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A practical problem: efficient linear algebra

Standard algorithm for matrix multiplication, row-column:∗ ∗ ∗∗∗
∗

 =

∗ 
uses O(n3) arithmetic operations.

Strassen (1968) set out to prove this standard algorithm was
indeed the best possible.

At least for 2× 2 matrices.

He failed.
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Strassen’s algorithm

Let A,B be 2× 2 matrices A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
. Set

I = (a11 + a22)(b11 + b22),

II = (a21 + a22)b11,

III = a11(b12 − b22)

IV = a22(−b11 + b21)

V = (a11 + a12)b22

VI = (−a11 + a21)(b11 + b12),

VII = (a12 − a22)(b21 + b22),

If C = AB, then

c11 = I + IV − V + VII ,

c21 = II + IV ,

c12 = III + V ,

c22 = I + III − II + VI .
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Astounding conjecture

Iterate:  2k × 2k matrices using 7k � 8k multiplications,

and n × n matrices with O(n2.81) arithmetic operations.

Conjecture

For all ε > 0, n × n matrices can be multiplied using O(n2+ε)
arithmetic operations.

 asymptotically, multiplying matrices is nearly as easy as adding
them!
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How to disprove astounding conjecture via algebraic
geometry?

Set N = n2.
Matrix multiplication is a bilinear map

M〈n〉 : CN × CN → CN ,

i.e., an element of

CN⊗CN⊗CN

Idea: Look for polynomials Pn on CN⊗CN⊗CN such that

I Pn(T ) = 0 ∀ T computable with O(N) arithmetic operations,
and

I Pn(M〈n〉) 6= 0.
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How to disprove? - Geometric detour

Let X ⊂ CPM be a projective variety. Stratify CPM by a sequence
of nested spaces

X ⊂ σ2(X ) ⊂ σ3(X ) ⊂ · · · ⊂ σf (X ) = CPM

where
σr (X ) = ∪x1,...,xr∈X span{x1, . . . , xr}

is the variety of secant Pr−1’s to X .
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How to disprove?- Precise formulation
Let
X = Seg(PN−1 × PN−1 × PN−1) ⊂ P(CN⊗CN⊗CN) = CPN3−1 be
the Segre variety of rank one tensors.

For p ∈ CPN3−1, Let R(p) denote the smallest r such that
p ∈ σr (X ), called the border rank of p.

• [Bini, 1980] R(M〈n〉) = O(nτ ) ⇔ n × n matrices can be
multiplied using O(nτ ) arithmetic operations. .

• [Classical] R(M〈n〉) ≥ n2

• [Strassen, 1983] R(M〈n〉) ≥ 3
2n

2

• [Lickteig (1985)] R(M〈n〉) ≥ 3
2n

2 + n
2 − 1

2010- state of the art R(M〈n〉) ≥ 3
2n

2 + n
2 − 1, except it was shown

R(M〈2〉) = 7 (L, 2006, Hauenstein-Ikenmeyer-L, 2013)
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How to find equations for σr(X )?- representation theory

Seg(PA× PB × PC ) is homogeneous for
G = GL(A)× GL(B)× GL(C ).

For any G -variety X ⊂ PVλ, its ideal will be a G -module, so one
should not look for individual polynomials, but modules of
polynomials.

Can do systematically in small cases (Hauenstein-Ikenmeyer-L,
2013)
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Determinantal equations

Idea: look for G -modules Vµ,Vν where there exists a G -module
inclusion i : Vλ → Vµ⊗Vν . Then

R(p) ≥ rank(i(p))

rank(i(x))
.

 
• [L-Ottaviani (2012)] R(M〈n〉) ≥ 2n2 − n

Limit of the method is R(p) ≥ 2n2 − 1.
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More symmetry and lower bounds
M〈n〉 also has symmetry:
As a trilinear map

M〈n〉(X ,Y ,Z ) = trace(XYZ )

and
trace(XYZ ) =

trace(YZX ) = trace(ZTY TXT ) = trace((gX )Y (Zg−1)) = etc...

for g ∈ GLn.

GM〈n〉 = PGL×3n o (Z3 o Z2)

Symmetry combined with “border substitution method” (normal
forms and specializations)

 

• [L-Michalek (2016)] R(M〈n〉) ≥ 2n2 − log2(n)− 1
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Game over?

Work of Bernardi-Ranestad (cactus variety fills fast)

and Buczynski-Galazka (determinantal equations are equations for
the cactus variety)
 

Determinantal techniques will never prove R(M〈n〉) > 6n2.

Perhaps try to prove conjecture?
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Valiant’s conjecture

Gödel, Nash, Soviet Union researchers in 1950’s  

1970’s: Cook, Karp, Levin: P 6= NP: The class of problems that
can be solved in polynomial time is smaller than the class of
problems whose proposed solutions can be verified in polynomial
time.

Valiant: algebraic version: Is a polynomial sequence that can be
written down efficiently necessarily efficiently computable?
Conjecture: NO
Example: y : m ×m matrix.

permm(y) =
∑
σ∈Sm

y1,σ(1) · · · ym,σ(m) ∈ SmCm2

Easy to write down. Conjecture: difficult to evaluate
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Valiant’s conjecture: precise meaning of “difficult”

Theorem (Valiant)

Let P be a homogeneous polynomial of degree m in M variables.
Then there exists an n and n×n matrices A0,A1, . . . ,AM such that

P(y1, . . . , yM) = detn(A0 + y1A1 + · · ·+ yMAM).

Write P(y) = detn(A(y)).

Let dc(P) be the smallest n that works.

Conjecture (Valiant)

dc(permm) grows faster than any polynomial in m.
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State of the art

• dc(perm2) = 2 (classical)

perm2

(
a b
c d

)
= det2

(
a −b
c d

)
• dc(permm) ≥ m2

2 (Mignon-Ressayre, 2005) Proof via differential
geometry: Gauss maps.
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Zariski closed version: Mulmuley-Sohoni

Idea: translate problem to an orbit closure containment problem by
allowing limits. Let dc(permm) smallest n in this enlarged category
of degenerations.

• dc(permm) ≥ m2

2 (L-Manivel-Ressayre, 2013)

Bonus! solved a classical problem: find defining equations for the
variety of hypersurfaces with degenerate dual varieties.

15 / 29



Paths towards Valiant’s conjecture

Restricted models: solve the conjecture assuming extra hypotheses.
• [Nisan, 1991]: Exponential lower bound assuming
non-commutative multiplication. Defect: same exponential lower
bound holds for the determinant. Other similar results with same
defect.

Occurance obstructions [Mulmuley-Sohoni 2001] Use
representation theory to separate permanent from determinant by
finding a module that does not occur in the orbit closure of the
determinant that could occur in the orbit closure of the permanent.
• [Ikenmeyer-Panova 2016, Bürgiser-Ikenmeyer-Panova 2016,
Gesmundo-Ikenmeyer-Panova 2017] This cannot work.

Shifted partial derivatives [Gupta, Kamath, Kayal, Saptharishi,
2013]: Use Hilbert functions of Jacobian varieties.
• [Efremenko-L-Schenck-Weyman 2015, Gesmundo-L 2017] This
cannot work.
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Upper bounds?

• [Grenet 2011] dc(permm) ≤ 2m − 1, via explicit expressions

• [Alper-Bogart-Velasco 2015] dc(perm3) = 7 . In particular,
Grenet’s representation for perm3:

perm3(y) = det7



0 0 0 0 y33 y32 y31
y11 1
y12 1
y13 1

y22 y21 0 1
y23 0 y21 1
0 y23 y22 1


,

is optimal.

• [L-Ressayre 2015]: Grenet’s expressions have symmetry
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Symmetry v. Optimality

Main question of talk:

If a tensor or polynomial has symmetry, does it admit an optimal
expression with (some) symmetry?
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Strassen’s algorithm revisited

• [Burichenko 2014]: Strassen’s optimal decomposition has
S3 o (Z3 o Z2) symmetry, where S3 ⊂ PGL2 ⊂ PGL×32 .

M〈2〉 = Id⊗32 +Z3 o Z2 ·
((

1 0
0 0

)
⊗
(

0 0
1 1

)
⊗
(

0 1
1 −1

))
.

Work in progress (Ballard-Conner-Ikenmeyer-L-Ryder): look for
matrix multiplication decompositions with symmetry.

In particular, cyclic Z3 symmetry.
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Symmetry v. Optimality

The smallest known decomposition of M〈3〉 is of size 23.

We found rank 23 decompositions with extra symmetry.
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A decomposition with Z4 × Z3-symmetry

M〈3〉 =−

0 0 −1
1 0 −1
0 1 −1

⊗3

+ Z4 ·

1 0 0
0 0 0
0 0 0

⊗3

+ Z4 ·

0 −1 0
1 −1 0
0 0 0

⊗3

+ Z2 ·

 0 0 0
−1 1 0
0 0 0

⊗3

+ Z3 × Z4 ·

0 0 0
0 0 0
1 0 0

⊗
0 1 −1

0 1 −1
0 1 −1

⊗
0 0 1

0 0 1
0 0 0
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What next?

Bad news: standard numerical search for Z3-invariant
decompositions still to large for M〈4〉.

Good news: method extends using geometric building blocks.
(Work in progress.)
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Symmetry and permanent v. determinant

Geometric complexity theory (GCT) principle: permm and detn are
special because they are determined by their symmetry groups:

A,B: n × n matrices with determinant one, then
detn(AXB) = detn(X ), and detn(XT ) = detn(X ).

Gdetn is the subgroup of GLn2 generated by such.

σ, τ : m ×m permutation matrices or diagonal matrices with
determinant one, then permm(σyτ) = permm(y), and
permm(yT ) = permm(y).

Gpermm
is the subgroup of GLm2 generated by such.

Let GL
permm

be the subgroup of Gpermm
generated by the σ’s.
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Equivariance

Let G ⊆ GP . A determinantal expression A : CM → Cn2 for
P ∈ SmCM is G -equivariant if given g ∈ G , there exist
(B,C ) ∈ GLn × GLn ⊂ Gdetn such that

A(g · y) = BA(y)C

or A(g · y) = BA(y)TC .

In other words, there exists an injective group homomorphism
ψ : G → Gdetn such that A(y) = ψ(g) · (A(g · y)).

•[L-Ressayre, 2015]: Grenet’s expressions AGrenet : Cm2 → Cn2

such that permm(y) = detn(AGrenet(y)) are GL
permm

-equivariant.
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Example

Let

g(t) =

t1
t2

t3

 .

Then AGrenet,3(g(t)y) = B(t)AGrenet,3(y)C (t), where

B(t) =



t3
t1t3

t1t3
t1t3

1
1

1


and C (t) = B(t)−1.
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Invariant description of Grenet’s expressions

Let E ,F = Cm. The space SkE is an irreducible GL(E )-module
but it is is not in general irreducible as a GL

permm
-module. Let

e1, . . . , em be a basis of E , and let (SkE )reg ⊂ SkE denote the
span of the square-free monomials: (SkE )reg is an irreducible
GL
permm

-submodule of SkE . There exists a unique

GL
permm

-equivariant projection πk from SkE to (SkE )reg .

For v ∈ E , define sk(v) : (SkE )reg → (Sk+1E )reg to be
multiplication by v followed by πk+1.

Fix a basis f1, . . . , fm of F ∗. If y = (y1, . . . , ym) ∈ E⊗F , let
(sk⊗fj)(y) := sk(yj).
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Invariant description of Grenet’s expressions

•[L-Ressayre, 2015] The following is Grenet’s determinantal
representation of permm. Let Cn =

⊕m−1
k=0 (SkE )reg , so

n = 2m − 1, and identify S0E ' (SmE )reg . Set

A0 =
m−1∑
k=1

Id(SkE)reg

and define

A = A0 +
m−1∑
k=0

sk⊗fk+1. (1)

Then (−1)m+1 permm = detn ◦A. To obtain the permanent exactly,
replace Id(S1E)reg by (−1)m+1 Id(S1E)reg in the formula for A0.

Remark: the sk ’s give the dual complex to the Koszul under the
Howe-Young endofunctor induced by the involution on symmetric
functions.
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Results
•[L-Ressayre, 2015] Among GL

permm
-equivariant determinatal

expressions for permm, Grenet’s expressions are optimal and unique
up to trivialities.

•[L-Ressayre, 2015] There exists a Gpermm
-equivariant

determinantal expression for permm of size
(2m
m

)
− 1.

•[L-Ressayre, 2015] Among Gpermm
-equivariant determinatal

expressions for permm, the size
(2m
m

)
− 1 expressions are optimal

and unique up to trivialities.

Let edc(P) denote the smallest size equivariant determinantal
expression for a polynomial P. For P generic, edc(P) = dc(P) and
edc(detm) = dc(detm) = m. Define the restricted model of
equivariant determinantal expressions. Valiant’s conjecture holds in
this restricted model.

To my knowledge, equivariant determinantal complexity is the only
restricted model with an exponential separation of the permanent
from the determinant.
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Thank you for your attention

For more on geometry and complexity:
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