥ 2, then taking a = pc + 1− pc−1, then aN−1 6≡ 1 modN because aN−1 ≡
pc−1 + 1 modN and pc−1 + 1 6≡ 1 modN .

By Exercise 3.1.9, we may assume N = uv, where u, v are odd, u, v >
1, and gcd(u, v) = 1. By the Chinese remainder theorem (Z/NZ)∗ '
(Z/uZ)∗ × (Z/vZ)∗.

Now (Z/NZ)∗(m) ' (Z/uZ)∗(m)× (Z/vZ)∗(m). If either (Z/uZ)∗(N−1) or

(Z/vZ)∗(N−1) is non-trivial, step 1 will detect compositeness with probability
at least 1

2 , so assume both are trivial. To apply step 2, we need to consider

the powers a2
j l modN and show there exists j such that a2

j l 6≡ ±1 modN

and (a2
j l)2 = a2

j+1l ≡ 1 modN with probability at least 1
2 .

Let j0 be the largest value such that (Z/NZ)∗(2
j0 l) 6= {1} and (Z/NZ)∗(2

j0+1l) =

{1}. Use the isomorphism (Z/NZ)∗(2
j0 l) ' (Z/uZ)∗(2

j0 l) × (Z/vZ)∗(2
j0 l):

both the factors cannot be trivial by assumption. If one of the two factors

is trivial, we could only fail if a2
j0 l maps to (1, 1), but this will happen for

the nontrivial factor with probability at most 1
2 . Now assume both factors

are nontrivial, say of cardinalities cu, cv. In this case, the image of a2
j0 l in

the first factor is 1 with probability 1
cu

, and is 1 in the second factor with

probability 1
cv

, and these events are independent (again by the Chinese re-

mainder theorem). Thus the probability a2
j0 l ≡ 1 modN is 1

cucv
. For similar

reasons the the probability a2
j0 l ≡ −1 modN is either 1

cucv
or zero. Thus

the probability of failure is at most 2
cucv
≤ 1

2 . �
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To get an algorithm that works with probability greater than 1
2 , apply

the test twice.

But this is not the end of the story:

Theorem 3.1.10. [AKS04] Primality testing is in P.

The core of the proof is a variant of the little Fermat theorem: Let a,N
be relatively prime integers with N > 2, Then N is prime if and only if
(x+ a)N ≡ xN + amodN . Here the identity is to be interpreted in the ring
of polynomials with coefficients in Z/NZ.

Exercise 3.1.11: Prove the assertion. }

The bulk of the work is reducing the number of coefficients one needs to
check in the expansion of the left hand side.

The lesson to be drawn here is that we should not make any assumptions
regarding the difficulty of a problem until we have a proof.

3.2. Grover’s search algorithm

The problem: given Fn : Fn2 → F2, computable by a poly(n)-size classical
circuit, find a such that Fn(a) = 1 if such a exists.

Compare this with a brute force search, which requires a circuit of size
poly(n)2n. No classical or probabilistic algorithm is known that does better

than poly(n)2n. Note that it also gives a size poly(n)2
n
2 probabilistic solution

to the NP-complete problem SAT (it is stronger, as it not only determines
existence of a solution, but finds it).

Grover found a quantum circuit of size poly(n)2
n
2 that solves this prob-

lem (with high probability).

We will present the algorithm for the following simplified version where
one is promised there exists exactly one solution. All essential ideas of the
general case are here.

Problem: given Fn : Fn2 → F2, computable by a poly(n)-size classical
circuit, and the information that F has exactly one solution a, find a.

The idea of the algorithm is to start with a vector equidistant from all
possible solutions, and then to incrementally rotate it towards a. What is
strange for our classical intuition is that we will be able to rotate towards
the solution without knowing what it is, and similarly, we won’t “see” the
rotation matrix either.

We work in (C2)⊗n+1+s where s = s(n) is the size of the classical circuit
needed to compute Fn. We suppress reference to the s “workspace bits” in
what follows.

The first step is to construct such a starting vector:
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The following vector is the average of all the classical (observable) states:

(3.2.1) |av〉 :=
1

2
n
2

∑
I∈{0,1}n

|I〉.

To prepare |av〉, note that H|0〉 = 1√
2
(|0〉 + |1〉), so applying H⊗n to

|0 · · · 0〉 transforms it to |av〉.
The cost of this is n gates, as H⊗n is the composition of H⊗ Id2,...,n,

Id1⊗H⊗ Id3,...,n, ... , Id1,...,n−1⊗H.

Since |av〉 is equidistant from all possible solution vectors, we have
〈av|a〉 = 1

2
n
2

. We want to rotate |av〉 towards the unknown a. Recall

that cos(∠(|v〉, |w〉)) = 〈v|w〉
|v||w| . Write the angle between av and a as π

2 − θ, so

sin(θ) = 1

2
n
2

.

Recall from Exercise 2.2.24, that a rotation is a product of two reflec-
tions. In order to perform the rotation R that moves |av〉 towards |a〉, we
first reflect across the hyperplane orthogonal to |a〉 (i.e., we send |a〉 to
−|a〉 and the hyperplane perpendicular to it is fixed), and then across the
hyperplane orthogonal to |av〉.

Consider the map

(3.2.2) |xy〉 7→ |x(y ⊕ F (x))〉

defined on basis vectors and extended linearly. To execute this, we use the
s workspace bits corresponding to y to effect s reversible classical gates. We
initially set y = 0 so that the image is |x0〉 for x 6= a, and |x1〉 when x = a.
At this point our vector is

1

2
n
2

∑
I 6=a
|I〉⊗|0〉+ |a〉⊗|1〉

 .

Next apply the quantum gate Id⊗
(

1 0
0 −1

)
which sends |x0〉 7→ |x0〉, and

|x1〉 7→ −|x1〉. Finally apply the map |xy〉 7→ |x(y ⊕ F (x))〉 again.

Thus |a0〉 7→ −|a0〉 and all other basis vectors |b0〉 are mapped to them-
selves, which is what we desired. That is, we now have the vector

1

2
n
2

∑
I 6=a
|I〉⊗|0〉 − |a〉⊗|0〉

 .

Next we need to reflect around |av〉. It is easy to reflect around a classical
state, so first perform the map H⊗n that sends |av〉 to |0 · · · 0〉 (recall that
H = H−1), then reflect in the hyperplane perpendicular to |0 · · · 0〉 using
the Boolean function g : Fn2 → F2 that outputs 1 if and only if its input is
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(0, . . . , 0), in the role of F for our previous reflection, then apply Hadamard
again so the resulting reflection is about |av〉.

The composition of these two reflections is the desired R.

Exercise 3.2.1: Approximately determine the probability that a measure-
ment of R|av〉 will produce |a〉. (Use the approximation that for θ small,
sin(θ) ' θ.) }

As mentioned above, the vector R|av〉 is not useful, but if we instead
compose this map with itself O(1θ ) times, we obtain a vector much closer to
|a〉.

Another way to keep track of the maps is to note the first reflection is
Id−2|a〉〈a| and the second is Id−2|av〉〈av|, so, e.g., the rotation is

Id−2|a〉〈a| − 2|av〉〈av|+ 4|av〉〈av||a〉〈a|
= Id−2|a〉〈a| − 2|av〉〈av|+ 4〈av|a〉|av〉〈a|

= Id−2|a〉〈a| − 2|av〉〈av|+ 4

2
n
2

|av〉〈a|.

Exercise 3.2.2: Using the above expression, exactly determine the proba-
bility that a measurement of R|av〉 will produce |a〉.

Exercise 3.2.3: Show that applying the procedure 2
n
2 times, one obtains a

vector such that the probability of it being in state |a〉 after a measurement
is close to 1.

3.3. Simons’ algorithm

The problem: given f = fn : Fn2 → Fn2 , computable by a Boolean circuit of
size polynomial in n, such that there exists a ∈ Fn2 satisfying for all x, y ∈ Fn2 ,
f(x) = f(y) if and only if x = y ⊕ a, find a. For simplicity of exposition,
assume we know a 6= (0, . . . , 0) as well.

Simons gives a poly(n) size quantum circuit that obtains the solution.

Remark 3.3.1. Although this problem may look unnatural, the resulting
algorithm inspired Shor’s algorithm and its generalizations, and it fits into a
larger framework of problems that allow for an exponential quantum speedup
over known probabilistic algorithms.

Remark 3.3.2. This problem is expected to be hard on a classical com-
puter. Consider the following variant where F is allowed to be difficult to
compute, but we are handed a black box that will compute it for us at
unit cost. If a and F are chosen at random subject to the condition that
F (x) = F (y) if and only if x = y⊕ a, then classically one would need to use

the black box 2
n
2 times before having any information at all, as with fewer



40 3. Algorithms

calls, it is likely that one never gets the same answer twice. On the other
hand, Simons’ algorithm still gives a poly(n)-size solution in this setting.

Work in (C2)⊗2n+s, where s is the size of a reversible Boolean circuit
needed to compute F . We suppress reference to the s workspace qubits
in what follows. As with Grover’s algorithm, we will construct a vector
that “sees” the answer a, but we will not be able to see the vector, so
instead we manipulate it to get information about the solution. Also as
before, first prepare |av〉 = 1

2
n
2

∑
x∈{0,1}n |x〉. Then apply the operation

|xz〉 7→ |x(z ⊕ F (x))〉 to |av〉⊗|0n〉, to obtain

1

2
n
2

∑
x∈{0,1}n

|x〉⊗|F (x)〉

Now measure the second n bits of the register to put the second n qubits
into some classical state z0 to get a vector that is a constant multiple of:∑

{x|F (x)=z0}

|x〉⊗|z0〉.

Say F (x0) = z0, then (assuming a 6= 0n) our sum collapses to

1√
2

(|x0〉+ |x0 ⊕ a〉)⊗|z0〉.

We want to manipulate this vector to gain information about a.

For x, y ∈ Fn2 , let x · y :=
⊕n

j=1 xj ∗ yj ∈ F2 denote their inner product.
Now perform the Hadamard operation on the first n bits again.

Exercise 3.3.3: Show that for x ∈ Fn2 , H⊗n|x〉 = 1

2
n
2

∑
y∈Fn2

(−1)x·y|y〉.

We obtain a constant times the vector

(3.3.1)
∑
y∈Fn2

(
(−1)x0·y + (−1)(x0⊕a)·y

)
|yf(x0)〉

Since (x⊕ a) · y = x · y ⊕ a · y, the term in the summand for any given y is
non-zero if and only if a · y = 0.

Thus when we measure the vector, the first n bits consists of some y ∈ Fn2
that is orthogonal to a with respect to the inner-product on Fn2 (and is chosen
uniformly at random among such). So we may restrict our search for a to
the hyperplane in Fn2 perpendicular to y. If we continue, with good luck, we
could find a after n−1 runs of the algorithm. However, we have no guarantee
we do not end up with linearly dependent y’s. If we run the algorithm more
than 2n times, then there will be n− 1 independent hyperplanes with high
probability.
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Exercise 3.3.4: Prove that for any a ∈ Fn2 , if vectors y1, . . . , y2n are cho-
sen uniformly at random subject to a · yj = 0 for every j, then with high
probability a subset of n− 1 of them are linearly independent. }

3.4. Quantum gate sets

Previously we only needed the quantum gates corresponding to the Tof-

foli gate,

(
1 0
0 −1

)
, and the Hadamard matrix H. For Shor’s algorithm one

needs more general gates In this section we discuss admissible quantum gate
sets. There are two issues we need to deal with: locality and approximation.
We will first see, in §3.4.1 that locality is easily dealt with. Approxima-
tion is more subtle. We will first need to a way to measure how close an
approximation is to the desired gate set. This will be done via the oper-
ator norm defined in §3.4.2. I introduce the “standard quantum gate set”
in §3.4.4. Before that, in §3.4.3, I briefly discuss “controlled gates” which
encode classical quantum interaction.

3.4.1. Locality. We would like to execute arbitrary unitary operations
but we expect to only be able implement local quantum gates, as it is likely
that one can only create entanglement in a laboratory on qubits that are
physically close to one another. Thanks to the following unitary version of
the classical Cartan-Dieudonné theorem, this issue is not a problem:

Lemma 3.4.1. Any U ∈ U(n) may be written as a product of at most
(
n
2

)
elements, each of which acts on some C{ei, ei+1} as an element of U(2) and
is the identity on the span of e1, . . . , ei−1, ei+2, . . . , en, where e1, . . . , en is
the standard basis of Cn.

Proof. Let U(2)i ⊂ U(n) be the copy of U(2) acting only on C{ei, ei+1}.
By Exercise 2.2.22, U(2) acts transitively on lines in C2. Moreover, it can

send any |v〉 ∈ C2 to

(
|v|
0

)
. Thus for any unit vector |ψ〉 ∈ Cn, there

exist Uj ∈ U(2)j such that U1 · · ·Un|ψ〉 = e1. Write the columns of U−1

as |ψ1〉, . . . , |ψn〉 where |ψj | = 1. We may find U1,1, . . . , U1,n−1 such that
U1,1 · · ·U1,n−1|ψ1〉 = e1. Note that their effect on the remaining columns will
make them orthogonal to e1. Next we may find U2,2, . . . , U2,n−1 with U2,j ∈
U(2)j such that their product applied to U1,1 · · ·U1,n−1|ψ2〉 is e2. Continu-
ing, we obtain U = Un−1,n−1Un−2,n−2Un−3,n−2 · · ·U2,2 · · ·U2,n−1U1,1 · · ·U1,n−1.

�

3.4.2. Approximation. Ideally one would like to work with a universal
gate set as in the classical case, but that will not be possible with a finite
(or even countable) set of gates. This is similar to the situation in classical
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computing where we could only create probability distributions with coef-
ficients of the form m/2k, where m, k ∈ Z≥0. If we start with a finite gate
set, we cannot generate the entire unitary group. This results in quantum
computation in general being not only probabilistic, as we have already dis-
cussed, but also approximate. This has not been an issue so far, but will be
when we study Shor’s algorithm.

We need to prove we can get arbitrarily “close” to any U ∈ U(H) with
polynomially many elements from our finite gate set.

First we need to make the meaning of “close” precise, i.e., we need to
choose a norm on End(H). Instead of working with a distance function on
U(H), we work with a norm on End(H) because we will need to measure
the norm of the difference of two unitary operators, which in general is not
unitary. Moreover, End(H) has the advantage of being a linear space where
distances are easier to work with.

Let V be a vector space. A norm on V is a function || · || : V → R≥0
satisfying, for all v, w ∈ V and all c ∈ C:

||v|| ≥ 0 with equality iff v = 0,

||v + w|| ≤ ||v||+ ||w||,
||cv|| = |c| ||v||.

In our case, we have V = End(H), and we take a norm that reflects this
additional structure of our vector space as a space of operators, called the
operator norm. It is particularly convenient for unitary operators.

Definition 3.4.2. For X ∈ End(H), define the operator norm of X,

||X|| := sup|ξ〉6=0

|X|ξ〉|
|ξ|

where |X|ψ〉| is the usual Hermitian norm of the vector X|ψ〉.

Exercise 3.4.3: Verify that the operator norm is indeed a norm.

Exercise 3.4.4: Prove that when H is finite dimensional, that ||X||2 is the
largest eigenvalue of X†X.

ForX ∈ End(HA), Z ∈ End(HB), we may considerX⊗Z ∈ End(HA⊗HB).
The operator norm has the following additional properties:

||XY || ≤ ||X|| ||Y ||,

||X†|| = ||X||,
||X⊗Z|| = ||X|| ||Z||,
||U || = 1 ∀U ∈ U(H).

Exercise 3.4.5: Verify these additional properties.
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Definition 3.4.6. An operator Ũ ∈ U(H) approximates U ∈ U(H) with

precision δ if ||Ũ − U || ≤ δ.

Exercise 3.4.7: Show that Ũ ∈ U(H) approximates U ∈ U(H) with preci-

sion δ if and only if Ũ−1 approximates U−1 with precision δ.

We will not be concerned with a single unitary transformation, but the
product of many such, so we need to examine how errors grow under com-
position of maps. The key property of the operator norm is that for unitary
transformations, errors accumulate linearly:

Proposition 3.4.8. Say U = UL · · ·U2U1 with U,Uj ∈ U(H), and that Uj
is approximated by Ũj ∈ U(H) with precision δj . Then Ũ := ŨL · · · Ũ2Ũ1

approximates U with precision
∑L

j=1 δj .

Proof. By induction, it will be sufficient to prove the case L = 2. We have

||Ũ2Ũ1 − U2U1|| = ||Ũ2(Ũ1 − U1) + (Ũ2 − U2)U1||

≤ ||Ũ2(Ũ1 − U1)||+ ||(Ũ2 − U2)U1||

≤ ||Ũ2|| ||Ũ1 − U1||+ ||Ũ2 − U2|| ||U1||

≤ ||Ũ1 − U1||+ ||Ũ2 − U2||.

�

This linear accumulation of errors allows for good approximation as we
will see in Theorem 3.4.12 below.

3.4.3. Notation for classically controlled quantum gates. In Simon’s
algorithm, we used classical gates to decide if a quantum gate (a reflection)
was applied. We now introduce notation for such classical “controls” in a
quantum circuit.

For U ∈ U(n), introduce k-controlled U , Λk(U) : Ck⊗Cn → Ck⊗Cn by

Λk(U)(|x1, . . . , xk〉⊗|ξ〉) =

{
|x1, . . . , xk〉⊗|ξ〉 if x1 · · ·xk = 0
|x1, . . . , xk〉⊗U |ξ〉 if x1 · · ·xk = 1.

When acting by these controlling bits, we will allow violation of strict lo-
cality for the controlling bits (they will be the “last” s bits, as was the
situation with Grover’s and Simons’ algorithms). This is physically accept-
able, because it will correspond to interfering with the quantum system from
“outside”.

Introduce the notation (taken from physics) σx :=

(
0 1
1 0

)
.

Exercise 3.4.9: Show that Λ1(σx)|ab〉 = |a, a⊕ b〉.

Exercise 3.4.10: Show the Toffoli gate is Λ2(σx).
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It is exactly in implementing these classical-quantum gates that we will
allow violation of strict locality- the Hilbert spaces corresponding to the
classical bits need not be adjacent to the Hilbert spaces corresponding to
the quantum bits in these gates.

3.4.4. The standard quantum gate set.

Definition 3.4.11. The quantum gate set

H :=
1√
2

(
1 1
1 −1

)
(the Hadamard gate),(3.4.1)

K :=

(
1 0
0 i

)
,(3.4.2)

K
−1
,(3.4.3)

Λ1(σx) where σx =

(
0 1
1 0

)
,(3.4.4)

Λ2(σx) the Toffoli gate(3.4.5)

is called standard.

Theorem 3.4.12. Any U ∈ U(n) can be realized with precision δ by a
poly(log(1δ ))-size circuit over the standard basis, using workspace bits (i.e.,
working with elements of U(n + s)). Moreover, there exists a polynomial
size algorithm constructing the circuit.

Theorem 3.4.12 justifies the assertion that one can achieve good approxi-
mate quantum algorithms from a fixed gate set. For the proof, see [KSV02,
Thm. 13.5].

3.5. Shor’s algorithm

Shor’s algorithm involves a classical part and a quantum part. The quantum
part is: given a randomly chosen a ∈ (Z/NZ)∗, find the order of a in
(Z/NZ)∗, that is the smallest r, such that ar ≡ 1 modN . The classical part
uses the output of the quantum algorithm to find a factor of N . The size of
the quantum circuit will be poly(log(N)). Since there are at most log(N)
factors of N , it will still be poly(log(N))-operations to factor N completely.

The quantum part will hinge on i) there being “enough” prime numbers
less than N , and ii) the ability to “closely” approximate a rational number
by other rational numbers. After explaining the classical part, I address
these two issues and then give the quantum part.
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3.5.1. The classical part. Recall Proposition 3.1.7 which gave a way to
find a factor of N , namely if there exists b such that b2 ≡ 1 modN and
b 6≡ ±1 modN , then both b+ 1, b− 1 are factors of N .

The quantum part produces an a and its order r.

The classical part will consist in showing that with probability at least
1
4 , r will be even and a

r
2 6≡ ±1 modN . Applying Proposition 3.1.7 with

b = a
r
2 we obtain our factor. (To get success with probability greater than

1
2 , just run the whole algorithm three times.)

First we treat the special case that N = p1p2 where p1, p2 are distinct
primes. Here we will succeed with probability at least 1

2 . Recall by the
Chinese remainder theorem that (Z/NZ)∗ ' (Z/p1Z)∗× (Z/p2Z)∗. Write rj
for the order of a in (Z/pjZ)∗, so r = lcm(r1, r2). Write rj = 2sjr′j . Without

loss of generality, assume s := s2 ≥ s1, so r = 2sr′ with r′ odd.

The first bad case is when s = 0. We’ll see this occurs with low proba-
bility later.

The second bad case is when a
r
2 ≡ ±1 modN . Claim: this will not

happen if s1 < s. To see this, note that in this case r1 divides r
2 , so a

r
2
1 ≡

1 mod p1. But r2 does not r
2 , so a

r
2
2 6≡ 1 mod p2. Since under the Chinese

remainder theorem isomorphism 1 7→ (1, 1) and −1 7→ (−1,−1) we see

a
r
2 6≡ ±1 modN .

It remains to show that s1 = s2 happens with probability at most 1
2 .

Exercise 3.5.1: Show that the group (Z/pZ)∗ is cyclic of order p− 1. }

Let gj be a generator of (Z/pZ)∗. Our choice of random a may be then
considered as a choice of a random element of [p1−1]× [p2−1], where (u, v)
corresponds to the element (gu1 mod p1, g

v
2 mod p2). Thus the test succeeds if

either u is odd and v is even or vice versa. The odds of this are 1
4 + 1

4 = 1
2

and we conclude.

The case N = p1 · · · pq is identical. The case N = pα should really be
checked before: there is a small (see (3.5.1)) list of prime numbers less than√
N and one just needs to check their powers. The case N = pα1

1 · · · p
αk
k is

similar to the case N = p1 · · · pq. In the notation above, the algorithm fails
if and only if s1 = s2 = · · · = sk. The only new ingredient needed is the
following exercise:

Exercise 3.5.2: Show that for p prime, |(Z/pαZ)∗| = pα − pα−1.

Write pα − pα−1 = 2tq where q is odd and note that t > 0. Let g be a
generator of (Z/pαZ)∗. Write the order of a as 2sar′a where r′a is odd.
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#{a ∈ (Z/pαZ)∗ | sa = s} = #{powers g2
t−sm with m odd}

=


q s = 0

(2s − 2s−1)q s = 1, . . . , t
0 s > t

 .

All these numbers are at most 1
2(pα − pα−1) because t > 0, so they have

probability at most 1
2 of being selected, so we conclude the probability of

failure is at most 1
2k−1 .

3.5.2. Preliminaries I: the number of primes. Let π(x) denote the
number of prime numbers that are less than or equal to x. The prime
number theorem states π(x) ∼ x

ln(x) , more precisely,

(3.5.1) lim
x→∞

π(x)

x/ ln(x)
= 1.

The proof is not so simple, but for our purposes, the following result will
suffice:

Theorem 3.5.3. For all x ≥ 2,

π(x) ≥ x

2 log(x)
.

(In [?] it is shown that x
log x < π(x) for x ≥ 17.) We give the proof after

several preliminary lemmas. Let vp(m) denote the largest power of p that

divides m. Thus m = Πp≤mp
vp(m).

Lemma 3.5.4.

vp(n!) =
∑
m≥1
b n
pm
c.

Proof. Among 1, 2, . . . , n, exactly bnp c are multiples of p, contributing bnp c
to the summation, exactly b n

p2
c are multiples of p2, contributing an addi-

tional b n
p2
c to the summation (and thus multiples of p2 are counted two

times). Continuing, one gets the result. �

Recall that
(
m
q

)
= m!

q!(m−q)! . Note that

vp(

(
2n

n

)
) = vp((2n)!)− 2vp(n!) =

∑
m≥1
b 2n

pm
c − 2b n

pm
c.

Exercise 3.5.5: Show that for all x ∈ R, b2xc − 2bxc ∈ {0, 1}. }
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Note that if 2n
pm < 1, i.e., m > log(2n)

log(p) , then b 2npm c − 2b npm c = 0, and thus

(3.5.2) vp(

(
2n

n

)
) ≤ log(2n)

log(p)
.

Stirling’s formula allows one to estimate n!:

ln(n!) = n ln(n)− n+O(ln(n)),(3.5.3)

log(n!) = n log(n)− log(e)n+O(log(n)).(3.5.4)

It is often proved using a contour integral of the Gamma function (see, e.g.,
[Ahl78, §5.2.5]). To see why it is plausible, write ln(n!) = ln(1)+· · ·+ln(n).
This quantity may be estimated by∫ n

1
ln(x)dx = [x ln(x)− x]n1 = n lnn− n+ 1,

giving intuition to (3.5.3).

Exercise 3.5.6: Show that
(
2n
n

)
≥ 22n

2n . }

Lemma 3.5.7. π(2n) ≥ 2n
log(2n) − 1.

Proof. By Exercise 3.5.6

2n log(2)− log(2n) ≤ log

(
2n

n

)
= log(Πpvp((

2n
n ))

≤
∑
p≤2n
b log(2n)

log(p)
c log(p) by (3.5.2)

≤
∑
p≤2n

log(2n)

= π(2n) log(2n).

Thus

(3.5.5) π(2n) ≥ 2n

log(2n)
− 1.

�
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Proof of Theorem 3.5.3. For x ≤ 16, one can check the result by hand.
So assume x > 16 and take n such that 16 ≤ 2n ≤ x < 2n+ 2. Then

π(x) ≥ π(2n) ≥ 2n

log(2n)
− 1 =

1

2 log(2n)
[4n− 1

2 log(2n)
]

≥ 1

2 log(x)
[4n− 1

2 log(2n)
]

≥ x

2 log(x)
.

The last line holds because we have x ≤ 2n + 2 ≤ 4n − 1
2 log(2n) , since

n ≥ 8. �

We will use Theorem 3.5.3 in the form:

Corollary 3.5.8. For every natural number r, there are Ω( r
log r ) numbers

in {1, . . . , r10} relatively prime to r.

Proof. r has at most log(r) prime factors and there are at least r/10
2 log(r/10) =

r
20(log(r)−log(10)) >

4
20 log(r) prime numbers less than r

10 . �

3.5.3. Preliminaries II: Continued Fractions. We will need to approx-
imate real numbers by sequences of rational numbers. A first idea would
simply be to use the decimal expansion. The following scheme has better
convergence properties for our purposes. (E.g., consider the decimal expan-
sion of π compared with the results below.) Given α ∈ R, consider the
expansion

α = α0 +
1

α1 + 1
α2+

1

α3+
1

α4+···

where α0 = bαc,

α1 =
1

α− α0
− b 1

α− α0
c

and in general, αk is the integer part of the reciprocal of the error term
in the previous estimate. Write pn

qn
= [α0, . . . , αn] for the rational number

obtained after the n-th step, which is an approximation to the real number
α.

For example, taking the continued fraction expansion of π, one obtains
22
7 = [3, 7] ∼ 3.142, 333

106 = [3, 7, 15] ∼ 3.1415, 355
113 = [3, 5, 15, 1] ∼ 3.1415926.

If α is rational, we will see momentarily that the algorithm reproduces
α. For example 11

9 = 1 + 2
9 , so α0 = 1. Since 9

2 = 1 + 1
4 , we have α1 = 4,

and since 2 = 2 + 0, we have α2 = 2 and 11
9 = [1, 4, 2].
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Proposition 3.5.9. If the continued fraction expansion of α ∈ R>0 does not
converge at the n-th step, then after the n-th step one obtains [α0, . . . , αn] =
a
b ∈ Q with b ≥ 2

n
2 .

Proof. Write [α0, . . . , αn] = pn
qn

. Then p0 = α0, q0 = 1, p1 = 1 + p0α1,

q1 = α1 and

pk = αkpk−1 + pk−2(3.5.6)

qk = αkqk−1 + qk−2.

Exercise 3.5.10: Verify the equalities (3.5.6).

Since αj > 0, we have pj ≥ 2pj−2 and qj ≥ 2qj−2, so pn−1, qn−1 ≥ 2b
n
2
c,

proving the lower bound on b. �

Theorem 3.5.11. Let α, sr ∈ Q be such that | sr −α| ≤
1

2r2
. Then s

r appears
in the continued fraction expansion for α. In particular, the expansion for
α = a

b terminates after 2 log(b) steps.

Theorem 3.5.11 says that if two rational numbers are close to each other,
then their continued fraction expansions start out the same.

Proof. Take the continued fraction expansion of sr = [β0, . . . , βn], and write
pj
qj

= [β0, . . . , βj ]. Define δ by the equation

α =
s

r
+

δ

2r2
.

Note that δ is a measure of the failure of pn
qn

= s
r to be equal to α. The

hypothesis implies |δ| < 1. Claim:

α =
λpn + pn−1
λqn + qn−1

for

λ = 2

(
qnpn−1 − pnqn−1

δ

)
− qn−1

qn
.

Exercise 3.5.12: Prove the claim.

Slightly abusing notation (as λ 6∈ Z) α = [β0, . . . , βn, λ]. Since λ ∈ Q,
we may write λ = [γ0, . . . , γm], so α = [β0, . . . , βn, γ0, . . . , γm] and s

r appears
at the n-th step. �

In summary: Given α ∈ R and N ∈ Z, the continued fraction algorithm,
in poly(log(N)) steps finds a

b ∈ Q such that b ≤ 16N and a
b approximates α

better than any other rational number with denominator at most b.
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3.5.4. Preliminaries III: the quantum Discrete Fourier Transform.
Recall the DFT for Z/MZ, which we may write in vector notation, for
j ∈ Z/MZ, as

|j〉 7→ 1√
M

M−1∑
k=0

ωjk|k〉

where ω = e
2πi
M . Also recall: the DFT is a unitary change of basis such that

in the new basis, multiplication in Z/MZ is given by a diagonal matrix, and
the classical FFT writes the DFT as a product of O(log(M)) sparse matrices
(each with M << M2 nonzero entries), for a total cost of O(log(M)M) <
O(M2) arithmetic operations to execute.

Write M = 2m ∼ N3. We show that the DFT can be written as a
product of O(m3) = O(log(M)3) controlled local unitary operators. We will
thus be able to produce an approximation of the output vector by a sequence
of poly(m) unitary operators from our gate set.

It will be convenient to express j in binary and view CM = (C2)⊗m, i.e.,
write

|j〉 = |j1〉⊗ · · · ⊗|jm〉
where j = j12

m−1 + j22
m−2 + · · ·+ jm20 and ji ∈ {0, 1}. Write the DFT as

|j1〉⊗ · · · ⊗|jm〉

7→ 1√
M

M−1∑
k=0

ωjk|k〉

=
1√
M

∑
ki∈{0,1}

ωj(
∑m
l=1 kl2

m−l)|k1〉⊗ · · · ⊗|km〉

=
1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ωjkl2

m−l |kl〉
]

=
1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ω(j122m−1−l+···+jm2m−l)kl |kl〉

]

=
1

2
m
2

(|0〉+ ωjm2−1 |1〉)⊗(|0〉+ ωjm−12−1+jm2−2 |1〉)⊗(|0〉+ ωjm−22−1+jm−12−2+jm2−3 |1〉)

(3.5.7)

⊗ · · ·⊗(|0〉+ ωj12
−1+j22−2+···+jm2−m |1〉)

where for the last line if 2m−s−l > m, i.e., s+l < m, there is no contribution
with js because ω2m = 1, and we multiplied all terms by 1 = ω−2

m
to have

negative exponents.

It will be notationally more convenient to write the quantum circuit for
this vector with the order of factors reversed. I.e., we describe a quantum
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circuit that produces

1√
2

(|0〉+ ωj12
−1+j22−2···+jm2−m |1〉)⊗ · · ·⊗ 1√

2
(|0〉+ ωjm−22−1+jm−12−2+jm2−3 |1〉)

(3.5.8)

⊗ 1√
2

(|0〉+ ωjm−12−1+jm2−2 |1〉)⊗ 1√
2

(|0〉+ ωjm2−1 |1〉).

Set

(3.5.9) Rk =

(
1 0

0 ω2−k

)
,

then (3.5.8) is obtained from |j1〉⊗ · · · ⊗|jm〉 as follows: first apply H to
(C2)1.

Exercise 3.5.13: Show that if ω = e
2πi
2m , then ω2−1

= −1.

Since ω2−1
= −1, at this point the first factor becomes 1√

2
(|0〉+ωj12−1 |1〉).

Next apply Λ1R2 to (C2)2⊗(C2)1, so the first factor becomes 1√
2
((|0〉 +

ωj12
−1+j22−1 |1〉)). Continue, applying Λ1Rj to (C2)j⊗(C2)1 for j = 3, . . . ,m.

Note that at this point only the (C2)1-term has been altered, as all the other
factors only acted as controlling qubits.

From now on we leave the (C2)1-slot alone. Next apply H to (C2)2,
followed by R1. Then apply Λ1Rj−1 to (C2)j⊗(C2)2 for j = 3, . . . ,m.

Next apply H followed by R2 to (C2)3, then Λ1Rj−2 to (C2)j⊗(C2)3 for
j = 4, . . . ,m. Continue, until finally one just applies H to (C2)m. Finally
to obtain the DFT, reverse the orders of the factors (a classical operation).

In practice, one has to fix a quantum gate set in advance, so in general
we will have to approximate the transformations Rk from elements of our
gate set, so we will only approximate the DFT.

3.5.5. The order finding algorithm. We are given a andN with gcd(a,N) =
1 and want to find the order of a in (Z/NZ)∗. Set m = d3 log(N)e,
M = 2m ∼ N3 and n = dlog(N)e. Work in (C2)⊗(m+n). (Here and in
what follows, I ignore the additional bits needed to execute the classical
reversible computations.) Initialize the state to |0m+n〉. Apply the quantum
Fourier transform to the first m qubits to obtain

1√
M

∑
x∈Z/MZ

|x〉⊗|0n〉.
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Use our (polynomial in n) reversible powering mod N routine |x〉⊗|y〉 7→
|x〉⊗|y ⊕ ax modN〉 to obtain

1√
M

∑
x∈Z/MZ

|x〉⊗|ax modN〉.

Here and in what follows, ax modN is to be considered as an element of
{0, . . . , N − 1} expressed in binary, so indeed |ax modN〉 ∈ (C2)⊗n. Now
perform a measurement on the last n qubits to obtain some y0 ∈ {0, 1}n
that appears in the image of the map x 7→ ax modN . The resulting vector
is

1√
#{x | ax modN = y0}

∑
x|axmodN=y0

|x〉⊗|y0〉.

Let x0 be the smallest natural number such that ax0 ≡ y0 modN . Then we
may rewrite the output vector as

(3.5.10)
1√
K

K−1∑
`=0

|x0 + `r〉⊗|y0〉,

where

(3.5.11) K = bM − (1 + x0)

r
c

and r is the period.

Compare (3.5.10) with the step in Simons’ algorithm giving rise to
(3.3.1). As with Simons’ algorithm, we now have a vector that “sees” r
that we will manipulate to get information about r.

Apply the quantum Fourier transform to the first m qubits again to
obtain

1√
M
√
K

∑
x∈Z/MZ

K−1∑
`=0

ω(x0+`r)x|x〉⊗|y0〉.

Finally measure the first m qubits to obtain some x ∈ Z/MZ.

How will this be useful? We claim that with sufficiently high probability,
the algorithm will produce an x such that x

M will be close to some fraction

with denominator r, say b
r , more precisely that | br −

x
M | <

1
2r2

. When we

take the partial fraction decomposition of x
M , by Theorem 3.5.11 the term b

r
will appear, so we test the denominators qj and take the first one such that
aqj ≡ 1 modN .

We need to show there are “enough” such good x each with sufficiently
high probability of being chosen that we succeed. Since we may repeat the
experiment poly(logN) times while still being in polynomial time, if G is
the number of good x and P the probability of drawing any given good x,
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we need GP = Ω( 1
logN ). We will show G = Ω( r

log r ) and P = Ω(1r ), and

since r < N , this will suffice.

The probability of drawing any given |x〉 is

1

MK
|ωx0x + ω(x0+r)x + ω(x0+2r)x + · · ·+ ω(x0+(K−1))rx|2

=
1

MK
|1 + ωrx + ω2rx + · · ·+ ω(K−1)rx|2

To fix ideas, first consider the highly improbable case M = rc for some
natural number c. Write η = ωrx. Note that ηc = (ωrc)x = 1. If c - x, then
1 + η + η2 + · · · + ηc−1 = 0 and the probability of drawing such x is zero,

but if c | x, each power equals 1 as ωrjx = ω
M
c
jx = (ωM )j

x
c = 1 as x

c ∈ Z,

and thus we will draw x = cb for a random b ∈ {0, . . . , r−1} so x
M = cb

rc = b
r

and all such x’s are equally likely. Thus in this case P = 1 and G = r.

Now for the general case: the idea is similar- we will prove that the
values of x that are most likely to be drawn will be such that xr is nearly
divisible by M . Recall that we also need gcd(bxrM c, r) = 1. We first show
G = Ω( r

log(r)).

Lemma 3.5.14. There exist Ω( r
log(r)) elements x ∈ Z/MZ satisfying:

i) 0 ≤ xrmodM < r
10 , and

ii) gcd(bxrM c, r) = 1.

Proof. Consider the case r is odd, i.e., gcd(r,M) = 1. Then the map
x 7→ rxmodM is a permutation on (Z/MZ)∗. By Corollary 3.5.8 there are
Ω( r

log(r)) elements x such that xrmodM < r
10 and gcd(x, r) = 1.

Since xrmodM = rx − b rxM cM , we have gcd(b rxM c, r) = 1 as otherwise
rxmodM would also have a factor in common with r.

When r is even, write d = gcd(r,M), set r′ = r
d and M ′ = M

d .

Exercise 3.5.15: Apply the same argument to show there exists Ω( r
d log(r))

x’s in Z/M ′Z satisfying the condition. Finally show that for all c ∈ N,
x+ cM also satisfies the condition.

�

It remains to show P = Ω(1r ):

Lemma 3.5.16. If x is such that 0 < xrmodM < r
10 , then the probability

of drawing x in Shor’s algorithm is Ω(1r ).
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Proof. The probability of drawing x is

1

KM
|
K−1∑
`=0

ω`rx|2.

Recalling the sum of a geometric series, this is

1

KM
|1− ω

rKx

1− ωrx
|2 =

1

KM
|
1− (cos( rKxM ) + i sin( rKxM ))

1− (cos( rxM ) + i sin( rxM ))
|2.

Using that rKx
M , rxM are both small so their cosines are close to 1, this is close

to
1

KM
|
sin( rKxM )

sin( rxM )
|2

and again using that these quantities are small, this is close to

1

KM
|
rKx
M
rx
M

|2 =
1

KM
|K|2 =

K

M

Since K
M > 1

2r we conclude. �

3.5.6. Putting it all together. The first assertion of Lemma 3.5.14 im-
plies

|xr − cM | < r

10
for c = dxrM e, i.e.,

| x
M
− c

r
| < 1

10M
.

Since M ∼ N3 and r < N , Theorem 3.5.11 applies and we conclude that
Shor’s algorithm will succeed in polynomial time with high probability.

3.6. A unified perspective on quantum algorithms: the
hidden subgroup problem

Given G: a discrete group with a specific representation of its elements in
binary, an explicit function f : G→ Fn2 , and the knowledge that there exists
a subgroup G′ ⊂ G such that f(x) = f(y) if and only if xy−1 ∈ G′, find G′.

For abelian groups, it is sufficient to solve the problem for G = Z⊕k as
all abelian groups are quotients of some Z⊕2k.

Simons algorithm is the case G = Z⊕m2 . The DFT2 matrix is

H =
1√
2

(
1 −1
−1 1

)
and G′ is the subgroup generated by a ∈ Z⊕m2 .
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Shor’s algorithm is the case G = Z and f is the function x 7→ ax modN .
Note that with Shor, as we did with multiplying polynomials, we restricted
to Z/MZ for M sufficiently large.

Both are solved via the DFT for the finite group G.

Another example, closely related to order finding, is as follows: the

discrete logarithm of a number a at base ζ = e
2πi
N is the smallest positive

integer s such that ζs = a. Consider the function f : Z2 → ZN given by
f(x1, x2) = ζx1ax2 modN . Take G = Z2, G′ = {(x1, x2) ∈ Z2 | ζx1ax2 ≡
1 modN}. Given G′, just find an element of the form (s,−1) ∈ G′, and s is
the discrete logarithm of a at base ζ.

3.7. What is a quantum computer?

Currently there are three approaches towards building a quantum computer:
adiabatic quantum optimization (D Wave), digital (IBM), topological (cur-
rently science fiction).

The main problem of quantum computing is on the one hand, one wants
an isolated system to be resistant to outside noise, on the other hand one
needs to be able to manipulate it.

3.7.1. D Wave’s computers. Claims of 2, 000 qubits. Machine only de-
signed for quadratic optimization. Yet to have an advantage over a classical
computer. Internal workings of machine kept private. Principle quantum
cousin of MRI. If they can scale up significantly, despite these drawbacks,
they will beat classical computers.

3.7.2. IBM’s digital quantum computer. It really exists and is quan-
tum, and the world is free to examine it. 53 qubits as of 2020.

3.7.3. Topological quantum computing. technology not yet there...

3.8. Appendix: review of basic information on groups and
rings

Let S be a set, a binary operation on S is a map f : S × S → S. One often
writes f(x, y) = x ∗ y.

A group is a set G with a binary operation such that 1) for all x, y, z ∈ G,
x ∗ (y ∗ z) = (x ∗ y) ∗ z) (associativity), 2) there exists and identity element
e ∈ G such that e ∗ x = x ∗ e = x for all x ∈ G and 3) for all x ∈ G, there
exists an inverse x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e.

Examples: (G, ∗) = (Z,+), U(n) with operation matrix multiplication.
Let Z/NZ denote the set of equivalence classes in the integers defined by
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remainder under division by N . Then (Z/NZ)∗, the set of elements of
Z/NZ with multiplicative inverses is a group, where the binary operation is
multiplication inherited from multiplication of the integers: [x]∗ [y] = [x∗y]
(one must verify this is well defined).

Non-examples: the set of stochastic matrices with operation matrix mul-
tiplication, the nonzero integers with operation multiplication.

A group G is abelian if x ∗ y = y ∗ x for all x, y ∈ G. (Z,+), (Z/NZ)∗

are abelian groups, U(n) is not, when n > 1.

An abelian group is cyclic if it is generated by a single element.

A ring is a set R with two binary operations, often denoted + and ∗, such
that 1) (R,+) is an abelian group, 2) ∗ is associative and has an identity,
often denoted 1 or 1R, 3) (compatibility) for all x, y, z ∈ R, (x + y) ∗ z =
x ∗ z + y ∗ z and z ∗ (x+ y) = z ∗ x+ z ∗ y.

Examples (Z,+, ∗), (Z/NZ,+, ∗) (where both operations are inherited
from the operations on Z), Z[x]: the polynomials in one variable with integer
coefficients.

Let G,H be groups. A map f : G → H is a group homomorphism if
f(x ∗ y) = f(x) ∗ f(y) (where the first ∗ is in G and the second in H) for
all x, y ∈ G. Let R,S be rings. A map f : R → S is a ring homomorphism
if f(1R) = 1S , f(x + y) = f(x) + f(y) and f(x ∗ y) = f(x) ∗ f(y) for all
x, y ∈ R.



Chapter 4

Classical information
theory

We have been referring to the classical unit of information as a bit (short
for “binary digit”), an element of {0, 1}. The discovery/invention of the bit
by Tukey and its development by Shannon [Sha48] was one of the great
scientific achievements of the twentieth century, as it changed the way we
view information, giving it an abstract formalism that is discussed in this
chapter. Instead of reading this chapter, we suggest just reading Shannon’s
classic article, as it is extremely well written, with carefully chosen examples.

The basic question is: Given a physical channel (e.g., telegraph wire),
what is the maximal rate of transmission of information, tolerating a small
amount of error? I begin with toy examples, leading up to Shannon’s two
fundamental theorems on channel capacity.

4.1. Data compression: noiseless channels

4.1.1. A toy problem. (Following [BCHW16]) A source emits symbols
x from an alphabet X that we want to store efficiently so we try to encode
x in a small number of bits, to say y ∈ Y in a way that we can decode it
later to recover x.

source x Y Xdest.

E
D

Figure 4.1.1. Message from source encoded into bits then decoded

57
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The symbols from X may be emitted with varying frequencies. Let
p = PX denote the associated probability distribution. We want to deter-
mine the minimum possible size for Y. Since we are dealing in bits, it will
be convenient to use the logarithms of cardinalities, so define Cap(PX ) :=
min log |Y|.

Consider the case X = {a, b, c, d} where p(a) = 0.1, p(b) = 0, p(c) = 0.4
and p(d) = 0.5. We can clearly get away with Y having cardinality 3, e.g.,
for the encoder, send a, b to 1, c to 2 and d to 3, then for the decoder,
send 1 to a, 2 to c and 3 to d. In general, we can always throw away
symbols with probability zero. On the other hand, we cannot map two
distinct symbols that do occur to the same symbol, as there would be no
way to distinguish them when decoding. Thus Cap(p) = log supp(p), where
supp(p) = #{x ∈ X | Pr(x) > 0}.

Now say we are willing to tolerate a small error. In addition to throwing
out the symbols that do not appear, we may also discard the largest set of
symbols whose total probability is smaller than ε. Call the corresponding
quantity Capε(p). In the example above, if we take ε > 0.1, we can lower
storage cost, taking |Y| = 2.

Recall that a probability distribution p on X must satisfy
∑

x∈X Pr(x) =
1. We relax this to non-normalized probability distributions, q, where q(x) ≥
0 for all x ∈ X and

∑
x∈X q(x) ≤ 1. Define Capε(p) = min log supp(q),

where the min is taken over all non-normalized probability distributions q
satisfying q(x) ≤ p(x) for all x ∈ X and

∑
x∈X q(x) ≥ 1− ε.

4.1.2. The case of interest. Now say the transmission is not a single sym-
bol, but a string of n symbols, so we seek an encoder E : X n → Y(n), where
Y(n) is a set that varies with n, and decoder D : Y(n)→ X n, and we want
to minimize |Y(n)|, with a tolerance of error that goes to zero for n going to
infinity. In practice one wants to send information through a communication
channel (e.g. telegraph wire). The channel can only send a limited number
of bits per second, and we want to maximize the amount of information we
can send per second. Define Rate(p) := limε→0 limn→∞

1
n Capε(pn). It now

remains to compute the right hand side of the expression. To be able to do
so, we review some probability.

4.1.3. Expectation and the law of large numbers. The expectation
(or average) of a random variable on a countable set X equipped with a

probability distribution p is

(4.1.1) E[X] =
∑
aj∈X

X(aj)p(aj).
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Random variablesX,Y are said to be independent if for all x, y, pX,Y (x, y) =
pX(x)pY (y). They are identically distributed if they define the same prob-
ability distributions. We write X1, . . . , Xn are iid if they are independent
and identically distributed.

For example, if X = {H,T} are the possible outcomes of flipping a biased
coin which lands heads (H) with probability p and tails with probability
1− p, and X(H) = 1, X(T ) = −1, then E[X] = 2p− 1, which is zero if the
coin is fair. We will often be concerned with repeating an experiment many
times. A typical situation is to define random variables Xj where Xj is 1
if the outcome of the j-th toss is heads and Xj = −1 if the outcome of the
j-th toss is tails. Then the Xj are iid.

Note that E[X] ∈ [−∞,∞]. The law of large numbers implies that the
name “expectation” is reasonable, that is, if one makes repeated experiments
(e.g., as with the coin flips above) and averages the outcomes, the averages
limit towards the expectation.

More precisely, the weak law of large numbers states that forX,X1, X2, ...
independent identically distributed random variables, and for any ε > 0,

(4.1.2) lim
n→∞

Pr

(∣∣∣∣X1 + · · ·+Xn

n
− E[X]

∣∣∣∣ ≥ ε) = 0.

We may rephrase this as for all ε, δ > 0, there exists an n0 such that for all
n ≥ n0

(4.1.3) Pr

(∣∣∣∣X1 + · · ·+Xn

n
− E[X]

∣∣∣∣ ≥ ε) < δ.

The strong law of large numbers states moreover that

(4.1.4) Pr

(
lim
n→∞

X1 + · · ·+Xn

n
= E[X]

)
= 1.

Here and throughout Pr(Z) denotes the probability of the event Z oc-
curring with respect to some understood distribution.

However, individual outcomes can be far from the expectation. A first
measurement of how far one can expect to be from the expectation is the
variance: The variance of X is

var(X) = E[(X − E[X])2](4.1.5)

= E[X2]− E[X]2(4.1.6)

Exercise 4.1.1: Verify that (4.1.6)=(4.1.5).

Often one deals with the square-root of the variance, called the standard
deviation, σ(X) =

√
var(X).
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4.1.4. Estimating |Y(n)|. Say |X | = d. Define a map wt : X n → Rd by
xn 7→ (c1, . . . , cd), where cj is the number of times j occurs in the string.
Then E[wt(xn)] = (np1, . . . , npd). The weak law of large numbers (4.1.2)
states that for any ε > 0,

lim
n→∞

Pr[|| 1
n

(wt(xn)− E[wt(xn))]||1 > ε] = 0

where for f : Z → Rd, define ||f ||1 =
∑

z∈Z |f(z)|. In our case, Z = X n.

To minimize |Y(n)| while having error going to zero as n→∞, we throw
out all strings xn with || 1n(wt(xn)−E[wt(xn))]||1 > ε, so Y(n) will have size

|Y(n)| = #{xn | || 1
n

(wt(xn)− E[wt(xn))]||1 < ε}

=
∑

weights c|∑
ci=n and || 1n (c−E[wt(xn))]||1<ε

(
n

c

)
.

If ε is small, the multinomial coefficients appearing will all be very close
to

(4.1.7)

(
n

np1, . . . , npd

)
and the number of xn of a given weight grows like a polynomial in n, so for
what follows, we can take the crude approximation (which will be justified
later)

(4.1.8) |Y(n)| ≤ poly(n)

(
n

np1, . . . , npd

)
.

We now need to approximate (4.1.7)

4.1.5. Approximating binomial coefficients. Let xj be iid random vari-
ables. The string x1 · · ·xn =: xn is iid. Say X = {1, . . . , d} with Pr(j) = pj .
The probability of any given string occurring depends only on the number of
1’s 2’s etc.. in the string and not on their order. A string with cj j’s occurs
with probability pc11 · · · p

cd
d . (Note that c1 + · · · + cd = n.) The number of

strings with this probability is(
n

c1, . . . , cd

)
:=

n!

c1! · · · cd!

and we will need to estimate this quantity.

Recall that Stirling’s formula (3.5.4) implies log(n!) = n log(n)−log(e)n+
O(log(n)).
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In particular, for 0 < β < 1 such that βn ∈ Z,

log

(
n

βn

)
= log

n!

(βn)!((1− β)n)!
(4.1.9)

= n[−β log(β)− (1− β) log(1− β)] +O(log(n))

Let H(β) = −β log(β)− (1− β) log(1− β) and more generally:

Definition 4.1.2. For a probability distribution p = (p1, . . . , pd), the Shan-
non entropy of p. is

H(p) = −
d∑
i=1

pi log(pi).

Shannon entropy will play a central role in information theory.

Exercise 4.1.3: Show that for the multinomial coefficient(
n

p1n, . . . , pdn

)
=

n!

(p1n)! · · · (pdn)!
,

where p1 + · · · pn = 1, we have

(4.1.10) log

(
n

p1n, . . . , pdn

)
= nH(p) +O(log(n)).

4.1.6. Shannon’s noiseless channel theorem, first version. When we
take logarithms, the right hand side of (4.1.8) becomes nH(p) +O(log(n)).
Thus

1

n
log |Y(n)| ≤ H(p) + o(1)

and we see Rate(p) ≤ H(p).

Theorem 4.1.4. [Sha48] Rate(p) = H(p)

We give a proof in §4.3. Since H(p) is a fundamental quantity, we first
discuss some of its properties.

4.2. Entropy, i.e., uncertainty

The entropy is a measure of the uncertainty of an outcome. For example,
consider the case d = 2, with probabilities p, 1− p. The graph of H(p) is

***graph here***

Note that it has a unique maximum when p = 1
2 (situation of maximal

uncertainty) and is 0 in the two certain cases.

We arrived at H while approximating logs of multinomial coefficients.
Say we had not yet discovered it but were looking for a function h on prob-
ability distributions with the following properties:

(1) h is continuous in the pi.
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(2) If pi = 1
d for all i and we increase d, h is monotonically increasing.

(3) h is additive with respect to breaking an event into a sequence of
conditional events: Write X = A1 t · · · tAk and assume p(Aj) > 0
for all j. Write pA = (p(A1), . . . , p(Ak)) Then h(pX ) = h(pA) +∑k

i=1 p(Ai)h(pX|Ai).

For example, if X = {1, 2, 3}, with p1 = 1
2 , p2 = 1

3 , p3 = 1
6 , we can

choose one of the three at the outset, so we have H(12 ,
1
3 ,

1
6), or we can first

decide between the sets {1} and {2, 3}, both of which have probability 1
2

and then if we choose the second, decide between 2 and 3, the first with
probability 2

3 , the second with probability 1
3 . Thus we require the equality

H(12 ,
1
3 ,

1
6) = H(12 ,

1
2) + 1

2(0) + 1
2H(23 ,

1
3).
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1/6
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2/3

1/3

1/2

1/3

1/6

1/2

1/3

1/6

Figure 4.2.1. a choice of three outcomes viewed as a choice of two
followed by a second choice of two

Theorem 4.2.1. [Sha48] The only function h satisfying 1,2,3 is, up to a
constant, the entropy.

Proof. SetA(d) = h(1d , . . . ,
1
d). By 3, A(sm) = mA(s) (recall that log(sm) =

m log(s)).

To see this, consider the example s = 2,m = 3:

1/8

1/2

1/2

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

Figure 4.2.2. repeated application of (3) gives A(( 1
2 )3) = A( 1

2 ) +
1
2A( 1

4 ) + 1
2A( 1

4 ) = 3A( 1
2 )

Exercise 4.2.2: Show that A(s) = C log(s) for some constant C.

Now say we have a choice of D equally likely outcomes, which we break

up as D =
∑d

i=1 di. Write pi = di
D , and assume the di are natural numbers.
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By property (3), C log(D) = H(p1, . . . , pd) + C
∑

i pi log di, i.e.,

H(p1, . . . , pd) = −C[
∑
i

pi log(di)− log(D)]

= −C[
∑
i

pi log(di)−
∑
i

pi log(D)]

= −C
∑
i

pi log(
di
D

)

= −C
∑
i

pi log(pi).

Finally use property 1 to extend by continuity to all probability distribu-
tions. �

Here are some further properties of entropy that are easily verified:

(1) 0 ≤ H(p) ≤ log(d) with H(p) = 0 if and only if the outcome is
certain, i.e., p = (0, . . . , 0, 1, 0, . . . , 0), and with H(p) = log(d) if
and only if p = (1d , . . . ,

1
d).

(2) Say our space is X×Y, soH(pX×Y) = −
∑

i,j pX×Y(i, j) log pX×Y(i, j).

Then we can recover H(pX ) as:

H(pX ) = −
∑
i,j

pX×Y(i, j) log(
∑
k

pX×Y(i, k)).

In particular, H(pX×Y) ≤ H(pX ) +H(pY), with equality if and
only if X ,Y are independent, i.e., pX×Y(i, j) = pX (i)pY(j). (The
uncertainty of pX×Y is at most the sum of the uncertainties of the
marginal distributions pX and pY .)

(3) A modification of the pi towards equalization increases H. More
precisely:

Exercise 4.2.3: Let A be a doubly stochastic matrix, i.e., the en-
tries of A are non-negative and the column and row sums of A
are one. Show that H(Ap) ≥ H(p) and unless A is a permutation
matrix, that there exists p where the inequality is strict.

4.3. Shannon’s noiseless channel theorem

Theorem 4.3.1. [Sha48] Given ε > 0, δ > 0, there exists n0 such that for
all n ≥ n0, there is a decomposition X×n = X nε−typ t X nδ−small where

(1) Pr(X nδ−small) < δ, and

(2) ∀x ∈ X nε−typ,

| 1
n

log(Pr(x))−H(p)| < ε,
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(3)

(1− δ)2n(H(p)−ε) ≤ |X nε−typ| ≤ 2n(H(p)−ε).

The set X nε−typ will play the role of Y(n) from §4.1. Informally, the
probability of not being ε-typical is small, if ε-typical, the probability is
close to the expectation, and if the entropy is large, most sequences are
ε-typical, and if it is small, there are few such.

Proof. The strong law of large numbers (4.1.4) means that given iid random
variables Xj , for all ε, δ > 0, there exists n0 such that for all n ≥ n0 such
that

P

(
| X1 + · · ·+Xn

n
− E[X] |> ε

)
< δ

Let X nδ−small be all events x = (x1, . . . , xn) where | 1n(x1+ · · ·+xn)−E[X]| ≥
ε, and X nε−typ the events x with | 1n(x1 + · · · + xn) − E[X]| < ε. In our case
X = − log(p(x)) and E[− log(p(x))] = H(p). Note that (3) is a quantitative
version of (4.1.8). To prove it, note that the second condition implies that
for all x ∈ X nε−typ, and n > 1

ε ,

(4.3.1) Pr(x) ≤ 2−n(H(p)−ε).

On the other hand

1− δ ≤ Pr(X nε−typ) ≤ 1

i.e.,

1− δ ≤
∑

x∈Xnε−typ

Pr(x) ≤ 1

so plugging in (4.3.1) we conclude.

�

It will be useful to give two variants of Theorem 4.3.1.

Theorem 4.3.2. [Sha48] Fix q ∈ (0, 1). Let num(q) denote the minimum
cardinality of a subset S of X×n such that Pr(S) ≥ q. Then

lim
n→∞

log(num(q))

n
= H(p).

Note that the right hand side is independent of q, thus for large n, the
ratio is nearly independent of q and n. Theorem 4.3.2 will be a consequence
of:

Theorem 4.3.3. [Sha48] Let R < H(p) and let S(n) ⊂ X×n be a sequence
of subsets with |S(n)| ≤ 2nR, i.e., 1

n log |S(n)| ≤ R. Then for any η > 0,
there exists n0 such that for all n > n0, Pr(S(n)) < η.

In other words, any subset of size less than capacity can only accumulate
a small amount of the probability.
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Proof of Theorem 4.3.3. Write S(n) = S(n)δ−small t S(n)ε−typ, where
S(n)δ−small = S(n)∩X nδ−small and S(n)ε−typ = S(n)∩X nε−typ. Then |S(n)ε−typ| <
|S(n)| < 2nR. By (4.3.1) each element of S(n)ε−typ has probability at most

2−n(H(p)−ε), so Pr(S(n)ε−typ) ≤ 2−n(H(p)−ε)2nR. So just take, ε < H(p)−R,

and n0, δ such that 2−n0(H(p)−R−ε) + δ < η. �

Theorem 4.3.4. [Sha48] Let a source X have entropy H(p) (bits per sym-
bol) and let a channel have capacity C (bits per second). Then for any
ε > 0, it is possible to encode the output of the source to transmit at the
rate C

H(p) − ε symbols/sec., and it is not possible to reliably transmit at an

average rate greater than C
H(p) .

The idea of the proof is clear: just transmit all the ε-typical sequences
and discard the others.

4.4. Transmission over noisy channels

Say we transmit symbols x and receive symbols y over a channel subject
to noise, so we may or may not have y = x. Intuitively, if the noise is
small, with some redundancy we should be able to communicate accurate
messages most of the time. Let Rate denote the maximal possible rate of
transmission. In a noiseless channel this is just H(pX ), but now we must
subtract off something to account for the uncertainty that, upon receiving y,
that it was the signal sent. This something will be the conditional entropy,
H(pX |pY) defined below. The punch line will be:

Given a channel with noise and symbols sent according to pX , and noise
given by pY , the maximum rate of transmission is H(pX )−H(pX |pY).

Given a channel, with noise its maximal capacity for transmission is
maxqX (H(qX )−H(qX |pY)).

Note that the second result is trivial in the noiseless case - one just
takes a uniform distribution for the symbols. What is going on here is that
if some symbols are more susceptible to corruption than others, the uniform
distribution will no longer be optimal.

4.4.1. Conditional entropy. Recall the conditional probability of i oc-
curring given knowledge that j occurs (assuming Pr(j) > 0): PrX|Y(i|j) =
PrX ,Y (i,j)
PrY (j)

(also recall PrY(j) =
∑

i PrX ,Y(i, j)). Define the conditional en-
tropy

H(pY |pX ) := −
∑
i,j

PrX ,Y(i, j) log PrY|X (j|i).

Note that

(4.4.1) H(pY |pX ) = H(pX ,Y)−H(pX )
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or equivalently H(pX ,Y) = H(pX ) + H(pY |pX ), the uncertainty of pX ,Y is
the uncertainty of pX plus the uncertainty of pY given pX .

In particular, we have H(pX )+H(pY) ≥ H(pX ,Y) = H(pX )+H(pY |pX ),
i.e.,

H(pY) ≥ H(pY |pX ),

i.e., with extra knowledge, our uncertainty about pY cannot increase, and
decreases unless pX and pY are independent).

4.4.2. Examples. We first give an example where pX is fixed. Say 0’s
and 1’s are transmitted with each having a probability of error .01, so
H(pX |pY) = −[.99 log(.99) + .01 log(.01)] ∼ .81 bits/symbol, and we can
transmit 1000 bits/second.

Exercise 4.4.1: Verify the above assertion about H(pX |pY).

The above discussion predicts a transmission rate of 1000 − 81 = 919
bits/second. If the probability of error goes up to 1

2 , then H(pX |pY) = 1
and our discussion predicts a rate of 1000 − 1000 = 0 bits/second, which
agrees with our intuition that what is received is just noise.

Here is an example where we choose pX to optimize capacity. Now say
X = {a, b, c} where the symbol a is never effected by noise, b has probability
p being transmitted correctly and 1 − p of being flipped to c, and c has
probability p being transmitted correctly and 1− p of being flipped to b.

Let pa be the probability that a is transmitted, let pb be the probability
that b is transmitted and pc the probability that c is transmitted: we get
to choose these. Given the symmetry of the situation, we should set pb =
pc =: pb,c.

Thus

H(pX ) = −pa log pa − 2pb,c log pb,c

H(pX |pY) = 2pb,cH(p, 1− p)

We want to maximize H(pX )−H(pX |pY) by a good choice of pa, pb,c, subject
to the constraint that pa + 2pb,c = 1. We have

H(pX )−H(pX |pY) = −pa log pa − 2pb,c log pb,c − 2pb,cH(p, 1− p).

Viewed as a function of pa, pb,c, we have a standard maximization problem
from calculus.

Exercise 4.4.2: Differentiating and imposing the constraint, show that it
is optimal to take

(4.4.2) pa =
eH(p,1−p)

eH(p,1−p) + 2
, pb,c =

1

eH(p,1−p) + 2
.
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Using (4.4.2), we obtain

H(pX )−H(pX |pY) = log
eH(p,1−p) + 2

eH(p,1−p) .

For example, when p = 1, i.e., no errors, we obtain log(3), as we have
a noiseless channel. When p = 1

2 , we obtain log(2), as the second and
third symbols are indistinguishable, so we essentially have two channels.
In general, the capacity is between these two, and the first channel used
somewhere between the same amount and twice as often as the other two
channels.

4.4.3. Warm up: Communication with the help of a correction
channel. Before giving the proof of Shannon’s theorem, here is a warm-
up problem giving intuition into the conditional entropy H(pX |pY), which
Shannon calls the “equivocation”, as the amount of extra information that
must be supplied to correct errors on a noisy channel.

Consider the following picture ***

In the transmission from the source to the receiver, an observer is allowed
to see what is transmitted and what the receiver gets. The observer is
then allowed to send correction data to allow the receiver to correct the
message. The question is how much information must the observer send to
the receiver to enable correction, i.e., how much capacity does the correction
channel need to correct errors (assume the correction channel is not subject
to noise).

Theorem 4.4.3. [Sha48] If Cap(correction channel) ≥ H(pX |pY), then in
the scheme above, all but an arbitrarily small fraction of the errors can be
corrected.

If Cap(correction channel) < H(pX |pY), then in the scheme above,
reliable error correction is not possible.

Proof. Assume we are in the first case, say yn is received when xn is sent
over t seconds. By the same argument as in Theorem 4.3.1(3) applied to

#{xn | PrX|Y(xn, yn) ≥ 1 − δ}, there exist on the order of 2tH(pX |pY ) pos-
sible xn’s that could have reasonably produced yn. Thus we need to send
tH(pX |pY) bits each t seconds, which is possible with an ε-tolerance of error
on a channel of capacity H(pX |pY).

To prepare for the second case:

Exercise 4.4.4: For any random variables x, y, z, determining probability
distributions pX , pY , pZ , show that

H(pX |pY , pZ) ≥ H(pX |pY)−H(pZ |pY) ≥ H(pX |pY)−H(pZ).
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Now let x be the output of the source, y the received signal, and z the
signal sent over the correction channel. We see H(pX |pY , pZ) > 0 so we
cannot recover x reliably by the noiseless theorem. �

Note that we have three interpretations of the rate:

Rate = H(pX )−H(pX |pY) the information sent minus the uncertainty of what sent

= H(pY)−H(pY |pX ) the information received minus the noise

= H(pX ) +H(pY)−H(pX×Y)
the sum of the information sent and received minus the
joint entropy, essentially the bits/sec. common to x, y

The Rate is also called the mutual information.

4.4.4. Capacity of a noisy channel. Define the capacity of a noisy chan-
nel to be the maximum rate over all possible probability distributions on the
source:

Cap := maxqX (H(qX )−H(qX |pY)) .

Theorem 4.4.5. [Sha48] Let a discrete channel have capacity Cap and
entropy per second H. If H < Cap, then there exists an encoding p of the
source such that information can be transmitted over the channel with an
arbitrarily small frequency of errors H(pX |pY) **check**. If H > Cap, then
there exists an encoding p such that the equivocation is less than H−Cap +ε
for any ε > 0, and there does not exist any p with equivocation less than
H − Cap.

The basic idea is the same as the noiseless case, however there is a novel
feature that now occurs frequently in complexity theory arguments - that
instead of producing an algorithm to find the efficient encoding, Shannon
showed that a random choice of encoding will work. More on this after the
proof.

Proof. Split the transmitter and receiver X×n and Y×n into the union of
ε-typical δ-small subsets. For a high probability message yn in Ynε−typ, there

are roughly 2H(pX |pY )t “reasonable”xn’s, i.e., elements of X nε−typ, that could

have been sent for yn to be received, i.e., roughly 2H(pX |pY )t elements of
X nε−typ. On the other hand, if some xn ∈ X nε−typ is sent, there are about

2H(pY |pX )t elements of Ynε−typ that could be received.

**pic***

Every t seconds we have 2tR high probability messages. Say yn is ob-
served, we want to know the probability that more than one message in
X nε−typ could arrive as yn, based on our choice of distribution.

Take a random encoding of X nε−typ, so we have 2tR messages distributed

at random among 2tH(pX ) points. The probability of a particular message
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being received as yn is 2tR

2tH(pX ) = 2t(R−H(pX ))). The probability that no

xn ∈ X nε−typ (other than yn) is sent to yn is

(4.4.3) [1− 2t(R−H(pX ))]2
tH(pX |pY )

.

Now say R < Cap, and write R − H(pX ) = −H(pX |pY) − η for some
η > 0, so (4.4.3) becomes

[1− 2−tH(pX |pY )−tη]2
tH(pX |pY )

.

This limits to 1 as t→∞.

To prove the second assertion, just send Cap bits/sec. of x’s generated
and throw away the rest. This gives H(pX |pY) equal to H(pX ) − Cap plus
the ε from the first case.

�

Exercise 4.4.6: Verify that, for H ≥ 0, η > 0, limt→∞[1−2−tH−tη]2
tH

= 1.
}

Note that the phrase “Take a random encoding” is not constructive, as
it gives no recipe how to do so.

After presenting the proof, Shannon remarks: “An attempt to obtain a
good approximation to ideal coding by following the method of the proof
is generally impractical. ... Probably this is no accident but is related to
the difficulty of giving an explicit construction for a good approximation
to a random sequence”. To our knowledge, this is the first time that the
difficulty of “finding hay in a haystack” (phrase due to Howard Karloff) is
mentioned in print. This problem is central to complexity: for example,
Valiant’s algebraic version of P 6= NP can be phrased as the problem of
finding a sequence of explicit polynomials that are difficult to compute,
while it is known that a random sequence is indeed difficult to compute.
(According to A. Wigderson, the difficulty of writing down random objects
was explicitly discussed by Erdös, in the context of random graphs, at least
as early as 1947, in relation to his seminar paper [Erd47]. This paper,
along with [Sha48] gave rise to the now ubiquitous probabilistic method in
complexity theory.





Hints and Answers to
Selected Exercises

Chapter 1.

1.2.3 First do the case that one of the n×n matrices has distinct eigenvalues,
then do the general case.

1.2.9 see Figure 1.2.1.

1.2.11 Write(
DFTM ∆MDFTM
DFTM −∆MDFTM

)
=

(
IdM ∆M

− IdM −∆M

)(
DFTM 0

0 DFTM

)
.

Also note that a k × k permutation matrix has k nonzero entries, and the
product of two permutation matrices is a permutation matrix.

?? Choose the first four rows and last four columns. One obtains a 4 × 4
matrix M ′ and the associated tensor T ′, so R(Taft,3) ≥ 8+R(T ′). Iterating
the method twice yields R(Taft,3) ≥ 8 + 4 + 2 + 1 = 15.

Chapter 2.

2.1.7 Write A1 := A|v⊥1 (the restriction of A to v⊥1 ). Note that A1 must

have an eigenvector and that it is unitary. Repeat n− 1 times.

2.1.11 Consider 〈vi|vj〉 = 〈Avi|Avj〉.
2.2.11 It is sufficient to work in bases, i.e., with matrices. First prove the

case X is diagonal, then the case X is diagonalizable, then either write
X = Xs +Xn as the sum of a diagonlizable matrix and a nilpotent matrix
or argue that the diagonalizable matrices is a dense open subset in the space
of all matrices.

71
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2.2.13 First consider the case X is diagonal, and use that the eigenvalues
of a Hermitian matrix are real.

2.2.20 Differentiate U(t)v(t) where v(t) is an eigenvalue of U(t), and U(0) =
Id.

2.2.22 It suffices to do the case w =

(
1
0

)
.

2.5.3 7
8 .

Chapter 3.

3.1.4 Use induction: the case x = 1 is easy, and use exercise 3.1.3 to prove
the induction step.

3.1.11 Consider the binomial coefficients in the expansion of (x+ a)N .

3.1.1 First do the case k = 2`. Then show the general case by using the
binary expansion of k.

3.5.1 Use Exercise 1.2.6.

3.5.5 Write x = bxc+{x}. If {x} < 1
2 , then 2x = 2bxc+{2x} and therefore

b2xc = 2bxc. If If {x} ≥ 1
2 , then b2xc = b(2bxc)c+ 1.

3.5.6 Use (4.1.10).

Chapter 4.

4.4.6 Prove an upper and a lower bound for the quantity.

??

Pr(span{M1,M2}) = 1

Pr(M1) = |α|2

Pr(M2) =
1

2
|α+ β|2

Pr(M1 ∩M2) = 0

?? Use that any X ∈ End(H) may be uniquely written as a sum of a
Hermitian and an anti-Hermitian (i.e., i times a Hermitian) operator.

?? Use the Cauchy-Schwartz inequality, in the form | trace(ABρ)|2 ≤ trace((Aρ)2) trace((Bρ)2).

?? Use the polar or singular value decomposition.

Chapter 5.

?? Note that transpose⊗ Id(
∑

i,j |ii〉〈jj|) =
∑

i,j |ji〉〈ij|.
?? Use Theorem ?? and the Cauchy-Schwartz inequality.

?? Write ρAB =
∑

ij λi,j |vi〉〈vi|⊗|wj〉〈wj |, the eigenbasis decomposition.
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