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Abstract. | describe work in progress with Baryshnikov and Zharnitsky
periodic billiard orbits that leads one to an exterior diffietial system (EDS).
| then give a brief introduction to EDS illustrated by seveseamples.

1. Introduction

The purpose of these notes is to introduce the reader to thaitpies of exterior
differential systems (EDS) in the context of a problem ifidmitls. The approach in
this article is different from that of [13] and [16], whichdjia with a study of linear
Pfaffian systems, an important special class of EDS. Thiatulproblem results
in an EDS that is not a linear Pfaffian system, so these notasimenediately

general EDS. For the interested reader, two referencesdiageEDS are [5] and
[13]. The first is a definitive reference and the second cosatan introduction

to the subject via differential geometry. For more detdilswd anything regarding
EDS the reader can consult either of these two sources.Gaiaok on EDS [10]

is still worth looking at, especially the second half, whista series of beautiful
examples.

We generally will work in the real analytic category, altigbuall the non-existence
results discussed here imply non-existence of smoothisoiut

Notation

If M is adifferentiable manifold we l&t M, T* M denote its tangent and cotangent
bundles,Q?(M) the set of differential forms od/ of degreed and Q*(M) =
®4Q4M). If I ¢ T*M is a subbundle (more precisely, subsheaf), then we let
{I}aifr C Q*(M) denote the differential ideal generated hy.e, all elements of
O*(M) of the forma A ¢+ dB Ay wherea, 5 € T andg, ) € Q*(M). {vy,...,v,}
denotes the linear span of the vectoysf they are vectors, and the subbundle of
QL(M) they generate if they are one-forms.
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2. Origin of the billiard problem

Let D ¢ R? be a convex domain with its flat metric. L&t denote the standard
Laplacian onD. Then Weyl [19] conjectured and lvrii [14] proved

1 1
{number of eigenvalues of A < A\?} = —area(D)\? £ Zlength((?D))\ +o(A)
T

where more precisely, Weyl proved the first term is indeedi¢hding term and
Ivrii proved the correction termu{ with Dirchlet, — with Neumann boundary con-
ditions), but subject to the following possibly extranetypothesis:

That there does not exist a two parameter family of periodi@kl trajectories in
D.

In fact Weyl and Ivrii work inn dimensions but we have restricted/to= 2 for
notational simplicity. Also, lvrii's actual restriction &g that there was not a set of
positive measure of periodic billiard trajectories in tipase of all trajectories, but
for the problem at hand, that is equivalent to the statemeotve as remarked in
[17].

I will report on joint work with Y. Barishnikov and V. Zharrgky investigating
whether this additional hypothesis is actually necessamot But first, | must
explain the hypothesis.

3. Billiards

Let C c R? be a smooth curve. Ailliard trajectory is defined by a particle
traveling in straight lines in the interior @f and reflecting at the boundary subject
to the law that the angle of incidence with the tangent lintheocurve equals the
angle of reflection.

Figure 1.

A trajectory isperiodicif it closes up and repeats itself. The number of collisions
it has with the boundary af’ before repeating is called iferiod

For example, iiC' is a circle, then there are many periodic trajectories.

Moreover, given a periodic trajectory in the circle one cangtruct a one param-
eter family of such by varying the initial point and keepiing tangle constant. It
is also true that given an ellipse and a periodic trajectoryt,cone can still obtain
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Figure 2.

a one parameter family of periodic trajectories if one madhesangle just right as
one displaces the initial point.

Figure 3.

One can locally parametrize the space of trajectories byngua local parameter
on the curve (e.g. arclength) and measuring the angle ofréjectory with the
tangent line to the curve (one thinks of shooting out a ttapgcfrom that point).
In particular, the set of trajectories is a two dimensiomace and the existence of
a two parameter family of periodic trajectories would meaat there is some point
on the curve” such that no matter what small perturbation of the initiajlarand
initial point one makes, the resulting trajectory is steirjpdic.

Sound preposterous?

Ivrii thought so. In fact, legend has it that Ivrii was atteing to prove the correc-
tion term to Weyl's formula and realized it he could proverter the assumption
that there are no periodic billiard trajectories in the doma-ortunately for him

(he thought), he was at Moscow State University, where tivere many world ex-

perts on billiards. Allegedly he went in to ask them if thecaild be such a curve
- they quickly answered: “Of course not!”, so he said “Gready | please have
a proof?”- they said certainly. They had trouble coming ughvai full argument

immediately so they told him to come back later in the aftemde returned later
that afternoon and they told him that perhaps it would beebétt return the next
day... then it became the next week, ... All this was nearly&frs ago and the
guestion is pretty much as open today as it was then.

Some things are known: for a similar problem the answer isttiereare such
things: there exist compact surfaces with Riemannian ol of whose geodesics
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are closed [11]. These are callédll surfacesand there are more of them than was
originally expected.

The progress on lvrii's question is as follows: we may brdalpiinto a series of
guestions based on the period of the trajectory. It is easgédhat there can be at
most al-parameter family of two-periodic trajectories. (Hint: atthappens when
you change the angle a little?)

In 1989 Rychlik [17] proved that there are no curves suppgran open set of
3-periodic trajectories. Now there are three published fesrobRychlik’s theorem
[17, 18, 20], and in these lectures | will give you a fourth.eTfbur periodic case
is still open and that is the subject of my current research ®aryshnikov and
Zharnitsky.

4. Setting up the problem

(The results in this section are joint work with Baryshnikawd Zharnitsky.) The
problem is local. If we want an-periodic trajectory, we only needbits of curve.
We can later close up the bits any way we please (as long aséskconvexly).

Letzi, ..., 2, € R%. We want to construet (germs of) curves, one passing through
each point. The initial points determine an initialgon which in turn tells us what
the tangent lines to the curves must be at thel.e., then points immediately
determine the zero-th and first order terms of the Tayloesddr the curves.
Let

N = ST EAl | AT Zid

o la = 2] a— e

and note thaiV; points in the direction of the tangent line to the curve wetgfiag
to construct. Lek; = N;/|N;|. Let Jn; denote the rotation counterclockwise of
n; by /2. We have the following picture

The tangent line at; must be perpendicular tdn;. Let ¥ = (R?)*" denote
the naive configuration space (the actual space is an opaetsobthis) where
p=(z1,...,2n) € X is our initial point. Define

Y = (Jn;, dz) € Q1(%)
and for future reference set = (n;,dz;), let o; be the angle between ; and
Jn;, and let/; be the length of the section fromto z; 4.
We have aistribution A on X, namely

A =ker{yy, ..., P} C T

Any two parameter family ofi-periodic trajectories corresponds to an immersed
surfaceM? — ¥ which is everywhere tangent b and subject to some additional
genericity conditions. More precisely, we have
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Figure 4.

Proposition 1. [7] There exists a one to one correspondence between (segrfjents o
curves admitting an open subseteperiodic trajectories and immersed surfaces
i: M? — ¥ tangent toA satisfying

1. no two points coincide

2. no three points are colinear

3. Any two consecutive points “move independently” in the neammade pre-
cise in condition(1) described below.

Note that the first two conditions are zero-th order condgioegarding the initial
point in X about which we want to construct the surface. The last is tdider
condition which may be described as follows:
Note that(n,, ---a77$7¢;1n -, ¥p) gives a basis of ;> and that this basis varies
smoothly - one sayg)’, ¥") form acoframingof of ¥. The precise form of condi-
tion (3) for proposition 1 is that

i*(n* A1) is nonvanishing V1 < i < n @
where we use the convention that for indices- 1 = 1.
How can we determine the existence of such surfaces?

Were we looking fom-folds, the answer would be given by the Frobenius theorem:

Theorem 1(Frobenius theorem)Given pointwise linearly independent one-forms
WPt ..., ™ on amanifoldX™, there exists an immersed submanifoldy/™ " — X
passing throughp € X on whichi*(y7) = 0 for all j (i.e., WwithT, M = A, :=
ker{w;} for all z € M) if in a neighborhood op there exist one-form&§- €
Q1(X) such that

dpt =at A+l ATV (2)
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The condition (2) is often expressed @’ = 0 mod{%!,...,4"}. In fact the
individual forms don’t matter, just their span, so we couldtev = {*, ...,¢"}
and

dy' = 0modI Vi.
Another way to express it is that locally X, Y are vector fields lying i\, that
[X,Y] also lies inA. (Exercise: verify that this is indeed equivalent.) Notat thll
these conditions involve beginning with first order infotiroa and differentiating
it once - if everything is OK, then we are guaranteed soltiohhat is, we can
stop working after taking two derivatives.

Were we in the situation that there was just a single one-ftmemPfaff’s theorem
(see, e.g., [5] 81.3) guarantees existence of submanibéldisnension roughly half
the dimension of the manifold. Moreover, by computing theeegr derivative of
the one-form one can determine the precise maximal dimergia submanifold
on which the form pulls back to be zero.

To deal with the general setting of determining existencaibimanifolds on which
an ideal of differential forms pulls back to be zero, an eipélgorithm was devel-
oped by Cartan and others. The algorithm also gives a roughae of the size
of the space of such manifolds. (E.g., in the Frobenius #mapthere is a unique
such manifold through a point but for Pfaff's theorem, thesilt be “functions ”
worth of solution manifolds through a point.)

The essential question is: Given a candidate tangent spdirst(order admissible
Taylor series), can we extend it? - i.e., can we “fit togethmwtential tangent
spaces to obtain a solution submanifold?

5. EDS terminology

LetV be a vector space, l€i(k, V') denote thé&rassmanniamf k-planes through
the origin inV.

Definition 1. Let¥ be a manifold LeZ C 2*(X) be a differential ideal, which we
will call an exterior differential systemWe letZ; C /() denote the component
in degreej and we will henceforth assumig = ). An integral manifoldof 7 is an
immersed submanifold: M — 3 such that*(¢) = 0 forall ¢ € 7.

As with many things in mathematics, we will work infinitesiltyawvith the goal of
linearizing the problem of determing the integral manifotif an EDS.

Definition 2. Forz € X, we let
V(@) ={E € G(k, T,X) | ¢|p =0Vp € T}

which is called the variety ok-dimensional integral element® Z at z. We
let G(k,TX) denote the Grassmann bundle, i.e., the bundle Bveshose fiber
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overz € Y is G(k,T,X), and letV,(Z) C G(k,T%) denote the set of akt-
dimensional integral elements.

The first step in the Cartan algorithm @Gartan’s test one compares a crude es-
timate (obtained from linear algebra calculations) of #piZ) with its actual di-
mension. If the two numbers agree, then @artan-Kéhler theorenguarantees
local existence of integral manifolds. We can think of it agisg “if the second
order terms for the Taylor series look good, everything sdjolf the test fails, we
must take more derivatives to determine existence. Thisgsis callegbrolon-
gation TheKuranishi prolongation theorersays that in principle one only needs
to prolong a finite number of times before getting a definiaweswer, but this is
of little use in practice as the theorem gives no indicatibhav many times one
must prolong (how many derivatives one needs to take). Befomg into details,
let's examine some examples to develop our intuition.

6. PDE and EDS

Example 1. Consider the PDE system fofz, y) given by

Uy = A(l’,y,’LL),

uy = B(x,y,u), (3)

whereA, B are given smooth functions. Since (3) specifies both patéalatives
of u, at any given poinp = (z,y,u) € R? the tangent plane to the graph of a
solution passing throughis uniquely determined.

Whether or not the plane is actually tangent to a solutio@}alépends on whether
or not the equations (3) are “compatible” as differentialiaepns. For smooth
solutions to a system of PDE, compatibility conditions @bgcause mixed partials
must commute, i.e(uz)y = (uy),. IN our example,

ou
— = A, + BA,,
dy vt

(1) = Ao y.0) = Ay(,.) + Ao, )
(uy)e = By + ABy,
so setting(u, ), = (uy), reveals a “hidden equation”, the compatibility condition
Ay + BA, = B, + AB,. 4

and the Frobenius condition is exactly the vanishing of dgjgation. To see this
let

0 =du— A(z,y,u)dr — B(z,y,u)dy.
Exercise: show that (4) holds i@ = 0 mod¥.

Here we have the EDS = {0}4r on X = R3 but since this EDS comes from
a PDE, we have an additional condition that we want our iategranifolds to
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satisfy, namely that, y are independent variables on a solution. We encode this
by setting) = dx A dy and making the following definitions:

Definition 3. LetZ C Q*(X) be a differential ideal, anf@ € Q"(X). The pair
(Z,Q) is called anexterior differential system with independence conditiém
integral manifoldof Z is an immersed submanifoid M — ¥ such that*(¢) =0

for all ¢ € 7 andi*(Q2) is nonvanishing. Note that we really only neQdup to
scale and moduld@, so we sometimes refer to an independence condition as an
equivalence class of-forms (the equivalence is up to scale and modijlo

Remark 1. One can attempt to obtain solutions to the system (3) by rsplai
succession of Cauchy problems. For example fix 0 and solve the ODE

du - -
pt A(x,0,a), u(0) = up. (5)
After solving (5), holdz fixed and solve the initial value problem
d
G = B@yw,  u(,0) =) (6)

This determines a function(z, y) on some neighborhood ¢, 0). The problem
is that this function may not satisfy our original equatiangd it also may depend
on the path chosen. The function is independent of path ahpseisely if the
Frobenius condition holds, and in that case it gives thet aglswer too.

In general, given a first-order systemsoéquations fors functionsu® of n vari-
ables, there exists a change of coordinates so that thersyakes the form

ugl(;l = fll(T7ﬂ)a

uh = fL(z0),
u:1(:2 = 12(T7U7Um1)7
w3 = f2(T,0,0,),

wherez = (2!, ...,2"), 7 = (u},...,u*), v, = ut 1 <g<s 1< j <n,and

zd T Oxd’

rm<ro<...<rp,=swithr=r+...4+r, (see[9)]).
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We may be able to produce solutions of this system by solvisgrigs of Cauchy
problems. However, we need to check that equations are diniepa.e., that
mixed partials commute:

9 . 4
awifg:@ (7;7 1§Zaj§n7 Vo.

Although it would be impractical to change any given systenPDE into the

above form, converting this system to an EDS will guide usiradly to the analog
of the above form. We can then apply a straightforward testtslgnals when no
further compatibility conditions need to be checked.

0

7. Cartan’s test

LetZ be an EDS on a manifold. Letp € X be a general pointang, £) € V,(7)

be a general point o, (Z). The required generality can be made precise, see
[13, 5] but we suppress that in these lectures. Intuitivelyg, want(p, £') to be
“like” its neighbors in some small open set¥) (7).

Remark 2. Note that since we are dealing with (analytic) varieties., zero sets
of analytic functions, there can be component¥,1¢Z),. “A general point” means
a general point of a given component.

As mentioned above, the test we are after will compare a cakion estimate
obtained by linear algebra calculations with the codimamsif a variety.

Definition 4. Let E € V;(Z), and letey, ..., e; be a basis off. Define
H(E) ={veT,X|¢(ei,..e)=0Yp e}
thepolar spaceof E.

Note that

1. H(E) is well defined (i.e., independent of our choice of basis),
2. EC H(F)and
3. determiningH (E) is a linear calculation.

The quotient (E)/E may be thought of as the space of possible enlargements of
E from ap-dimensional integral element tqa+ 1)-dimensional integral element.
We will actually need to calculate the dimensions of a sesfgwlar spaces.

Let £ € V,(Z). Fix a generic flagty, € --- C E,—1 C E, = Fin E. Let

c; = codim(H (FE;),T,X), and setg = codimV;(Z) = dimZ;. Note that if¥

has components, then codin(Z) can depend on the component, andfas 1,
V;(Z) may have components evenf has just one component. Therefore we
will write codim g, ., (V;11(Z), G(j+1,T%)) to eliminate any possible ambiguity
when discussing the codimensionlof, 1 (Z) at £ 1.
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We have the following estimate

Proposition 2.
codimg, ., (Vj11,G(j +1,TX)) > codimg, (V;, G(j, TX)) + codimr, s H(E}).

J

The inequality is intuitively reasonable as the first termttom right represent the
conditions to have @-dimensional integral element and the second term repre-
sents the new conditions for enlarging it to{ A+ 1)-dimensional integral ele-
ment. Equality holding should be interpretedlgs; being “as large as possible”

at ;1. Adding up these inequalities, we obtain

Proposition 3.

codimg(V,, G(n, TX) > cog+c1+ -+ + Cp1. @)

The Cartan-Kahler theorenstates that when equality holds (assuming our gener-
icity hypotheses about and E), there exists am-dimensional integral manifold
throughp with tangent spac@/. The test for equality holding in (7) is callégiar-
tan’s test If an integral element passes Cartan’s test, we get a boausoarse
estimate of the size of the moduli space of integral mangfdlatoughp. Namely

if we sets, = ¢ — cx—1 and letk, be the largest integer such thaf is nonzero,
then integral manifolds depend roughly eg analytic functions of, variables.

In particular if the largesty is 0, then integral manifolds depend only on a choice
of constants, as in the Frobenius theorem.

Other possibilities.

Vo(2), = 0.

More precisely, there exists a Zariski open subset over which there are no-
dimensional integral elements. In this case it is necegesanstrict to the (analytic)
subvariety>’ C 3 over which there are-dimensional integral elements and start
over, working at general points af. Note thaty) may have several components
and that one must perform the test on each component sdpatagim >’ < n
we are done, there are medimensional integral manifolds.

Cartan'’s test fails.

Intuitively, this means we have not differentiated enouglunicover all compati-

bility conditions and we must take more derivatives. It suout that, rather than
taking higher derivatives, it is notationally simpler taittover on a larger space
where our old derivatives are replaced by independenthlasa(This corresponds
to the standard process of converting any system of PDE tetafuler system by

adding additional variables.)
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More precisely, forgetting abodt for the moment, onr : G(n,7T%) — X, con-
sider the following tautological system: givén, E) € G(n, TX), we haveE+ C
T,%. Define

Iy gy = ™ (EL).
For good measure we add the independence condition destioy\" (7* (T*%/1)).
)

Integral manifolds of the tautological systéf } 4 ¢, Q) with [Q] € A™(7*(T*X /1))
are precisely th&auss imagesf immersed:-dimensional submanifolds: M — ..

Now let’s return to our original EDS on X:

Definition 5. The prolongationof Z is the pullback of the tautological system on
G(n,TY)toV,(Z) C G(n,TY).

One then starts over with replaced by,,(Z) andZ replaced by the pullback of
the tautological system. One then performs Cartan’s tegtfails, one prolongs
again, etc... For more details, see [13], 85.5.

8. First examples of Cartan’s test

Example O: arbitrary maps R? — R2.
Let the firstR? have coordinates', 22, the second coordinated, v> and let® =
J'(R?,R?) ~ R® with coordinategz’, u/, p'), 1 < 1i,j < 2.
Given a mapf : R2 — R?, we define thdift of f to ¥ to be the set of points
oft oft of? oft
1.2 41 2
(1‘ » L 7f ((ﬂ),f (1‘), %’x@’xa %’xa W‘x)a

which is a coordinate version of the Gauss map of an immersien

0! = du' — pldaz' — pida?

6? = du® — pidat — pida®
Introduce the independence conditi@n= dz' A dz2. Then integral manifolds of
the system({6', 6%}, 7, $2) are in one to one correspondence with lifts of maps
f:R2 - R
The manifoldX = J'(R? R?) equipped with the syster{6',6%}4;¢r, Q) is
called the space afne-jetsof mappingsR? — R2.
Let's perform Cartan’s test:

Determination of ¢y + ¢;.

co = 2 because dirf; = 2. The equations on any linfy} are explicitlyd! (v) =
0, 6%(v) = 0.
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To find ¢;, we need to take a genefe} € V;. Write

Ot ox2 " "“op¢ " “Ous

where here and throughout we use sienmation conventioiat repeated indices

are to be summed ove (v) = e; — pla' — pha? S0 we may take

0 0 o, 0
_ 1 2 1Y a1 a 2
v=a 8;U1+a ax1+b“apg+(p1a +p2a)aua

wherea’, b, are (general) constants.

To determiner;, we must findZ,. First there arex A 6', a A 62 wherea is any
one-form. We also havé?’ = —dp} A dz' — dp), A dz2. To determine a possible
enlargement ofv} we must calculate

A7 (v, ) = bl dz* — aldp) + bhdx? — a2dp),
So any vector in H'({v}) must satisfy the four linear equations
07 (w) = 0,d6" (v,w) =0

These are independent (check yourself!), so we oltaia 4 andcy + ¢; = 6.

Determination of codim Vs.

Let G(2,7%) have local coordinatege?, u®, p¢; b, ¢, e%, f*) where the first set

a’ a’

gives coordinates for the base point and the second for #meplA w where
v= 0 + b o + e 0
ozt~ *Opg ou®
w = 9 + ¢ 0 + f¢ 0
ox%  “op? ou®

We have the following conditions and consequences:

6'(v) =0 —  bl=p}
6%(v) =0 — b =p?
61 (w) =0 == =D
?(w) =0 = =p}
d'(vAw)=0 = cl—bl=0
d?(vAw) =0 = 2 —b2=0

These six equations are independent and we conclude dddif = 6 and Car-
tan’s test succeeds. Moreover integral manifolds “depentivo functions of two
variables” which in this case we see explicitly, as we knesvgblutions all along.
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Example 1: The Cauchy-Riemann equations!, = v2,,ul, = —u?

€9 1"

This example is the same as above, except that we now resttied submanifold
Y C X wherepl = p3 andpi = —p?. We still havec, = 2 as6?, 6% remain
linearly independent when restricted X but we now have:; = 2 (exercise -
be sure to express the initial in terms of6 variables (e.g., eliminatg?, p3)).
Similarly, only four of the six equations favs remain independent. So here we
have the equality codirg)s =4 =c¢y+c¢1 =2+ 2.

Here Cartan’s test indicates that integral manifolds shdapend on two functions
of one variable, which we also know to be the case as a (suffigigeneric) real
analytic arc uniquely determines a holomorphic miap- C.

Remark 3. Note that in both the above calculations, the calculaticcodimV(Z),
was linear. There is a large class of EDS, calledar Pfaffian systemahich are
systems defined by one-forms for which this linearity hol#&r such systems,
there is a simplified version of Cartan’s test. Any system atipl differential
equations expressed as the pullback of the contact systehe@pace of jets is a
linear Pfaffian system, see, e.g., [13], example 5.1.4.

Example 2: Lagrangian submanifolds.
Let w be the standard symplectic form &i":
w=dz' Ndy' + ... +dx" A dy™.

An n-dimensional submanifold isagrangianif it is an integral manifold off =
{whaigs-

Given (p, E) € V,,(Z), we can make a linear change of coordinates (while keep-
ing the form ofw) so thatE is annihilated bydy®, ..., dy"™. This is because the
subgroup ofGL(T,R?") leavingw invariant is the symplectic group which acts
transitively not only on Lagrangian-planes but on all flags within them. Thus all
n-planes at all points are equivalent and genericity issoe& énter. Any nearby
integral n-planes ap are given bydy’ = ", s?*da’ for s’* = s*i. Therefore,
dim (V,(Z),) = ("31),

codimg(V,(Z),, G(n, T,R*")) = codimg (V,(Z), G(n, TR*)) = <Z>’

independent op and E.

Letey,...,e, € E be dual tadz!, ..., dz™ and we use, ..., e,, to build our flag in
E,ie. E; = (e1,...,e;). (By the remark above, there are no genericity issues to
be concerned with.)
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It is easy to calculate that fgr< n,

H(E;) = {ve T,R*™ | dy*(v) = 0V k < j}
soc; =jforj <n-—1.Sincec; +ca+ ... +cp_1 = (’2’), we have involutivity,
and integral manifolds depend on 1 functionsofvariables. (In fact, they can

be explicitly constructed by setting = 0f/0x’ for f an arbitrary function of
xl, . xm)

9. Periodic billiard orbits

We now return to the problem of finding-periodic billiard orbits. (The results of
this section and the next are joint with Baryshnikov and Zhgky.) We have the
EDS

T = {i}airy
and several independence conditions: that egchn'*! is nonvanishing on an
integral manifold. Fortunately we can reduce to a singlep@hdence condition
thanks to the following lemma:

Lemma 1. It is sufficient to work with the independence conditidm n? (or any
Proof: Let X; be a dual basis tg’ of kerZ;. Take local coordinates, p$ about

[X1 A X2] where we write[v A w] as a nearby point with = X; + p{X,,
w = Xy + p§ Xa.

Introduce the notations; = % b = % where we use the notation
of 84. One calculates (see [7]) that

d? = (a;n’™ + b/ ™) An? modT
Moreoverp € X implies that none of the;, b; are zero ap.

Evaluating thedy)* atv A w (that is, evaluating at an arbitrary point in our chart)
we obtain the: equations on the

0 = a1 + blpg

0= plag + by

0= (p3p3 — p3p})as + pibs

0 = (p3pt — pip3)as + (P3P} — P3PT)ba (8)

0= pha,+ (P57 — Py 'pP)by

of whichn — 1 are independent.

The first equation impliegs # 0, which implies that on an integral element on
which n' A n? # 0, we also have;” A n' # 0. The second equation implies
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p3 # 0 which implies that similarly;? A ® # 0. The third equation implies that
(p3p3 — p3pt) # 0 but this is exactly the condition that A n* # 0. Continuing,
we see thay!' A n? # 0 implies that all’ A 7! £ 0 on an integral element.(

Remark 4. Had we instead taken, e.gy! A 7? as independence condition, (as-
sumingn > 3) we could not have drawn a similar conclusion, see [7].

Introduce notatiom\; ; = (p}p3 " — pbpl~") with the convention that} = p3 =
1, p? = pb = 0,s0A; = 1. Then our equations (8) become
CLjAj_l + bjAj =0

which we may write in matrix form:

0O 0 0 ... 0 al AQ —b1
ag b 0 ... 0 0 As —as
0 as b3 ce 0 0 A4 = 0
0O 0 O ... Ap—1 bn—l An 0

and since the:; are nonzero, there is a unique solution fg, ..., A,. Now

Ay = p? andA,, = pd sop?, p4 are fixed and the remaining equations on the
ps* are independent. In fact one can solve explicitly for allt@ainingp§, p$ in
terms ofp?, p3, p3, 1, ..., p}~*. Thus the space of integral elements satisfying the
genericity condition is of dimension — 3.

Proposition 4. The system{Z,n' A n?) has codimy(Z) = 3n — 1, ¢g = n,
c1 = 2n — 2 and thus fails Cartan’s test by one.

Proof: Herec is just the codimension of the space of one-dimensionagiate
elements at a point df. To calculatec;, one needs a sufficiently generic vector,
Z = X1+ ---+ X, will do. One then sees th&t is contained in a unique two-
dimensional integral element. a

If one ignores the genericity conditions, msncreases the dimensions of integral
manifolds can be arbitrarily large (see [7]). The next psipon states that with
the genericity conditions, this fails even at the infinitesl level.

Proposition 5. For all n, there are n®3-dimensional integral elements fosatis-
fying the genericity conditions.

Proof: On a three dimensional integral element, we must haven$ay®, f,n®
independent wherg@ < a < n and thef,'s are some constants. First note that
f3, f» must be zero by consideringy/?, di)' respectively. But we also must have
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n?,n® independent, and singg = 0, this impliesn?, 3, f,n® must be indepen-
dent, which, usingly»® implies thatf, = 0. Continuing in this fashion one obtains
that all thef, must be zero. O

10. Three periodic billiard orbits

Here the space of integral elements satisfying the bill@rdditions is a single
point. Takingn! A 7 as our independence condition, writing= cos(q;), s; =
sin(a;), we see that on integral elements

l l
0?4+ L2t Sl = o ©)
Cglg Cglg

Adding this form to the ideal and taking its derivative, we se

cila c3ly
din® + —=n' + ==n?)
Cglg Cglg
= [(—ssc1c0 + c389¢1 + c351¢2)l1 + (—c381¢0 + S3¢100 + 35901 )12
nt AP

+ (—638201 + s3cico + 038162)13] TP
2°3

ThusV,(Z), = 0 for generalz € X and we must restrict to the subvariety of
where

(—ssc1co + c3s9c1 + c35162)l1 + (—c381C2 + S3C1C0 + 35201 )12

+ (—c3s2c1 + s3cic + c35102)l3 = 0.

Now recall that a triangle is uniquely determined, e.g., Wy bof its three angles
and the length of one of its sides, we may write
. s
a3 = B aq a9
l1sin(2a2)

la =
57 Sin(m — 200 — 2019

l1sin(2a)

sin(m — 2a1 — 2ag)
and substituting in, we obtain the equation
6[161028182 =0

which cannot occur ok. O
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11. A few successes of the Cartan-Kahler theorem

11.1. The Cartan-Janet theorem

Given an analytic Riemannian manifold/(*, ), does there exist a local isometric
immersion into Euclidean spad&™*? The Cartan-Janet theorem states that for
any analytic metric the answer is yes as longsas (;). If the metric is special
one can sometimes do much better, see [8, 1, 6] for the casgmoé forms and
generalizations.

11.2. Manifolds with exceptional holonomy

Using EDS Bryant [4] showed that there exist non-symmetigninnian mani-
folds with holonomyG, andSpinz, settling the last open local existence questions
in the Riemannian case of Berger’'s 1953 thesis [2].

11.3. Existence of calibrated submanifolds

The abundance of special Lagrangian and other calibratethamnifolds was first
proved by Harvey and Lawson [12] using the Cartan-Kahleoriaa.

While describing the first two examples would involve too maefinitions, we
will explicitly describe two cases of applying the Cartagéfder theorem to prove
existence of calibrated submanifolds.

Definition 6. A calibration on an oriented Riemannian manifoll is a closed
differential form¢ € QF(X) such that for all unit volumép, E) € G(k,TY),
o(E) < 1.

There are many variants on the definition. Calibrations aamobfor finding vol-
ume minimizing submanifolds af because the fundamental lemma of calibrations
says that ifi : M — X is an immersed submanifold on whi¢h(¢) = vol 5, then

M is volume minimizing in its homology class (assumihfjis compact, there are
variations when\/ is noncompact), see [12].

Recently calibrated manifolds have become of central itapoe because of appli-
cations to physics. See, e.g., Joyce’s lectures in [15]baions may be thought
of as generalizations of normalized powers of the Kahlamfowhich itself gives
rise to an involutive system (the Cauchy-Riemann equadiond/e will discuss
two additional calibrations, thepecial Lagrangian calibratiomnd theassociative
calibration.

Sometimes a calibration has a complementary form. such that
(B + |ac(B)* = 1 (10)
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for all unit volume planes. In such cases we may define an EDS whose integral
manifolds are the submanifolds calibrateddpy takingZ = {ac}gifs-

Example 2 (Special Lagrangian manifoldsPnR?” = C” (or any K&hler mani-
fold), consider the differentiat-form

04:Re(dzl/\'u/\alz")7

wherez’ = dz7 + idy’, called thespecial Lagrangian calibration
In the special Lagrangian case, a variant of (10) holds. Ifake

aczlm(dzl/\---/\dz"),

then, restricted thagrangiann-planes (10) holds. Moreover, it is easy to see any
submanifold calibrated by is Lagrangian, s@ = {w, a.}qifs is an EDS whose
integral manifolds are the special Lagrangian submarsfold

GivenE ¢ V,(T), we can change coordinates so thds annihilated byly', ..., dy".
(This is because the system3#/(n) invariant andSU (n) acts transitively on the
special Lagrangian planes at a point and even transitivelflags in special La-
grangian planes.) Taking, ...,e, € E to be dual taiz!, ..., dz"™, we havec; = j
for1 < j <n —2asin example 2 of 8. However,

w=de" P Ady" T+ da™ A dy™
Qe =dzt A---dz" 2N (dz A dy™ — da™ A dy™ Y

shows that,,_; = n. The requirement that.|z = 0 is one additional equation
(3>, 77 = 0) on the set of Lagrangian-planes so the codimension Bf,(Z) is
one greater than the Lagrangian case and the system istimeolwith solutions
depending on two functions af — 1 variables.

} moddy®, ..., dy" 2

Example 3 (Associative submanifolds)The 14-dimensional compact Lie group
G, arises as the automorphism group of the normed algébo& octonions (see
e.g., [13] 8A.5)), and leaves invariant a 3-fornonR” = ImQ, whereg(z, y, 2) =
(x,yz). (Here(:,-) is the inner-product induced from the norm.) Thiss a cali-
bration onR”, and it admits a complement as in (18): = 1Im ((zy)z — (2y)z).
We define an EDS for associative submanifolds by taking the componentsef th
ImQ-valued 3-formg. as generators. (Sineg is constant-coefficient, all of these
generators are closed.)

Let E € V5(Z). Then the stabilizer oF in G, is six-dimensional. Sincé/; acts
transitively on the space @tdimensional integral elements, we conclude
codim(V3(Z),, G(3,1,Im0)) = 12 — 8 = 4.

On the other hand, for any flag ifl, ¢o = ¢; = 0 andce = 4 (two independent
vectors inF determine the third one by multiplication). Thiigs involutive atE
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(hence involutive everywhere, by homogeneity). Integrahifolds depend od
functions of two variables.
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