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EXTERIOR DIFFERENTIAL SYSTEMS AND BILLIARDS
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Abstract. I describe work in progress with Baryshnikov and Zharnitskyon
periodic billiard orbits that leads one to an exterior differential system (EDS).
I then give a brief introduction to EDS illustrated by several examples.

1. Introduction

The purpose of these notes is to introduce the reader to the techniques of exterior
differential systems (EDS) in the context of a problem in billiards. The approach in
this article is different from that of [13] and [16], which begin with a study of linear
Pfaffian systems, an important special class of EDS. The billiard problem results
in an EDS that is not a linear Pfaffian system, so these notes deal immediately
general EDS. For the interested reader, two references regarding EDS are [5] and
[13]. The first is a definitive reference and the second contains an introduction
to the subject via differential geometry. For more details about anything regarding
EDS the reader can consult either of these two sources. Cartan’s book on EDS [10]
is still worth looking at, especially the second half, whichis a series of beautiful
examples.

We generally will work in the real analytic category, although all the non-existence
results discussed here imply non-existence of smooth solutions.

Notation

If M is a differentiable manifold we letTM,T ∗M denote its tangent and cotangent
bundles,Ωd(M) the set of differential forms onM of degreed andΩ∗(M) =
⊕dΩ

d(M). If I ⊂ T ∗M is a subbundle (more precisely, subsheaf), then we let
{I}diff ⊂ Ω∗(M) denote the differential ideal generated byI, i.e, all elements of
Ω∗(M) of the formα∧φ+dβ∧ψ whereα, β ∈ I andφ,ψ ∈ Ω∗(M). {v1, ..., vn}
denotes the linear span of the vectorsvi if they are vectors, and the subbundle of
Ω1(M) they generate if they are one-forms.
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2. Origin of the billiard problem

Let D ⊂ R
2 be a convex domain with its flat metric. Let∆ denote the standard

Laplacian onD. Then Weyl [19] conjectured and Ivrii [14] proved

{number of eigenvalues of ∆ ≤ λ2} =
1

π
area(D)λ2 ±

1

4
length(∂D)λ+ o(λ)

where more precisely, Weyl proved the first term is indeed theleading term and
Ivrii proved the correction term (+ with Dirchlet,− with Neumann boundary con-
ditions), but subject to the following possibly extraneoushypothesis:

That there does not exist a two parameter family of periodic billiard trajectories in
D.

In fact Weyl and Ivrii work inn dimensions but we have restricted ton = 2 for
notational simplicity. Also, Ivrii’s actual restriction was that there was not a set of
positive measure of periodic billiard trajectories in the space of all trajectories, but
for the problem at hand, that is equivalent to the statement above, as remarked in
[17].
I will report on joint work with Y. Barishnikov and V. Zharnitsky investigating
whether this additional hypothesis is actually necessary or not. But first, I must
explain the hypothesis.

3. Billiards

Let C ⊂ R
2 be a smooth curve. Abilliard trajectory is defined by a particle

traveling in straight lines in the interior ofC and reflecting at the boundary subject
to the law that the angle of incidence with the tangent line tothe curve equals the
angle of reflection.

Figure 1.

A trajectory isperiodic if it closes up and repeats itself. The number of collisions
it has with the boundary ofC before repeating is called itsperiod.
For example, ifC is a circle, then there are many periodic trajectories.

Moreover, given a periodic trajectory in the circle one can construct a one param-
eter family of such by varying the initial point and keeping the angle constant. It
is also true that given an ellipse and a periodic trajectory on it, one can still obtain
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Figure 2.

a one parameter family of periodic trajectories if one movesthe angle just right as
one displaces the initial point.

Figure 3.

One can locally parametrize the space of trajectories by putting a local parameter
on the curve (e.g. arclength) and measuring the angle of the trajectory with the
tangent line to the curve (one thinks of shooting out a trajectory from that point).
In particular, the set of trajectories is a two dimensional space and the existence of
a two parameter family of periodic trajectories would mean that there is some point
on the curveC such that no matter what small perturbation of the initial angle and
initial point one makes, the resulting trajectory is still periodic.

Sound preposterous?

Ivrii thought so. In fact, legend has it that Ivrii was attempting to prove the correc-
tion term to Weyl’s formula and realized it he could prove it under the assumption
that there are no periodic billiard trajectories in the domain. Fortunately for him
(he thought), he was at Moscow State University, where therewere many world ex-
perts on billiards. Allegedly he went in to ask them if there could be such a curve
- they quickly answered: “Of course not!”, so he said “Great!may I please have
a proof?”- they said certainly. They had trouble coming up with a full argument
immediately so they told him to come back later in the afternoon. He returned later
that afternoon and they told him that perhaps it would be better to return the next
day... then it became the next week, ... All this was nearly 30years ago and the
question is pretty much as open today as it was then.

Some things are known: for a similar problem the answer is that thereare such
things: there exist compact surfaces with Riemannian metrics, all of whose geodesics
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are closed [11]. These are calledZoll surfacesand there are more of them than was
originally expected.

The progress on Ivrii’s question is as follows: we may break it up into a series of
questions based on the period of the trajectory. It is easy tosee that there can be at
most a1-parameter family of two-periodic trajectories. (Hint: what happens when
you change the angle a little?)

In 1989 Rychlik [17] proved that there are no curves supporting an open set of
3-periodic trajectories. Now there are three published proofs of Rychlik’s theorem
[17, 18, 20], and in these lectures I will give you a fourth. The four periodic case
is still open and that is the subject of my current research with Baryshnikov and
Zharnitsky.

4. Setting up the problem

(The results in this section are joint work with Baryshnikovand Zharnitsky.) The
problem is local. If we want ann-periodic trajectory, we only needn bits of curve.
We can later close up the bits any way we please (as long as it closes convexly).

Let z1, ..., zn ∈ R
2. We want to constructn (germs of) curves, one passing through

each point. The initial points determine an initialn-gon which in turn tells us what
the tangent lines to the curves must be at thezi. I.e., then points immediately
determine the zero-th and first order terms of the Taylor series for the curves.

Let

Ni =
zi − zi+1

|zi − zi+1|
−

zi − zi−1

|zi − zi−1|

and note thatNi points in the direction of the tangent line to the curve we aretrying
to construct. Letni = Ni/|Ni|. Let Jni denote the rotation counterclockwise of
ni by π/2. We have the following picture

The tangent line atzi must be perpendicular toJni. Let Σ = (R2)×n denote
the naïve configuration space (the actual space is an open subset of this) where
p = (z1, ..., zn) ∈ Σ is our initial point. Define

ψi := 〈Jni, dzi〉 ∈ Ω1(Σ)

and for future reference setηi = 〈ni, dzi〉, let αi be the angle betweenei−1 and
Jni, and letli be the length of the section fromzi to zi+1.

We have adistribution∆ onΣ, namely

∆ = ker{ψ1, ..., ψn} ⊂ TΣ

Any two parameter family ofn-periodic trajectories corresponds to an immersed
surfaceM2 →֒ Σ which is everywhere tangent to∆ and subject to some additional
genericity conditions. More precisely, we have
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Figure 4.

Proposition 1. [7] There exists a one to one correspondence between (segments of)
curves admitting an open subset ofn-periodic trajectories and immersed surfaces
i : M2 → Σ tangent to∆ satisfying

1. no two points coincide

2. no three points are colinear

3. Any two consecutive points “move independently” in the manner made pre-
cise in condition(1) described below.

Note that the first two conditions are zero-th order conditions regarding the initial
point in Σ about which we want to construct the surface. The last is a first order
condition which may be described as follows:

Note that(η1
p, ..., η

n
p , ψ

1
p, ..., ψ

n
p ) gives a basis ofT ∗

p Σ and that this basis varies
smoothly - one says(ηi, ψi) form acoframingof of Σ. The precise form of condi-
tion (3) for proposition 1 is that

i∗(ηi ∧ ηi+1) is nonvanishing ∀ 1 ≤ i ≤ n (1)

where we use the convention that for indicesn+ 1 = 1.

How can we determine the existence of such surfaces?

Were we looking forn-folds, the answer would be given by the Frobenius theorem:

Theorem 1(Frobenius theorem). Given pointwise linearly independent one-forms
ψ1, ..., ψn on a manifoldXm, there exists an immersed submanifoldi : Mm−n → X
passing throughp ∈ X on whichi∗(ψj) ≡ 0 for all j (i.e., withTxM = ∆x :=
ker{ψj} for all x ∈ M ) if in a neighborhood ofp there exist one-formsαi

j ∈

Ω1(X) such that
dψi = αi

1 ∧ ψ
1 + · · · + αi

n ∧ ψn ∀ i (2)
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The condition (2) is often expressed asdψi ≡ 0 mod{ψ1, ..., ψn}. In fact the
individual forms don’t matter, just their span, so we could write I = {ψ1, ..., ψn}
and

dψi ≡ 0 modI ∀ i.

Another way to express it is that locally if,X,Y are vector fields lying in∆, that
[X,Y ] also lies in∆. (Exercise: verify that this is indeed equivalent.) Note that all
these conditions involve beginning with first order information and differentiating
it once - if everything is OK, then we are guaranteed solutions. That is, we can
stop working after taking two derivatives.

Were we in the situation that there was just a single one-form, thenPfaff ’s theorem
(see, e.g., [5] §1.3) guarantees existence of submanifoldsof dimension roughly half
the dimension of the manifold. Moreover, by computing the exterior derivative of
the one-form one can determine the precise maximal dimension of a submanifold
on which the form pulls back to be zero.

To deal with the general setting of determining existence ofsubmanifolds on which
an ideal of differential forms pulls back to be zero, an explicit algorithm was devel-
oped by Cartan and others. The algorithm also gives a rough estimate of the size
of the space of such manifolds. (E.g., in the Frobenius theorem, there is a unique
such manifold through a point but for Pfaff’s theorem, therewill be “functions ”
worth of solution manifolds through a point.)

The essential question is: Given a candidate tangent space (a first order admissible
Taylor series), can we extend it? - i.e., can we “fit together”potential tangent
spaces to obtain a solution submanifold?

5. EDS terminology

LetV be a vector space, letG(k, V ) denote theGrassmannianof k-planes through
the origin inV .

Definition 1. Let Σ be a manifold LetI ⊂ Ω∗(Σ) be a differential ideal, which we
will call an exterior differential system. We letIj ⊂ Ωj(Σ) denote the component
in degreej and we will henceforth assumeI0 = ∅. An integral manifoldof I is an
immersed submanifoldi : M → Σ such thati∗(φ) = 0 for all φ ∈ I.

As with many things in mathematics, we will work infinitesimally with the goal of
linearizing the problem of determing the integral manifolds of an EDS.

Definition 2. Forx ∈ Σ, we let

Vk(I)x := {E ∈ G(k, TxΣ) | φ|E = 0 ∀φ ∈ I}

which is called the variety ofk-dimensional integral elementsto I at x. We
let G(k, TΣ) denote the Grassmann bundle, i.e., the bundle overΣ whose fiber
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over x ∈ Σ is G(k, TxΣ), and letVk(I) ⊂ G(k, TΣ) denote the set of allk-
dimensional integral elements.

The first step in the Cartan algorithm isCartan’s test: one compares a crude es-
timate (obtained from linear algebra calculations) of dimVk(I) with its actual di-
mension. If the two numbers agree, then theCartan-Kähler theoremguarantees
local existence of integral manifolds. We can think of it as saying “if the second
order terms for the Taylor series look good, everything is good”. If the test fails, we
must take more derivatives to determine existence. This process is calledprolon-
gation. TheKuranishi prolongation theoremsays that in principle one only needs
to prolong a finite number of times before getting a definitiveanswer, but this is
of little use in practice as the theorem gives no indication of how many times one
must prolong (how many derivatives one needs to take). Before going into details,
let’s examine some examples to develop our intuition.

6. PDE and EDS

Example 1. Consider the PDE system foru(x, y) given by

ux = A(x, y, u),

uy = B(x, y, u),
(3)

whereA,B are given smooth functions. Since (3) specifies both partialderivatives
of u, at any given pointp = (x, y, u) ∈ R

3 the tangent plane to the graph of a
solution passing throughp is uniquely determined.

Whether or not the plane is actually tangent to a solution to (3) depends on whether
or not the equations (3) are “compatible” as differential equations. For smooth
solutions to a system of PDE, compatibility conditions arise because mixed partials
must commute, i.e.,(ux)y = (uy)x. In our example,

(ux)y =
∂

∂y
A(x, y, u) = Ay(x, y, u) +Au(x, y, u)

∂u

∂y
= Ay +BAu,

(uy)x = Bx +ABu,

so setting(ux)y = (uy)x reveals a “hidden equation”, the compatibility condition

Ay +BAu = Bx +ABu. (4)

and the Frobenius condition is exactly the vanishing of thisequation. To see this
let

θ = du−A(x, y, u)dx −B(x, y, u)dy.

Exercise: show that (4) holds iffdθ ≡ 0 modθ.

Here we have the EDSI = {θ}diff on Σ = R
3 but since this EDS comes from

a PDE, we have an additional condition that we want our integral manifolds to



8 J.M. Landsberg

satisfy, namely thatx, y are independent variables on a solution. We encode this
by settingΩ = dx ∧ dy and making the following definitions:

Definition 3. Let I ⊂ Ω∗(Σ) be a differential ideal, andΩ ∈ Ωn(Σ). The pair
(I,Ω) is called anexterior differential system with independence condition. An
integral manifoldof I is an immersed submanifoldi : M → Σ such thati∗(φ) = 0
for all φ ∈ I andi∗(Ω) is nonvanishing. Note that we really only needΩ up to
scale and moduloI, so we sometimes refer to an independence condition as an
equivalence class ofn-forms (the equivalence is up to scale and moduloI).

Remark 1. One can attempt to obtain solutions to the system (3) by solving a
succession of Cauchy problems. For example fixy = 0 and solve the ODE

dũ

dx
= A(x, 0, ũ), ũ(0) = u0. (5)

After solving (5), holdx fixed and solve the initial value problem

du

dy
= B(x, y, u), u(x, 0) = ũ(x). (6)

This determines a functionu(x, y) on some neighborhood of(0, 0). The problem
is that this function may not satisfy our original equation,and it also may depend
on the path chosen. The function is independent of path chosen precisely if the
Frobenius condition holds, and in that case it gives the right answer too.

In general, given a first-order system ofr equations fors functionsua of n vari-
ables, there exists a change of coordinates so that the system takes the form

u1
x1 = f1

1 (x, u),

...

ur1

x1 = f1
r1

(x, u),

u1
x2 = f2

1 (x, u, ux1),

...

ur2

x2 = f2
r2

(x, u, ux1),

...

u1
xn = fn

1 (x, u, ux1 , ..., uxn−1),

...

urn
xn = fn

rn
(x, u, ux1 , ..., uxn−1),

wherex = (x1, ..., xn), u = (u1, ..., us), ua
xj = ∂ua

∂xj , 1 ≤ a ≤ s, 1 ≤ j ≤ n, and
r1 ≤ r2 ≤ . . . ≤ rn = s with r = r1 + . . .+ rn (see [9]).
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We may be able to produce solutions of this system by solving aseries of Cauchy
problems. However, we need to check that equations are compatible, i.e., that
mixed partials commute:

∂

∂xi
f j

σ =
∂

∂xj
f i

σ, 1 ≤ i, j ≤ n, ∀σ.

Although it would be impractical to change any given system of PDE into the
above form, converting this system to an EDS will guide us naturally to the analog
of the above form. We can then apply a straightforward test that signals when no
further compatibility conditions need to be checked.

7. Cartan’s test

LetI be an EDS on a manifoldΣ. Letp ∈ Σ be a general point and(p,E) ∈ Vn(I)
be a general point ofVn(I). The required generality can be made precise, see
[13, 5] but we suppress that in these lectures. Intuitively,we want(p,E) to be
“like” its neighbors in some small open set inVn(I).

Remark 2. Note that since we are dealing with (analytic) varieties, i.e., zero sets
of analytic functions, there can be components toVn(I)p. “A general point” means
a general point of a given component.

As mentioned above, the test we are after will compare a codimension estimate
obtained by linear algebra calculations with the codimension of a variety.

Definition 4. LetE ∈ Vj(I)p and lete1, ..., ej be a basis ofE. Define

H(E) := {v ∈ TpΣ | φ(v, e1, ..., ej) = 0 ∀φ ∈ Ij+1}

thepolar spaceof E.

Note that

1. H(E) is well defined (i.e., independent of our choice of basis),
2. E ⊂ H(E) and

3. determiningH(E) is a linear calculation.

The quotientH(E)/E may be thought of as the space of possible enlargements of
E from ap-dimensional integral element to a(p+1)-dimensional integral element.
We will actually need to calculate the dimensions of a seriesof polar spaces.
Let E ∈ Vn(I). Fix a generic flagE1 ⊂ · · · ⊂ En−1 ⊂ En = E in E. Let
cj = codim(H(Ej), TpΣ), and setc0 = codimV1(I) = dimI1. Note that ifΣ
has components, then codimV1(I) can depend on the component, and forj > 1,
Vj(I) may have components even ifΣ has just one component. Therefore we
will write codim Ej+1

(Vj+1(I),G(j+1, TΣ)) to eliminate any possible ambiguity
when discussing the codimension ofVj+1(I) atEj+1.
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We have the following estimate

Proposition 2.

codimEj+1
(Vj+1,G(j + 1, TΣ)) ≥ codimEj

(Vj ,G(j, TΣ)) + codimTpΣH(Ej).

The inequality is intuitively reasonable as the first term onthe right represent the
conditions to have aj-dimensional integral element and the second term repre-
sents the new conditions for enlarging it to a(j + 1)-dimensional integral ele-
ment. Equality holding should be interpreted asVj+1 being “as large as possible”
atEj+1. Adding up these inequalities, we obtain

Proposition 3.

codimE(Vn,G(n, TΣ) ≥ c0 + c1 + · · · + cn−1. (7)

TheCartan-Kähler theoremstates that when equality holds (assuming our gener-
icity hypotheses aboutp andE), there exists ann-dimensional integral manifold
throughp with tangent spaceM . The test for equality holding in (7) is calledCar-
tan’s test. If an integral element passes Cartan’s test, we get a bonus -a coarse
estimate of the size of the moduli space of integral manifolds throughp. Namely
if we setsk = ck − ck−1 and letk0 be the largest integer such thatsk0

is nonzero,
then integral manifolds depend roughly onsk0

analytic functions ofk0 variables.
In particular if the largestk0 is 0, then integral manifolds depend only on a choice
of constants, as in the Frobenius theorem.

Other possibilities.

Vn(I)p = ∅.

More precisely, there exists a Zariski open subset ofΣ over which there are non-
dimensional integral elements. In this case it is necessaryto restrict to the (analytic)
subvarietyΣ′ ⊂ Σ over which there aren-dimensional integral elements and start
over, working at general points ofΣ′. Note thatΣ′ may have several components
and that one must perform the test on each component separately. If dim Σ′ < n
we are done, there are non-dimensional integral manifolds.

Cartan’s test fails.

Intuitively, this means we have not differentiated enough to uncover all compati-
bility conditions and we must take more derivatives. It turns out that, rather than
taking higher derivatives, it is notationally simpler to start over on a larger space
where our old derivatives are replaced by independent variables. (This corresponds
to the standard process of converting any system of PDE to a first order system by
adding additional variables.)
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More precisely, forgetting aboutI for the moment, onπ : G(n, TΣ) → Σ, con-
sider the following tautological system: given(p,E) ∈ G(n, TΣ), we haveE⊥ ⊂
T ∗

p Σ. Define

I(p,E) := π∗(E⊥).

For good measure we add the independence condition determined byΛn(π∗(T ∗Σ/I)).
Integral manifolds of the tautological system({I}diff ,Ω) with [Ω] ∈ Λn(π∗(T ∗Σ/I))
are precisely theGauss imagesof immersedn-dimensional submanifoldsf : M → Σ.

Now let’s return to our original EDSI onΣ:

Definition 5. Theprolongationof I is the pullback of the tautological system on
G(n, TΣ) to Vn(I) ⊂ G(n, TΣ).

One then starts over withΣ replaced byVn(I) andI replaced by the pullback of
the tautological system. One then performs Cartan’s test, if it fails, one prolongs
again, etc... For more details, see [13], §5.5.

8. First examples of Cartan’s test

Example 0: arbitrary maps R
2 → R

2.

Let the firstR2 have coordinatesx1, x2, the second coordinatesu1, u2 and letΣ =
J1(R2,R2) ≃ R

8 with coordinates(xi, uj , pi
j), 1 ≤ i, j ≤ 2.

Given a mapf : R
2 → R

2, we define thelift of f to Σ to be the set of points

(x1, x2, f1(x), f2(x),
∂f1

∂x1
|x
∂f1

∂x2
|x,

∂f2

∂x1
|x,

∂f1

∂x2
|x),

which is a coordinate version of the Gauss map of an immersion. Let

θ1 = du1 − p1
1dx

1 − p1
2dx

2

θ2 = du2 − p2
1dx

1 − p2
2dx

2

Introduce the independence conditionΩ = dx1 ∧ dx2. Then integral manifolds of
the system({θ1, θ2}diff ,Ω) are in one to one correspondence with lifts of maps
f : R

2 → R
2.

The manifoldΣ = J1(R2,R2) equipped with the system({θ1, θ2}diff ,Ω) is
called the space ofone-jetsof mappingsR2 → R

2.

Let’s perform Cartan’s test:

Determination of c0 + c1.

c0 = 2 because dimI1 = 2. The equations on any line{v} are explicitlyθ1(v) =
0, θ2(v) = 0.
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To find c1, we need to take a generic{v} ∈ V1. Write

v = a1 ∂

∂x1
+ a2 ∂

∂x2
+ bia

∂

∂pa
i

+ ea
∂

∂ua

where here and throughout we use thesummation conventionthat repeated indices
are to be summed over.θj(v) = ej − pj

1a
1 − pj

2a
2 so we may take

v = a1 ∂

∂x1
+ a2 ∂

∂x1
+ bia

∂

∂pa
i

+ (pa
1a

1 + pa
2a

2)
∂

∂ua

whereaj, bia are (general) constants.

To determinec2, we must findI2. First there areα ∧ θ1, α ∧ θ2 whereα is any
one-form. We also havedθj = −dpj

1 ∧ dx
1 − dpj

2 ∧ dx
2. To determine a possible

enlargement of{v} we must calculate

dθj(v, ·) = bj1dx
1 − a1dpj

1 + bj2dx
2 − a2dpj

2

So any vectorw in H1({v}) must satisfy the four linear equations

θj(w) = 0, dθj(v,w) = 0

These are independent (check yourself!), so we obtainc1 = 4 andc0 + c1 = 6.

Determination of codimV2.

Let G(2, TΣ) have local coordinates(xi, ua, pa
i ; b

i
a, c

i
a, e

a, fa) where the first set
gives coordinates for the base point and the second for the planev ∧ w where

v =
∂

∂x1
+ bia

∂

∂pa
i

+ ea
∂

∂ua

w =
∂

∂x2
+ cia

∂

∂pa
i

+ fa ∂

∂ua

We have the following conditions and consequences:

θ1(v) = 0 =⇒ b1 = p1
1

θ2(v) = 0 =⇒ b2 = p2
1

θ1(w) = 0 =⇒ c1 = p1
2

θ2(w) = 0 =⇒ c2 = p2
2

dθ1(v ∧ w) = 0 =⇒ c11 − b12 = 0
dθ2(v ∧ w) = 0 =⇒ c21 − b22 = 0

These six equations are independent and we conclude codimV2(I) = 6 and Car-
tan’s test succeeds. Moreover integral manifolds “depend on two functions of two
variables” which in this case we see explicitly, as we knew the solutions all along.
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Example 1: The Cauchy-Riemann equationsu1
x1 = u2

x2
, u1

x2 = −u2
x1

.

This example is the same as above, except that we now restrictto the submanifold
Σ′ ⊂ Σ wherep1

1 = p2
2 andp1

2 = −p2
1. We still havec0 = 2 asθ1, θ2 remain

linearly independent when restricted toΣ′ but we now havec1 = 2 (exercise -
be sure to express the initialv in terms of6 variables (e.g., eliminatep2

1, p
2
2)).

Similarly, only four of the six equations forV2 remain independent. So here we
have the equality codimEV2 = 4 = c0 + c1 = 2 + 2.

Here Cartan’s test indicates that integral manifolds should depend on two functions
of one variable, which we also know to be the case as a (sufficiently generic) real
analytic arc uniquely determines a holomorphic mapC → C.

Remark 3. Note that in both the above calculations, the calculation ofcodimV2(I)p
was linear. There is a large class of EDS, calledlinear Pfaffian systemswhich are
systems defined by one-forms for which this linearity holds.For such systems,
there is a simplified version of Cartan’s test. Any system of partial differential
equations expressed as the pullback of the contact system onthe space of jets is a
linear Pfaffian system, see, e.g., [13], example 5.1.4.

Example 2: Lagrangian submanifolds.

Let ω be the standard symplectic form onR
2n:

ω = dx1 ∧ dy1 + . . .+ dxn ∧ dyn.

An n-dimensional submanifold isLagrangianif it is an integral manifold ofI =
{ω}diff .

Given (p,E) ∈ Vn(I), we can make a linear change of coordinates (while keep-
ing the form ofω) so thatE is annihilated bydy1, ..., dyn. This is because the
subgroup ofGL(TpR

2n) leavingω invariant is the symplectic group which acts
transitively not only on Lagrangiann-planes but on all flags within them. Thus all
n-planes at all points are equivalent and genericity issues don’t enter. Any nearby
integraln-planes atp are given bydyj =

∑

k s
jkdxj for sjk = skj. Therefore,

dim (Vn(I)p) =
(n+1

2

)

,

codimE(Vn(I)p, G(n, TpR
2n)) = codimE(Vn(I),G(n, TR

2n)) =

(

n

2

)

,

independent ofp andE.

Let e1, ..., en ∈ E be dual todx1, ..., dxn and we usee1, ..., en to build our flag in
E, i.e.,Ej = 〈e1, ..., ej〉. (By the remark above, there are no genericity issues to
be concerned with.)
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It is easy to calculate that forj ≤ n,

H(Ej) = {v ∈ TpR
2n | dyk(v) = 0 ∀ k ≤ j}

socj = j for j ≤ n− 1. Sincec1 + c2 + . . . + cn−1 =
(n
2

)

, we have involutivity,
and integral manifolds depend on 1 function ofn variables. (In fact, they can
be explicitly constructed by settingyj = ∂f/∂xj for f an arbitrary function of
x1, ..., xn.)

9. Periodic billiard orbits

We now return to the problem of findingn-periodic billiard orbits. (The results of
this section and the next are joint with Baryshnikov and Zharnitsky.) We have the
EDS

I = {ψi}diff

and several independence conditions: that eachηi ∧ ηi+1 is nonvanishing on an
integral manifold. Fortunately we can reduce to a single independence condition
thanks to the following lemma:

Lemma 1. It is sufficient to work with the independence conditionη1 ∧ η2 (or any
ηi ∧ ηi+1).

Proof: LetXi be a dual basis toηj of kerI1. Take local coordinatespα
1 , p

α
2 about

[X1 ∧ X2] where we write[v ∧ w] as a nearby point withv = X1 + pα
1Xα,

w = X2 + pα
2Xα.

Introduce the notationsaj =
cos(αj+1)

2lj
, bj =

cos(αj−1)
2lj−1

where we use the notation
of §4. One calculates (see [7]) that

dψj ≡ (ajη
j+1 + bjη

j−1) ∧ ηj modI

Moreoverp ∈ Σ implies that none of theaj, bj are zero atp.

Evaluating thedψi at v ∧ w (that is, evaluating at an arbitrary point in our chart)
we obtain then equations on thepα

j

0 = a1 + b1p
n
2

0 = p3
1a2 + b2

0 = (p4
2p

3
1 − p3

2p
4
1)a3 + p3

1b3
0 = (p5

2p
4
1 − p5

1p
4
2)a4 + (p4

2p
3
1 − p3

2p
4
1)b4

...
0 = pn

2an + (pn
2p

n−1
1 − pn−1

2 pn
1 )bn

(8)

of whichn− 1 are independent.

The first equation impliespn
2 6= 0, which implies that on an integral element on

which η1 ∧ η2 6= 0, we also haveηn ∧ η1 6= 0. The second equation implies
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p3
1 6= 0 which implies that similarlyη2 ∧ η3 6= 0. The third equation implies that

(p4
2p

3
1 − p3

2p
4
1) 6= 0 but this is exactly the condition thatη3 ∧ η4 6= 0. Continuing,

we see thatη1 ∧ η2 6= 0 implies that allηj ∧ ηj+1 6= 0 on an integral element.�

Remark 4. Had we instead taken, e.g.,η1 ∧ η3 as independence condition, (as-
sumingn > 3) we could not have drawn a similar conclusion, see [7].

Introduce notation∆j−1 = (pj
1p

j−1
2 −pj

2p
j−1
1 ) with the convention thatp1

1 = p2
2 =

1, p2
1 = p1

2 = 0, so∆1 = 1. Then our equations (8) become

aj∆j−1 + bj∆j = 0

which we may write in matrix form:
















0 0 0 . . . 0 a1

a2 b2 0 . . . 0 0
0 a3 b3 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . an−1 bn−1

































∆2

∆3

∆4
...

∆n

















=

















−b1
−a2

0
...
0

















and since theaj are nonzero, there is a unique solution for∆2, ...,∆n. Now
∆2 = p3

1 and∆n = pn
2 so p3

1, p
n
2 are fixed and the remaining equations on the

pα
i are independent. In fact one can solve explicitly for all theremainingpα

1 , p
α
2 in

terms ofp4
1, p

3
2, p

5
1, p

6
1, ..., p

n−1
1 . Thus the space of integral elements satisfying the

genericity condition is of dimensionn− 3.

Proposition 4. The system(I, η1 ∧ η2) has codimV2(I) = 3n − 1, c0 = n,
c1 = 2n− 2 and thus fails Cartan’s test by one.

Proof: Herec0 is just the codimension of the space of one-dimensional integral
elements at a point ofΣ. To calculatec1, one needs a sufficiently generic vector,
Z = X1 + · · · + Xn will do. One then sees thatZ is contained in a unique two-
dimensional integral element. �

If one ignores the genericity conditions, asn increases the dimensions of integral
manifolds can be arbitrarily large (see [7]). The next proposition states that with
the genericity conditions, this fails even at the infinitesimal level.

Proposition 5. For all n, there are no3-dimensional integral elements toI satis-
fying the genericity conditions.

Proof: On a three dimensional integral element, we must have sayη1, η2, faη
a

independent where3 ≤ a ≤ n and thefa’s are some constants. First note that
f3, fn must be zero by consideringdψ2, dψ1 respectively. But we also must have
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η2, η3 independent, and sincef3 = 0, this impliesη2, η3, faη
a must be indepen-

dent, which, usingdψ3 implies thatf4 = 0. Continuing in this fashion one obtains
that all thefa must be zero. �

10. Three periodic billiard orbits

Here the space of integral elements satisfying the billiardconditions is a single
point. Takingη1 ∧ η3 as our independence condition, writingcj = cos(αj), sj =
sin(αj), we see that on integral elements

η2 +
c1l2
c2l3

η1 +
c3l1
c2l3

η3 = 0 (9)

Adding this form to the ideal and taking its derivative, we see

d(η2 +
c1l2
c2l3

η1 +
c3l1
c2l3

η3)

≡ [(−s3c1c2 + c3s2c1 + c3s1c2)l1 + (−c3s1c2 + s3c1c2 + c3s2c1)l2

+ (−c3s2c1 + s3c1c2 + c3s1c2)l3]
η1 ∧ η3

c22l
2
3

ThusV1(I)x = ∅ for generalx ∈ Σ and we must restrict to the subvariety ofΣ
where

(−s3c1c2 + c3s2c1 + c3s1c2)l1 + (−c3s1c2 + s3c1c2 + c3s2c1)l2

+ (−c3s2c1 + s3c1c2 + c3s1c2)l3 = 0.

Now recall that a triangle is uniquely determined, e.g., by two of its three angles
and the length of one of its sides, we may write

α3 =
π

2
− α1 − α2

l3 =
l1sin(2α2)

sin(π − 2α1 − 2α2)

l2 =
l1sin(2α1)

sin(π − 2α1 − 2α2)

and substituting in, we obtain the equation

6l1c1c2s1s2 = 0

which cannot occur onΣ. �
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11. A few successes of the Cartan-Kähler theorem

11.1. The Cartan-Janet theorem

Given an analytic Riemannian manifold (Mn, g), does there exist a local isometric
immersion into Euclidean spaceEn+s? The Cartan-Janet theorem states that for
any analytic metric the answer is yes as long ass ≥

(n
2

)

. If the metric is special
one can sometimes do much better, see [8, 1, 6] for the cases ofspace forms and
generalizations.

11.2. Manifolds with exceptional holonomy

Using EDS Bryant [4] showed that there exist non-symmetric Riemannian mani-
folds with holonomyG2 andSpin7, settling the last open local existence questions
in the Riemannian case of Berger’s 1953 thesis [2].

11.3. Existence of calibrated submanifolds

The abundance of special Lagrangian and other calibrated submanifolds was first
proved by Harvey and Lawson [12] using the Cartan-Kähler theorem.

While describing the first two examples would involve too many definitions, we
will explicitly describe two cases of applying the Cartan-Kähler theorem to prove
existence of calibrated submanifolds.

Definition 6. A calibration on an oriented Riemannian manifoldΣ is a closed
differential formφ ∈ Ωk(Σ) such that for all unit volume(p,E) ∈ G(k, TΣ),
φ(E) ≤ 1.

There are many variants on the definition. Calibrations are atool for finding vol-
ume minimizing submanifolds ofΣ because the fundamental lemma of calibrations
says that ifi : M → Σ is an immersed submanifold on whichi∗(φ) = vol M then
M is volume minimizing in its homology class (assumingM is compact, there are
variations whenM is noncompact), see [12].

Recently calibrated manifolds have become of central importance because of appli-
cations to physics. See, e.g., Joyce’s lectures in [15]. Calibrations may be thought
of as generalizations of normalized powers of the Kähler form, which itself gives
rise to an involutive system (the Cauchy-Riemann equations!). We will discuss
two additional calibrations, thespecial Lagrangian calibrationand theassociative
calibration.

Sometimes a calibrationα has a complementary formαc such that

|α(E)|2 + |αc(E)|2 = 1 (10)
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for all unit volume planesE. In such cases we may define an EDS whose integral
manifolds are the submanifolds calibrated byα by takingI = {αc}diff .

Example 2 (Special Lagrangian manifolds). On R
2n = C

n (or any Kähler mani-
fold), consider the differentialn-form

α = Re

(

dz1 ∧ · · · ∧ dzn
)

,

wherezj = dxj + idyj , called thespecial Lagrangian calibration.

In the special Lagrangian case, a variant of (10) holds. If wetake

αc = Im

(

dz1 ∧ · · · ∧ dzn
)

,

then, restricted toLagrangiann-planes, (10) holds. Moreover, it is easy to see any
submanifold calibrated byα is Lagrangian, soI = {ω,αc}diff is an EDS whose
integral manifolds are the special Lagrangian submanifolds.

GivenE ∈ Vn(I), we can change coordinates so thatE is annihilated bydy1, ..., dyn.
(This is because the system isSU(n) invariant andSU(n) acts transitively on the
special Lagrangian planes at a point and even transitively on flags in special La-
grangian planes.) Takinge1, ..., en ∈ E to be dual todx1, ..., dxn, we havecj = j
for 1 ≤ j ≤ n− 2 as in example 2 of §8. However,

ω ≡ dxn−1 ∧ dyn−1 + dxn ∧ dyn

αc ≡ dx1 ∧ · · · dxn−2 ∧ (dxn−1 ∧ dyn − dxn ∧ dyn−1)

}

moddy1, ..., dyn−2

shows thatcn−1 = n. The requirement thatαc|E = 0 is one additional equation
(
∑

j s
jj = 0) on the set of Lagrangiann-planes so the codimension ofVn(I) is

one greater than the Lagrangian case and the system is involutive, with solutions
depending on two functions ofn− 1 variables.

Example 3 (Associative submanifolds). The 14-dimensional compact Lie group
G2 arises as the automorphism group of the normed algebraO of octonions (see
e.g., [13] §A.5)), and leaves invariant a 3-formφ onR

7 = ImO, whereφ(x, y, z) =
〈x, yz〉. (Here〈·, ·〉 is the inner-product induced from the norm.) Thisφ is a cali-
bration onR

7, and it admits a complement as in (10):φc = 1
2 Im ((xy)z − (zy)x).

We define an EDSI for associative submanifolds by taking the components of the
ImO-valued 3-formφc as generators. (Sinceφc is constant-coefficient, all of these
generators are closed.)

LetE ∈ V3(I). Then the stabilizer ofE in G2 is six-dimensional. SinceG2 acts
transitively on the space of3-dimensional integral elements, we conclude

codim(V3(I)p, G(3, TpImO)) = 12 − 8 = 4.

On the other hand, for any flag inE, c0 = c1 = 0 andc2 = 4 (two independent
vectors inE determine the third one by multiplication). ThusI is involutive atE
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(hence involutive everywhere, by homogeneity). Integral manifolds depend on4
functions of two variables.
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