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W > T f(x) E/‘Jﬁ?j;‘@7??7#*/[\{W&Fj‘7mﬂ/‘]4\$lzbjz O(x.0) CAH, = {x]| f(f)<
s () > b NS w(HY) =p(Hy o D AP .

FIHTTIH A ZE 0 47 oo = cor s ATHERR /l(H}:):,U(chfl)nU(ch):,U(HkJrl)?U\ﬁﬁX’f%l‘
Co1 =Cr s Cr1 = Cprz. PAIGIEHE, AT f(I)ET]%L';ﬁ P p(Hk):,u(Hk () My =cpr » TS,
AIHER f () =8

4

%:cmk), (2.22)

Cp—
u(Hy) —pu(H")
p(HO) —p(H™)
TR REL f o) WA 350 1) S /M IS SE ) 33 8 KT 46 3 501 ) s bl /ML S 4R
WO R FR b T G R BT
HiL 2.4 (fLR=18h(f,)=1XfHPE— k7L FTREFMRE f(O=HFH
Xof T AN 25 T3 RO E B2 R B e (f ) <<L A (f ) <<1(k=1,2,--).

=h(f,k), (2.23)



HIEE T DL o e S TR S B R SR SR/ IMELTE (A 24 TR B AR S . &
(IEEIRUE T E 8

3 it scEl

AR AR AR T2 R I S ) FIKCE SRS H, . SRIEAR 2 C T
m SRERGE  SRKEE — RN TE S 52 2%, v e T80 5 9k, AT DA S a3+ SEURBE Y. R T
725 H XA B ) — A ARSI B ge i Hik g e Jnil, rTAEL 14 Jrh 2 2],

Ze f(o) & m YRk

G={x|a<a'<b ,i=1,2,+,m} (3.1
RS R B, TGS RS TR RM Rl ¢ RM R R R, ¢ MBS S . CR i,
AT XT GET TR bR 01 B N BGE A — 2540

ERTE:

1. =4 H,

W E=(&".& . &% m DA EMS B RHECHBENLEL (BRI & J2 (0, 1D EI5) . i=
1,240 ym). 2>

=d+W'—a)€,i=1,2,,m, (3.2)
B} 2= (xt 2%y e s O VEBENLANAER 45— F 5 25,7 =1,2, -, M. 1158 f(a)).

BEPLBE RS OB R EE RN P A2 e W 2 A W R ¢ A il BN R T 4%
NS UT Y ¢ D BREEAE FVLi ] i=1.2, 0. BEEBSESE I, FV i ¢ AR EEA
Wb /NI AR 32 B W rp R R B Y ¢ A s AN T SR

FrAR 21 WOl LUE oS KF 5 Ho BRI, & FV b e A s BUE I ok iy — 1
Heo  FVLU]=co JURT 2 €W, f()<co. 5350 FV H R EUE P2

c1:%{FVD]JrFV[Z]Jr"-JrFVD]}, (3.3)

ATLUE e Ho b R8O p R R,
2. JEA T AR IX
BT R AR AR S T & IR BGE R N A Ho LRI S) 5040, PR T REAILAR A
SR Ho WE5H A% BRI AR W WAR S A%, B4k Hy B A A IR XE. S
I TR W Bl FAREEA T AT AR B 7R A — S W m iR T
D ={x|ai<<a'<<b},i=1,2,+.m}, 3.4
SRIGRA: Dy B35 oA, 2R WP A8 R XS ) BRI b A S T . i
W, Dy CD.
3. AR R LR
1E Dy HhBEPLAR AL, A
r=ai+ 0 —al)E ,i=1,2,,m. (3.5)
TR REUE (o). WM — DR IREE, AL ¢ A R W AR RN RSN «
N REUELE FV. 8O EORWIE I, FV iy ¢ A s EUE AW AS /N W 8 SO W SE 5T, B3
FV i ReREUE FV1]<<c, ik, XFAAREIM W 2 H, iR, FV b R BUE 7
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BIEH ¢ BRERMA. W5 2R Tk, X MEZE W B A e m K 5RD..

XA FRAREE T 25 AR T — A8 T BRI T 50 e ) SR m 4K D7 7
Dy .

4. A

FERGERE) FV i/ ME FV e 4R Rk ik A M3 Ui, ol LA £ () 18 R 3 B
fift, Horh T R Z A W i 5 R R G T35

5. WeBeH

R HE 2. 2 A1, L FV R R e ) 7 22

Df:% S (FVIi-Fr.  F=(>) FVLil)/t. (3.6)
i=1 i=1

i AR TISE 2 A ZOROR ST = 73 28 RT3 o mT AR 8 R X Dy AR (B KO
Tl I PUC 20 7 I RN R R A AR5 A .

=
=

4 EEWMGITS

4.1 FREXBHBESRITER

Ffsekihie 2L W P &K H 1 m 4K 51K D (RIS DGR R BT &R
DO B T5 .

e W IR/KCFE H p0in R RIS L A & . WA i Sn] LR e H B
S A REALZ B ¢ AFRE . il LS B 4% 708 1 A AL 1 X 8RR Y A% AR s 23 B BB 20 Sl Ak
LR A E H R m AER D5 R TR AT 150 SR~ AR ST A T 23 H

B & Casb) LR s o0 A5 pRECA F ) s FerR s a b SRR FAT Tl LU & 19
tABERLTHRE 610G e o & AR GETHRE XS @ (b BEATAG T, AR — . % «=0.0=1.iC

p=min{& &, 0}, (4.1
m=max{& &) (4.2)
Iy Mo s M [ 4341 R 950(}’),551(3/)%7'37”?‘7
0, y<20
o ()=21—O0—Fy))", 0<y<l (4.3
11’ y=1
0, y<0
(=) (F(y))*, 0<y<<l (4. 4)
1, y=1.

BT pm MIAEN
"1
My = | (1=F(y)dy
1
My =1— [ (F(y)dy.

By s AP S s T A T, AR AL f (o) S —JT FLIGE PR D) & S48 50 23 A1 L X
TR ZICLWEREL € 2 LR 0. O T B DL, 5 & & S22 2] 704 .
1



My =—7. Mp=—t,

[3'¢
Co=n—Cp—n)/—1) (4.5)
G=mn+G—n)/G—D (4.6)

U BT 53 4b . Dy — Doy —1/ 17 (42) (D FR B e 7 19572 » I
FHB M EBEHLI S ~ 1/ XS F— R TR 1 (4 5)FICL, 6)FE Wit it
Fe AT 0 AR I D Bk B8 B BB A 1 B, D, B (LA ) X s D
FROME 3 5 BRI M s M AT 5 A 5 B 553 AR ¢ A7 1.
T A ST A% 1 B B 7 AT B P RR R A A4 2 . A 4 O
E LR b o AT o 5 5 R B B8 ) X i B 2 LB — A3

. atb
T

AR, 7 FWEXTFR , W B AR B 0= 0, (i AT 2 B (140 WM PR S = 0 Sy i 450 S 0= 1. T T S A
— SRR T AW a=0,0=1. I E WA, 0 320636 HB A v A HE 2y
Plo<<(1+8)/2). (4. 8)
B (4. 6) FC4. D ATLUA S & #9534 pRE, TSR AN RIS O Fl e I SVR(BL A, o 3 1R 7Y
HER AET R A B A, T IR 2% e A it
(4, 4) AT, 0655 AT MR N T 7 P y=F((1+6/2)). 0656 1 22 i
ML /N RS F 08 AT) . S22 R MR ¢ i 2 FAIE R
P2 ey, y=F{(1+8/2)). (4.9)
PRt s R o<1, 00 FC(1+8/2)<<1, YGEiHatn R K 3% H AR AR 15 AR /)N,
4.2 BIEAHMENEMET
WG S AR TR Vo s &0t —UGE UG B i R XA Vi Hrp V) 2
5K Hy /N m 4E KT IRIGIAT. RATFRHL(E

al :Vo/Vl (4. 10)
h 3k UAEAR P R XU R BRI 4 3R (TR IS AR 30D . B8 Hy ORRUR Vi, WUFR FUAE
B=Vu /V (4.1D

HIXUGEACHIBEGCR, HBAE Vo DT by, UG Hy RS2 T ¢ AR IR AT R
B[N

kv,
7O_VH1 (4.12)
ik
_a
by =t (4.13)
T 280 ke YGRS AR
3
Vk — VO’,“‘ H a; s (4. 14)

i=1
/E\:EF' Q1 sQ2 9 " sk %%Yﬁ(%ﬁ%%ﬁfﬁ’%e&ﬁxjiﬁﬂﬁﬁ)ﬁﬁlj@ le akMz [ skMk ,g:(ﬁ‘ k
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IR » BBRE N 25 U 2 A

k

N=kM, kM, + -+ kM, = Z—t. (4.15)
i=1 t
BEFE A UG H S 48 8 SR80 2 551
1<ao\(1/<(19 O<Bo<,81 ’ =1 729'"7 (4 16)
PSS
N<k -+ a/B *t. 4.17)

U ADFEY & 5 ¢ iy A1 SR FIRE BRI E . SRR AT E SR AR AR A KT g0 19
FET S WAV, B DU R V. B ) BY/INK I 3 S B R 4 3

Vo/Ve:;: H a. (4.18)
=1
Pl
lnl
k= £, (4.19)
Nao

AR 4&%$>* ke SEIEARUK ERTIBCRE KL IR A% st U & B2 I (4. 19) AP A i )

FEGERS I 1y TR AR HE BT A, ot iy LR (4. 19) =K.
T e AR Rk (R, A RIEAS BRI Y ¥ B KAER 7o 70 =
maxF((1+6/2)) , W2t k YR %R HHER q0 A T A
G =1—(1—2y})"™. (4. 20)
PRI, 4 B

_ In(Q—p¢*) —In2
Iny, ’

M 283 B YGER G IR R/ NT o - Horp po—l ¢ JE B EMER, BRI RS B
INT T B 34 T R4, 2DARA (4. 17) 4

(4.2D

Inagy

1n? In(1—py =) —|n2

<*. .
N e 7 (4.22)
Inay
In(1—pmnin—)—In2
T lim - o, (4.23)
e In In—
€
BCUEAS S 5 B AT
TIE 4.1 LR, Y e—>0 BB S H 2 TG
N<clntelnlnt, (1. 24)
€ €
/\EI:]
c%%. (4.25)
ﬁlnaolny—

(4. 25) X Y a=a0=a; G= 1.2, R W o= I IABR /DN BOE BEOCER AU W 45
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K rve=2. 71828 IN . MHESRLTT 2D,
T T IR R LS A 24 LA, 5k PR B S e A B

N=¢ - L. (4. 26)

€

R TEWS T =1L, RN ST C=1n 1jp0 s AT WA ST iR T v AR WSSy
AT E. ER AT VR B R ¢ 5 R B S OG, — LT A RS 2. PR
IIXEZm ¢ (4% A B8O R B R A — LE 4.
4.3 REERAMENFEHTIR

(4 20 F (A, 25) a] D, B/ is B, R S 4R R ROR. BN RO R S R R A
BYI R M) A1 X— TR, 5 K AR SR AR W s8R 1, SR T X 22 0 pR &S, B
HOEE R IR B ORI RRARAIC, X T 206 pR I 7KOF SETT RE AN SR 74 4 , P 0R T hg
A, PR L S i B RACR X ik A a2 B i, A o X ANk, AR o L

1 PR KT S SR i AR DX, FRATT R A A e 2 i 45 0K U LAY
BOR. TEAR IR ZAE W I, T DU /N o ik BlCH i 32 4 W Rl B E 5
AR A ST — B AR bR R BT IH AR AR 2R 2Z (R AR e B4k T, MIE T AR AR R T - 42
ZHEW i e AR y=T "z, LT LUE Hogr e b 22 i S XK. 2 )5, FRATSE RSB 1)
At 2 TR BEAILA o T RER £ (o) = f(Ty).

Pl Rosenbrock pg%§

f(xysa)=alx, — 2P+ (1—x)? (4. 27)

). FRATTE IR R K Ih — 5oy <5, — 52, <5, R ARFLUR 100, ZHL a=10, K FH
45k 10w, THE PR ALY 4000 IR R HIE AR 3 )5 T HA R B0l 940 IR B «=100,
MR RARFRGE S 10 OB, T PR AL 11250 W, SR H L AR 5 90 B 1420 R (BB R
£(1,1)=0.)

ARSI ZEL15 I P FHBEMLAE R 07 1% TR [R] — PR AL (4. 27) 5o BX 100, W] IR 48 2 X5
—1. 2 <2, — 1<, <<2,%5% 16384 R eREGTHE, S RIB & /NS~ 1 =1. 0103, 2, = 1.
0213. XA LHEE ITHEEIFE (4. 240 L (4. 2600 1k
4.4 FREMIREE

%ﬂ4%5@3ﬁﬁc¢E@ﬁ75@ﬁﬁ%%ﬁ%%~ﬁ1%,%—mmﬂﬂ+

L1
Yo

8/2)) 4 vo—>1 B BN FICT5. 75 REUEAR B AE X3 Bk 2], v vTREIRE] 1, 3% AR
TR s Bl 7 A EAE 2. 53 A1 5 SR A AN 2 7 3 4, D) i 5 98 2% XS g e v — 1
X WA S AT i — 6 A AR p. SR A FRATT Ak P A 2 B T 0 A {1 ) T, o G 4R 31—
A TR B R, LR Tk VR AR T 40 BE Ay 0 , £ B ~F- 30 (9 068 , 53CRE BT A (R %
HBA B E e .

X AT — > SR AEL A ) PRESC, E ML A B 3 J T R e 8, i i B I, PRI I, Y
PRISCHE T AR AEL i B o B T T R PR PR i B SR A58 /)N,

TE LR A FRATT [ HE T 45 308 i iy 38 55— 26 L A B W A ME A8, X T 52 2% 1) pR K
AR Gy i 58 T ok 1. FEMR DL SE PRI RS R JE G Hsbr , AR R Lt — e oK e
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it br. FA RS A SR FRBAR I A KK BT P — s b (e, 3 LT UK ek
B EORERE IR B (2R,

5 NAZEA

FRATH 34 5 vk 0 — 2o S B AR P FURL 24 4 R a8 A7 T S2 58 45 2R A H I 45
SRS TR FRATT 0 A AR5 Sk 1 A R A I PR T RN S PR ASCR
5.1 R%EZEEZEHEREMNBINZIT
Z )2 W G ERE FH L R 3 3R RO 3R IR 45 IR BT 59 238 RR R A P A 19
SR bREL. m J2 O R R

RO)=|2 Y

7o +Y

o
()41

_ 2mx.m,cosl,
67 - A ’

_ n.cosf, (s
| n/cost,  (p D,
o xSRI 0, 24 2R HT B no JB ASIA BT 5T 50 0 AT CANHE

HOWATH .0, S0, 245 20T it e At
1y sinf, = n, sing, (5.2)

’ Y:C/Bs

cosd, 1singd, /g, \ 1
i sing, * 7, COSO, J f(?; +1 ) ,

r=1,2,,m+1. (5. 1)

S, SRS SR LA R

2 22 R B U T 55 SR U 4 14 20 25 S R A 3T S S R RE L L ARAS R A e
fiE. il B skt w2 BRGS0 AR A6 D B BT R 4% RO A H AR
J 538 RDLA 25 35 B /0N 5C8A4 B T PP pR AL

F=|R—RD]| , (5.3)

Horpr || [ R HR S PR T A 1 45 SR [ BT M IT A sR B (5. 3) R BB/ R A
wit.

FATHGE R R A AL T RS I8 v ARG G2 IR A L TP RSB I iR oot R
S RIDCEZEMIEIET T A ST AR R AR S5 R R A =280 B (B RD
=0) (T .

FERBETF— AT 400mye B 700my 377 U BE 1 TAE M 58 U B, th2s S H A
Ut SRR BRI RN 1. 75, %45 2 R AT 5 R [ g £

PRI R K a = (70my, 200mp, 70my, 1. 35,1, 35, 1. 35) b= (170mg, 300myz,
170my, 2. 35,2. 35,2. 35) ya.b PRI =S EFR & 2 BN R B IR E L J5 =S80k
TN S AT S SR AR L 7E 400my, B 700m;x SRR 16 N A SR FF- 7

F= Z (R[AD?. (5.4)
A FRAT BN 1 B A A, HL #Jﬁéﬁ A/4ﬂ/2ﬂ/4 T, M R EE /A Fo
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0. 000303.

G SR A v ] 2 TR A 400 2 18 2R IX 3, B @ = (70myes 70mye, 70myes 1. 35, 1. 35, 1. 35)
b= (1701, 170mye, 170myz, 2. 35, 2. 35, 2. 35) » SR JH RIRE (G PEA pR B 0175 21 1) e A 45 SR 422
I A/A—A/4—A/4 B, F,;, =0. 000147,

TP RS JE 1) 48 2 X I, 1R 0 4R 18 R XU @ = (70mye, 70mys, 70mye, 1. 35, 1. 35,
1. 35) ,6=(300myz, 300my, 300my, 2. 35,2, 35,2, 35) LR (5. 4) KAFHr 15 4% 4
P A/A—X/2—2/2 U, F i =0. 000044,

FE AR B S8 IR B BT i it e A/4—272—2/4 T a/4—2a/4—A/4 WiFp
AR ZR FRATTATHRE T W A R BRSBTS e (9 BEJC 3 3 (1. 50~ 1. 65)
AU AR S TR A R AT S 38 B RS B 3 o i S S8R AR AR 22 (EJE  FE— A S BRdgi sk h ok
R FH 2 B B 2 v T S SR 0 o DA 7 A TR, IR TR AT 3R AR 1 BT S5 4 IS R AR
0. 1%6~0. 2%, e K BUFARAL 0. 300 Wl SR P B R, 3% PRI M 09 2 b A 381 e k.

XA 1] LU TR NS5 S BG83, FRATAS 20 (9 2 R AR (B, 7E SR
T FE AR FRATT AT LA Ry AR AR, AR AR R AL

Bkt Y FRpl DG O U8 #4555 06 27 R RS 22 A0 5 4 28 ABL A o B =X, e LA, R X AN 7
BRI R A%  [FIRE R AR A R
5.2 TEINKFFAIAEER 8 PRI E A

HUG S BRI RE RIS WE R 2 — B R_RA R 22N K R rh ke
SHG 2N K SE B Z L. ol LR 1 A BIAL W RGN ol S SE B A

1 1(2xn 2
S.D. = || [ " explitWhodods| (5.5)
0J 0

T
Ho W=W(0.0) BN REMIWE R 2  b=2n/2. 4 OGBS, D, MK RGBT
MIRZERG.S. D. =1.—RG. S. D. <1. FACHEAL B — D ALARIEBEAS - W n] LUK
Pt RGN BT X R EARSE IR DI AEHOR (Apodization) Hr ) —Ff.
BTN SRR U8 B 1) DL AR S AL s BN F (o0 0) » LI

1 1 (2x 2
S.D. =% || | explik(W+F) )pdodd| (5.6)

T
BARHEIF(o,0)=—W (.0 W] S. D. =1, Rk B FAR, SR, ZEHIE— W (o, ) YU
AT A PMETSCB. S, AT DL SR FH PR A AR 8 1 25, B
ﬁ)ZJC, QAzi—2 <,0<a2;—1 s
10, i1 pazs 1=1,2,+,m.
Hrpr e R MHER R o 2GR F R TR=
S.D. =¢(c apsas s+ samm). (5.8)
PRAE Y 1) B 45 MBS coa, (=1, 2m) I (5. ) S, D. i EIHL K, [l 2 F
Bl mm+1D AR
a=0, am=1, a;<a;,» i<j,j=1,2,.2m. (5.9
T2 R — U 2R AT R e LA R, T DL G de A T R SR A
WA Z RGAT TR 35 8) TA B L5 R T m A 1A — AN B ) 7
W DRGNP LR =N

F(p. (5.7)
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W)= —2p2 +20".
B/ 4 (5 AR B B R IR U 2% - 7E AN I AU B AR B, S. D, =0. 19474, RGE ol 552
BE RN, O T30 . SRR IE I 285 . S. D. =0. 81346, Hls S 25 A7 B, 240
e .

AR LA m=3,2 12 EREH ao=1. 0,a; =0. 904,a,=0. 429,a, =0. 411,
a;=0.411,a5=0. 020,as =0. NiXMEERATLIE W e =4 7 I R4 RaT LIysiZ 7 4
IIREL. 20T s X IR A2 b A A B, FRATTMIT 5 A v ) 25 2R v T AT 4
Mo B 3 22 W R IR R i A

S % 3Tk
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— 3K R o 50 O T L A AR

TEAGE S BIE Gei T M 252 h o A D SRR S 22 R EIO0 (A [R) . E2 DL
RO LR BRI A FR LA BE T 535  HEBR 1 B9 2 M L ) ALY ml BB, LS FE v
R B AT RIS 0 R AN 1 5 pRESORE (At ) 1 28 ARSI A ik Al DAl 3], SR o

.1
£ :Jx+ [sm<? ) ] , 70,
1—1, x=0
AN b Ly J20R v BYREGE . BHE D, f(O A TREANAES S 0SNS5 2
— N RN SE L HIE A L R il
1., x40,
flo)= {O, 2=0,
JEAREF A R ZHERAE A 0 RYTETAY.
FEIX e SCEE Y FRATTSR T B AR A3 A8 9% — A T S R B ) R A ) . AT 1K
WIS eRE R BT 25 1 e Pk S P BR . JoeJe iR 2t A BB 9] . X S LR Rl ik
TEATFMGET 2T 8 5 SOk 3R,

2 FHEE

FEIX 5 FRATTRE S [ W A &I W AR AR BT,y 17X I AR U 45 A A T T
FEM T FRATTA 25 1 B AR ARG . X SEBF 0K iR LA 1P (0 2 i
WX bR G R X — T4,
EX 2.1 fb=sial X hiyF4E G iR, i
cl(int G)=cl G. 2. D
Hrpint G 3RR G N LR ol G R G A
FHEE W ARJE AR AR AT RS 0 1Y L AT REAS 2 20 Y. B AnAe 1 b Y — S A
REARFIWHN. A28 FWEM N REIES. AR cllint G) = JF#cl G
TR — 2 R A A R B
2.1 G REWENTEFM AN TAE— R r €l G IEME—REH O ,
O() Nint G#J. (2.2)

* JFOCRRT (R AR R 7410 . 1985, (1) : 31—43.
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G REFEWE, € G X 2 € cllint G). I, 6T 2 BE— P40 (o)
O(x) Nint GEJ.

WA (2. 2 ST AR G AR  WAAAE— i o€ ol G\elint G). fH(2. 2) FF x €
clint G . i F207 .

T RS

EX 2.2 S aeGMG HFEHRS, RN T 2 MEESI O 5

O(x) Nint GEJ.

W x 2 G BFEHA, B GCG, ) o W2 G, i3 4.

R 2.2 4E GREFEWMENTERMER G Py — S F A,

IEW EArA 2. 1 AT ol G R iR — SRR E AL RZ I o€ ol GUNXT T & 4T
BAUR O () O NGED. B yeO) NG R y S0 5 T v AT 4R O, (3) s
O (W Nint GEZ. H yEO() , 1 O(2) NOy (MDA E v BIEBEE. O(2) NO, () Nint
G#. I OCo) Nint GEJ. A 2. 1 a5 G JE=F 4.

PR 2. 1 AT AL, L G A B a5 A e 20 A s

IR 2.1 R GEFWE N o G iR

2.3 4G RFWMENTERMN A

aG=2aint G, (2.3)
HraG=clG\int G F£R G W 7.
I & G
dint G=cl(int G\int(int G) =clG\int G=3G.
2 (2. 3) sy . )
dint G=cl(int G)\int(int G) =cl(int G)\int G
At
IG=—clG\int G=cl(int G)\int G.
T4 cl G=cllint G).

Rl 2.4 1% G, D 2L N GO D 52 k.

I & GNDF#J, B art ARG % GND ASZRFEHE, B cl(nt(GN D)
GND). MAFAE— 1 € I(GN D) H x € clint(GN D). F M, FE7E x B — 45
O(2) 13 O(x) Nint(GN D)= , 5 #

O(2) Nint GND=(O(x) N D) Nint G=(. (2.4)
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Discontinuous Robust Mappings are Approximatable

Abstract: The concepts of robustness of sets and functions were introduced to from the
foundation of the theory of integral global optimization. A ste A of a topological space X is
said to be robust iff cl A=cl int A. A mapping f: X—Y is said to be robust iff for each
open set Uy of Y, f '(Uy) is robust. We prove that if X is a Baire space and Y satisfies
the second axiom of countability, then a mapping f: X — Y is robust iff it is
approximatable in the sense that the set of points of continuity of f is dense in X and that
for any other point x€ X, (x, f(2)) is the limit of {(x,, f(x.))}, where for all a, x, is a

continuous point of f. This result justifies the notion of robusteness.
1 Introduction

The concepts of robustness of sets and functions were proposed in [10]—[12]for
establishing the theory of integral global optimization and for weakening the requirement
of continuity of the objective function in the global optimization problems. Until now, the
importance of this concept has not been sufficiently addressed and affirmed. This paper
will show that the nature of a discontinuous robust mapping is its “approximatability”,
which is the essence of numerical analysis.

The main goals of numerical analysis are to provide effective approximation
procedures for solving equations, which may be algebraic, differential or those deduced
from optimization, calculus of variations, optimal control and so on. A general problem of
solving equations may be formulated as follows:

to find z€ X such that f(z)=Yy, (1. D
where X and Y are two sets, f: X—>Y is a map and y € Y is given. An effective
approximation procedure or an algorithm for solving this equation is a rule of constructing
a sequence {x;} such that {x,} =Z and y,= f(x;) —=3. Therefore, X and Y should be two
topological spaces in order that the two limits are well defined; and usually f is assumed to
be continuous at x=2x. Surely if f(Z) is not assumed to be related in any way to the valuse
of f near T, it is impossible to propose an algorithm to produce an approximate solution to

the equation (1. 1). For example, suppose that X=Y=R, =0 and

% In collaboration with Shi S. Z., Zhang D. M. Repainted from Transaotionsof the American Tuathematical Socieoy,
1995, 347(12) :4943—4957.
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fy=[1r T (1.2)
0, if x=0.
Then the solution =0 cannot be approximated by using the value of f near .

However, many problems from both theory and applications do require solving an
equation of a discontinuous mapping. Examples include the likelihood functions and the
expected utility functions when the probability distributions possess discontinuities. For
such examples one often attempts to reduce the problem to one of continuous mappings.
For instance, there exist several works ([1],[5],[9]), in which minimization problems of
discontinuous functions are treated by combining smoothing techniques with conventional
optimization methods. But these methods are complicated.

In our opinion, the continuity of f is not indispensable for designing an algorithm to
solve the equation (1.1). A more reasonable concept for numerical analysis should be the
approximation. In fact, many discontinuous mappings are “approximatable”. We consider
the following examples:

Example 1.1 X=Y=R,y=0 and

fa=(t o (1. 3)
x, if x=0.
Example 1.2 X=Y=R.,y=0 and
1, if sin (1/2<<0,
f(x)=1sin (1/x), if sin (1/2=0, (1.4
0, if x=0.

In Example 1.1, f is only right-continuous at x=0; in Example 1. 2, f is not even
one-sidedly continuous at z=0. Nevertheless, for these two functions, the approximation
to T is possible, because there always exists a sequence {x;} of points of continuity of f
such that.

limr, =z and limf(x,)=f(Z)

koo koo

and it is possible to approximate points of continuity of f.

It is natural to define an approximatable mapping f: X—>Y by the approximatability of
all the points (x, f(2)) in the graph of f. The first aim of this paper is to prove that any
approximatable mapping is robust, and that under some mild hypotheses, the converse is
also valid. This amounts to saying that in a suitable setting the concept of robust mappings
is actually equivalent to that of approximatable mappings. This affirmation greatly justifies
the notion of robustness.

The outline of the paper is as follows. We first give the definitions of robust mappings
and of approximatable mappings (Section 2). In Section 3, we prove our main theorem: a
robust mapping is approximatable under the conditions that X is a Baire space and Y
satisfies the second axiom of countability. In Section 4, we suppose that X is a complelte
metric space and Y is a real separable Banach space and show that all bounded robust

(approximatable) mappings from X to Y can be divided into many “Banach spaces of
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bounded robust (approximatable) mappings”, the intersection of which is the Banach
space of bounded continuous mappings. In Section 5, we discuss the rpbust functions,
which were stated by Zheng [ 10 ]—[13] and Zheng-Zhuang [ 15 ], but only for the upper
topology on R. Our main theorem implies that a robust function for the natural topology
on R. is just an approximatable function. However, we can also prove that any “upper
robust function” (i. e. robust function in the sense of [10]—1[13]) has the dense set of

points of continuity. Section 6 contains some concluding remarks.

2 Robust Mappings and Approximatable Mappings

The concept of robust sets was proposed in [10]—[12]. We recall the definition.

Definition 2. 1 et X be a topological space and A be a subset of X. A is said to be robust iff

cl A=cl int A, 2. D
where cl A is the closure of A and int A is the interior of A. A point x& A is said to be a
robust point of A iff x&cl int A. If x is a robust point of A, then A is said to be a sem:-
neighbourhood of x.

The concepts of robust sets, robust points and semi-neighbourhoods are extensions of
those of open sets, interior points and neighbourhoods, repectively. Any open set of X,
including the empty set, is robust. Any interior point of A is a robust point of A. Any
neighbourhood of x is a semi-neighbourhood of x. A set AC X is robust iff all its points
are robust points of A or A is a semi-neighbourhood of all its points. If A is a semi-
neighbourhood of x and ACB, then B is also a semi-neighbourhood of .

Any union of robust sets is robust, but the intersection of two robust sets may not be
robust unless one of them is open. Similarly, and union of semineighbourhoods of x is also
a semi-neighbourhood of A, but the intersection of two semi-neighbourhoods of x may not
be a semi-neighbourhood of x unless one of them is a neighbourhood of .

Recall that a set ACX is nowhere dense iff int ¢l A=¢5. Then we have
Proposition 2. 1  Any robust set or its complement can be represented by the union of an
open set and a nowhere dense set.

Proof. From the definition (2. 1), for a robust set A, int A and A have the same
boundary: JA=dint A, which is nowhere dense. Obviously, A is the union of int A and a
set FCJA. The complement of A is the union of the complement of ¢l A and dA/F. []
Remark 2.1 Recall ([6],[7]) that a closed (respectively, open) set AC X is said to be
regular iff A=cl int A (respectively, A=int cl A). The complement of a regular closed
set is a regular open set and vice versa. By Definition 2. 1, ACX is robust iff its closure is
regular or the interior of its complement is regular.

A set ACX is said to be of the first category iff it is the union of a countable family
of nowhere dense sets. A set AC X is said to be a G; set iff it is the intersection of a

countable family of open sets. A set AC X is said to be an F, set iff it is the union of a
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countable family of closed sets. A set A C X has the Baire property iff it can be
represented as a G, set plus (or an F, set minus)a set of the first category. By Proposition
2.1, any robust set and its complement have the Baire property.

Definition 2.2 Let X and Y be two topological spaces and f: X—=Y be a mapping. f is
said to be robust at x € X iff for any neighbourhood Uy (y) of y=f(2), f'(Uy(y)) is a
semi-neighbourhood of x or x is a robust point of f~'(Uy(y)). f is said to be robust iff f
is robust at every x& X or for any open set Uy of Y, f~'(Uy) is robust in X.

The concept of robustness for a mapping is an extension of that of continuity. Any
continuous mapping is robust, but a robust mapping may be discontinuous (see Example
1.1—1.2).

Remark 2.2 Recall ([6],[7]) that a mapping f: X—Y has the Baire property iff for any
open set Uy of Y, f7'(Uy) has the Baire property. By Definition 2. 2, any robust mapping
has the Baire property. []

The following proposition shows that the uniform convergence preserves the
robustness of mappings.

Proposition 2.2 Let X be a topological space, Y=Y ,D) be a metric space and f5: X—>
Y.0€ A bea net of mappings. Suppose that all f;are robust at x € X and a mapping
[ X—=>Y satis fies
lign flelgd(fg(x),f(x)):o. (2.2)
Then f is also robust at x.
Proof. We have to prove that for & X and for any e-neighbourhood of 3= (&)
U.M={yeY|d(y.,)<e) (>0,

F1(U.(3)) is a semi-neighbourhood of Z. It suffices to show that there exists a semi-
neighborhood V(Z) of Z such that

Vae V@), d(f(x), f(&))<le (2.3)
From (2. 2), using standard ¢/3 argument, we can easily verify that (2. 3) holds. []

Now we propose the definition of an approximatable mapping.
Definition 2, 3 Let X and Y be two topological spaces and f: X—Y be a mapping.
Suppose that S is the set of points of continuity of f. Then f is said to be approximatable iff

1. S is dense in X;

2. for any € X, there exists a net {x,}CS such that

limx,==% and lim f(a,) = f(2).

Theorem 2.1  Any approximatable mapping is robust.
Proof. Let f:X—Y be an approximatable mapping. We show that for any open set Uy of
Y. f7'(Uy) is a robust set of X. In fact, if x& f~'(Uy) is a continuous point of £, then x
must be an interior point of f~!' (Uy), because f~'(Uy), as the inverse image of a
neighbourhood of f(x), is a neighbourhood of x. On the other hand, if & f~' (Uy) is

not a continuous point of f, then by the definition of approximatable mapping, there
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exists a net {x, } CS such that lim,x, == and lim,f (x,) = f(Z), where every z, is a
continuous point of f. Since Uy is a neighbourhood of f(Z), for ¢ sufficiently large, f(x,)
€Uy, and then, z, is an interior point of f ' (Uy). Hence, T is a cluster point of the
interior of f ' (Uy). That is to say that T is a robust point of /' (Uy). Thus, f '(Uy) is
a robust set of X, []

The simplest example of a discontinuous approximatable mapping is a robust
piecewise continuous mapping in the following sense:

Definition 2. 4 et X and Y be two topological spaces. A mapping f: X—Y is said bo be
robust piecewise continuous iff there exists a “robust partition” of X, 1. e.

X:,-LGJIV' and Vi€, i#j, V,N\V,=C,
where for any i € I, V; is robust in X, and for any i € I, the restriction of f in V; is
continuous.

Obviously, when Y is a metric space (even a uniform space) , the uniform convergence
also preserves the robust piecewise continuity of mappings. Notice that if in its definition
the partition of X is not required to be “robust”, then a piecewise continuous mapping may
not be robust.

A mapping whose points of continuity form a dense subset of the domain may not be
approximatable,

Example 2.1 Let X=Y=R and
fiaor= [/ iEa0, 2.9
as if x=0.
Then f is approximatable iff e €[ —1,1].

An approximatable mapping can possess a dense set of points of discontinuity as
illustrated in the following example.

Example 2.2 Let X=Y=[0,1],{r.} be the set of all rational numbers in [0,1] and o, >

0,k=1,2,-+, with 2:;10"? = 1. Then the function
f() = D a
<

is a left-continuous monotone function from [0,1] to [0,1] and discontinuous at every

rational point in [0,1].
3 Main Theorem

Recall that a topological space is asid to be a Baire space iff no nonempty open set in
the space is of the first category; a topological space is said to satisfy the second axiom of
countability iff it has a countable base (of open sets). Then we have
Theorem 3. 1  Assume that X is a Baire space and Y satisfies the second axiom of
countability. Then a mapping f.:X—>Y is robust iff it is approximatable. In this case,
the set D of points of discontinuity of a robust mapping is always of the first category.
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In addition, if Y is a separable metric space, then D is an F, set of the first category.
The proof of this theorem is based on the following four propositions.

Proposition 3. 1" Let X and Y be two topological spaces and f:X—>Y be a mapping.
Assume that Y has a base {U,},ca. Then the set D of points of discontinuity of f can be
represented Dy

D:(ILGJA}"*1 (U \int £~ U). (3. D
Proof. I x is a discontinuous point of f, then there exists an open neighbourhood V (y)
of y= f(x) such that x is not an interior point of f ' (V(y)), i.e. € f 1 (V(yN\
int /7' (V(y)). Since {U,} is a base of Y, we can suppose that U, CV (y) for some a.
Hence, 2€ U,eaf " (U\int £ (U,). Conversely, if for € X, there exists a € A such
that x€ f ' (U)D\int f '(U,), then x is not an interior point of the inverse image of an
open neighbourhood U, of f(x), and so f is not continuous at x. [ ]
Proposition 3.2 Ler X be a topological space, Y=(Y ,d) be a metric space and [ :X—>Y
be a mapping. The set D of points of discontinuity of f is an F, set in X.
Proof. Suppose that for any x€ X, {V;(2)} is a base of neighbourhoods of x. Define the
oscillation function w: X—>R ;of f as follows:

VxeX, wx)=lm sup dU(x).f(x)).

B X € V500
It is easy to verify that o is a upper semi-continuous function, i. e. for ¢==0, w '([c,

—+0o9)) is closed in X. Since
D={2E€ X|w(x)=1/n, for some n=>1)= Ulw*‘ ([1/n,+oo)),

it is an F, set. [ ]

Proposition 3.3 Ler X and Y be two topological spaces, Y satisfy the second axiom of
countability and f:X—>Y be a mapping. If for each open set Uyof Y, f ' (Uy) isthe
union of an open set and a nowhere dense set in X , thenthe set of points of discontinuity
of fis of the first category.

Proof. Since Y has a countable base, we can suppose that {U, };—1.5... is a base of Y.

According to Proposition 3. 1, the set of points of discontinuity of f is

D=U £ Uo\int £ U,

From the assumptions of the proposition, f ' (U \int f ' (U,) is nowhere dense. Hence,
D is of the first category. []
Proposition 3.4 Ler X and Y be two topological spaces, f:X—>Y be robust and SCX be
the set of points of continuity of f. 1f S is dense in X, then f is approximatable.
Proof. We have to show that for any x& X and y= f(2) €Y, there exists a net {z,} S
such that

limx, =2 and lim f(x,)=f(2). (3.2)
Suppose that {Vz(2)} and {U,(y)} are open neighbourhood bases of x in X and of y inY,
respectively. Then for any gand v, f '(U,(y)) V(&) is a nonempty robust set in X; in
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particular, its interior is nonempty. Since S is dense in X, we have that
VB:ys Jap €’ WU, (y»))NV(a)NS.

Set a=(B3,7) and x, =x5,. Then (3.2) holds, where a=(B,7)>—a' = (g ,7) is defined by
V() CTVy (x) and U, (x) CUy (y). [
Proof of Theorem 3.1. From Propositions 2.1 and 3.3, the set D of points of
discontinuity of f is of the first category. Since X is a Baire space, the set of points of
continuity of f, X\D, is dense in X. Joining this up with Propositions 3. 2 and 3. 4 proves
the theorem. [ ]

The following two examples show that the assumptions on X and Y in Theorem 3. 1
are indispensable.
Example 3.1 Let X={r.} =set of all the rational numbers in [0,1] with the induced
topology by [0,1] (so X is not a Baire space), Y=[0,1] and ¢, >0,k=1,2, -+, with

2;7101;\, = 1. Then the function

S = Dlax

<

is robust, but discontinuous at every point in X,
Example 3.2 Let X=R and Y=R® with the product topology. Y can be identified with
a space of all functions g( « ): R— R with the topology of the pointwise convergence.
This topological space has no countable base. Let f: X—Y be defined as follows.

1 if 2=,

0 if =<a.
The sets of the following form in Y constitute a base of the open neighbourhoods of y=

Sl

fo)()=g. (=)=

U(yszissz;e)={h( +DEY||g.(g,)—h(z) |[<eyi=1,2,,k}
where 2, € R, i=1,2,++,k and e€ (0,1). Since
S WUlyszseN={ER||gs(2)—g. ()| <e}
gy o), if x<la,
7{(*00,2], if 2=,
we have that
F WUyszissze)) ={2 ER | |gv(z) —g.(z) |<esi=1,,k}
(max;z;, to0), if maxz;,<x,
=) (—co,minz; |, if minz;, =z,
l(z,-,z,-ﬂj, i zy<looo<lgy<<laolz <<z
in which x is a robust point. Hence, f is a robust mapping from X to Y.
f:R—R® is continuous at x& R iff
Vz€ER, limg,(2)=g,(2).

xr—x

Since we have always that

Vz€R, limsupg(x)=1 and liminfg, (2)=0,

T —x T
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f is discontinuous at all xtER .

Remark Recall ([37],[4],[6]) that a mapping f: X—Y is said to be of the first Baire
class iff for every open set Uy of Y, f ! (Uy) is an F, set. When X=Y =R, every
function from R to R of the first Baire class is measurable. A classic theorem says that
under the hypotheses in Theorem 3. 1, the set of points of continuity of a mapping of the
first Baire class is a dense G; set. However, a robust mapping may not be of the first Baire
class and vice versa. For instance, the function in (1. 2) is of the first Baire class, because
it is lower semi-continuous and every l.s.c. function is of the first class; an example of a
nonmeasurable robust real function (then, it is impossible to be a function of the first
Baire class) is as follows.

Example 3.3 Let X=[0,1] and CC[0,1] be a Cantor-type set with positive Lebesgue
measure, which is a nowhere dense perfect set (no isolated points and closed). Then X\C
is open. Take a non-measurable subset C, of C. Such a subset exists [ 6]. Divide X into
two disjoint robust parts A, and A; such that C;CA,\ int A; and C\C,CA;,\int A,. Then
A, and A, are also nonmeasurable. The characteristic function of A, ;

1, ifx€A,,

0, ifxa&A,

is piecewise continuous, but nonmeasurable. The construction of A;, A,, C, and C; is

similar to that in [ 14 ].

XAI (x)=

4 Banach Spaces of Bounded Robust Mappings

In this section, we assume that X is a complete metric space and Y is a real separable
Banach space. Then the hypotheses in Theorem 3. 1 hold and all the robust mappings from
X to Y are approximatable. We will discuss the construction of the set of all the bounded
robust mappings in this setting.

Since Y is a real Banach space, we can consider linear operations for mappings from X
toY. If f:X—Y is robust, then for any A€ R ,Af, defined by

VzeX, QH@=Af(x),
is also robust. But, if /| and f; are robust, then, in general, f,+ f,, defined by
VeeX, (fiT/)@=fi(@)+f(x),
is not necessarily robust.

Example 4.1 Let X=Y=R,

(L, if 2>0,
fl(x)*{o, if 20,
and
(1, if 220,
o= {o, if 2=>0.

Then f| and f; are robust. But
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) . 1, if x40,
(fitf@= 0. if 2=0,
is not robust.

This example is typical. By the same idea we can claim that for any discontinuous
robust mapping f, there always exists another discontinuous robust mapping g such that
f+g is not robust.

In this section, we will look for a condition for the robustness of the sum of two
robust mappings, or a condition under which a family of robust mappings becomes a linear
or Banach space.

Definition 4.1 Let SCX be dense in X,

cs={{s,)CS| FxE X, kli,IESkZI}
and As: X\S—>cs such that for any x€ X\S, As(x)={s;(2)} satisfies limy...5, (2)=x. If
f: X—Y possesses the following property:

1. f is continuous at each point s& S;

2. for any x€ X\S and As(2) = {5, (2)} S, f(2)=lime... f(s.(x)); then we say
that f belongs to the (S, Ag)-class. The set of all the mappings of the (S, Ag)-class is
denoted by Fsao (X,Y).

Obvously, each mapping of an (S, As)-class is robust (approximatable) and each
robust mapping belongs to a certain (S, Ag)-class, but not uniquely. Any continuous
mapping belongs to all the (S, As)-classes and, in particular, all the continuous mappings
from Fix.ay) =F i, o =C(X,Y).

Proposition 4.1 1. If f1. f,E€EFis a0 (X, YD), then forany 2o 2 ER » L fiT A f2 €
Fesp (X.Y).
2. If{fi}CFsay (X, Y) and for a mapping f:X—>Y,
lim sup || f,(x)— f(2) || =0,
e e i
then &€ Fsa (X, Y.
The proof is elementary.

Set
B(S,AS)<X9Y):{feF(S.AS)(X9 Y) ‘ %g)I? H S || <Aoo}, 4. D

Then Proposition 4. 1 means that defining the norm | £ || =sup || f(2) | » By (X, Y)
reX N

is a Banach space. Bs,.a, (X, Y) includes the Banach space of bounded continuous
mappings from X to Y, denoted by B¢(X, Y), as a closed subspace. On the other hand,
each bounded robust mapping from X to Y belongs to some Bs.a,) (X, Y). Denoting the
set of all the bounded robust mappings from X to Y by Bx(X, Y), we have that

(SH§> Bsag (X, Y) = Br(X, Y) and (SL/qu) Bisag (X, Y) = Be(X, Y)  (4.2)

Furthermore, if for two dense sets Sy and S, in X and for two mappings As : X\S,—
cs, and As, : X\S,—>cs, » we have that
SICS, and VYx€X\S,, As (2)CTAs (),
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then it follows that

B, (X2 Y) DB (X, V).

However, any B .4y (X, Y) is not maximal with respect to the partial ordering of set
inclusion, because for any Bs.ag (X, Y), it is easy to construct another Besag which
contains Bs,ay, as a proper subclass.

Let M(X, Y) be the set of all Banach spaces of bounded robust mappings from X to
Y. We can define the set inclusion as a partial order relation in M (X, Y). This partial
order in M(X, Y) is inductive, i. e. each totally ordered subset of M(X, Y) has a maximal
element, which is the completion of the union of all the elements (considered as the
subsets of Br(X, Y)) of this totally ordered subset. Thanks to Proposition 2. 2, it is easy
to show that the uniform limit of a sequence of bounded robust mappings is also a bounded
robust mapping. Hence, by Zorn’s lemma, M(X, Y) possesses maximal elements, which
are the “maximal Banach spaces” in Bx (X, Y). Denote these “maximal Banach spoaces” of
bounded robust mappings from X to Y by By (X, Y), §&€ A. Then we have that

BLGJABW (X, Y)=Br(X,Y) and BLEJABNB (X, Y)=B:(X, Y).
If Byp, (X, Y)F By, (X, Y), then they will not be included in each other.

It is interesting to investigate the quotient space of Bs.ag to Be(X, Y). Even for X=
[0,1], Y=R and X\S a singleton, the quotient space Bs.a,, ([0,1]. R )/Bc([0,1],R )
is not trivial.

Finally, if Y is a separable Banach algebra, then any Bes,a,, is also a Banach algebra
by defining

Ve X, (fif)@=f (o) f2(0).

The similar conclusion for the “Banach algebras of bounded robust mappings” also holds.
5 Robust Functions

Now we assume that X is a Baire space and Y=R . In this case, the robust mappings
become the “robust functions”, which have a set of points of continuity dense in X and are
approximatable at their points of discontinuity. However, it is not necessary to only
consider robust functions with respect to the natural topology of R . In fact, in Zheng
[10]—[12], for the application to the global minimization problem, a robust function is
always defined for the “upper topology” of R , which means that all the open sets have a
form of (—co,¢), ¢c&€ R . To distinguish robust functions with respect to the diverse
topologies of R , we propose the following definitions.

Definition 5. 1 Let X be a topological space and f: X— R . f is said to be robust
(respectively up per robust or lower robust) at x iff for any e>0, f~'((f(x)—e, f(2)+
e)) (respectively, f7' ((—oo, f(x)+e)) or f ' ((f(x)—e, +0))) is a semi-
neighbourhood of x. f is said to be a robust function (respectively, upper or lower robust

Sfunction) iff f is robust (respectively, upper or lower robust) at all z& X; or for any a, b
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€ R (respectively, c€E R ), f '((a, b)) (respectively, f ' ((—oo,c)) of f ' ((c,+
©o,)) is robust in X.

The concepts of robustness, upper robustness and lower robustness for a function are
extensions of continuity, upper semi-continuity and lower semicontinuity. Any continuous
(respectively, upper or lower semi-continuous) function is robust (respectively, upper or
lower robust), but a robust (respectively, upper or lower robust) function may not be
continuous (respectively, upper or lower semi-continuous). In addition, an upper robust
and lower semi-continuous (respectively, a lower robust and upper semi-continuous)
function is robust, but an upper and lower robust function may not be robust, because the
intersection of two semi-neighbourhoods may not be a semi-neighbourhood.

Example 5.1 Let X=R and f be defined by

1, if x>0,
f(I):JO, if x=0,
|21, it <0,

Then f is neither upper or lower semi-continuous nor robust, but is both upper and lower
robust.
From Proposition 2. 2, we obtain
Proposition 5. 1  Let X be a topological space and fs: X—> R, 6§ € A, be a net of
Sunctions. 1f all the functions fsare robust at T € X and a function f:X—>R satisfies
1i(§nSél)}(f)|f5(I)_f(I)‘:O9 (5.1

then f is also robust at x.

Proposition 2. 2 is not applicable for the upper or lower robustness of functions,
because R with the “upper” or “lower” topology is not a metric spce, not even a
Hausdorff space. But it is obvious that Proposition 5.1 is also valid for upper or lower
robust functions. However, for these two cases, we can modify the concept of “uniform
convergence” and the following proposition is valid:

Proposition 5.2 Let X be a topological space, f5:X—>R, 6& A, be a net of functions
and all the function f[sbe upper (respectively, lower) robust at x € X. 1f for a function
f:X—>R and for all x € X, we have uni formly
limainffg(x)Ef(x) (resp. limasup fe(@<f(x)) (5.2)
and
li;nfa @ =f, (5.3
then f is also upper (respectively, lower) robust at x.
Proof. We have to show that for & X and any e “upper neighbourhood” of y= (%),
U.(f(@)=(—co, f(@)t+e)(e=>0), f 1 (U.(£(Z))) is a semineighbourhood of . Thus,
we need to show that there exists a semi-neighbourhood of =, V(Z), such that
VeV, [fo)<<f(Z)+te (5.4
From (5. 2), using standard ¢/3 argument, we can verify easily that (5. 4) holds.
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In the case of the lower robust functions, the proof is similar. []
Proposition 5. 3 Let X be a topological space, f,: X— R, y& T, be a family of
Sunctions and all the function [, be upper (resp., lower) robust at x € X. If for a
Sunction f: X—>R and for all x € X, f(x)=inl,er f,(x) (resp., f(x)=sup,erf,(x)),
then [ is also upper (resp., lower) robust at x.

Now we apply Theorem 3. 1 to the case of robust functions.
Theorem 5.1 Let X be a complete metric space, f:X—>R bea function on X and S be the
set of points of continuity of f. Then f is robust iff f is approximatable, i.e. S is
dense in X and for any x € X\S there exists a sequence {s,(x)} S such that }me(s;, (x))

= f(x). Inthis case, Sis a dense Gy set in X.

Although R with the upper or lower topology is not a Hausdorff space, the second
axiom of countability is valid. So, replacing the continuity by the upper or lower semi-
continuity, a similar theorem for an upper or a lower robust function is also wvalid.
However, we can prove a stronger theorem as follows.

Theorem 5.2 Let X be a complete metric space, f:X—>R bea function on X and S be the set
of points of continuity of f. Then [ is upper (respectively, lower) robustiff S is dense in X
and for any x € X\S, there exists a sequence {s,(x)}CS such that lim sup f(s, (2))<f(x)

fasens
(respectively, }Lm inf f(sp (@) =f(x)). Inthis case, Sis a dense Gy set in X.
Proof. Consider an upper robust function f. Let {r,} be the set of rational numbers in
R. We prove that
D:igjf*l((r,,rj))\int Gy (5.5)

is of the first category. It suffices to show that f~'((a,b))\int f~'((a,b)) is of the first
category for any a, bE R .

Since f is upper robust, f '([c,+c0))=X\f '((—co,c)) is the complement of a
robust set. From Proposition 2. 1, it is the union of an open set and a nowhere dense set.

Hence,

F @b = (=2 b) N f ' Cas+eo))
=f (oo NCU £ Cat (1 /m) o))

—V\( Ulﬂo,,UT”]L

n=

where V' is a robust set, O, is open and T, is nowhere dense, n=1, 2, +--. Thus, we

have that

£ ab))= Ol[wﬂo”) UWVAT,)]= D](V,, UT.). (5. 6)

n= n=

where V, is robust (maybe empty) and T’, is nowhere dense, n=1,2,+; and

£ Casb)\int £ ((asb))C []1<V7,\im voUT,. (5.7)

n=

The right side of this inclusion is obviously of the first category, and so is the left side.

The Gy ness of S is a consequence of Proposition 3. 2. []
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In Example 2.1, if a==—1, then f is upper robust; and if «<X—1, then f is lower
robust.

Finally, the discussion of the last section is suitable to the robust functions, but not
to the upper or lower robust functions. If f is upper (respectively, lower) robust, then
only for any A==0, Af is also upper (respectively, lower) robust, but for any A<C0, Af is
lower (respectively, upper) robust. However, we have the similar conclusion for the

upper or lower robustness of the sum of two upper or lower robust functions.

6 Conclusions

The initial motivation to introduce the robustness of a set or of a function ([ 10]—
[12]) is to enlarge the class of objective functions and of constraint sets of global
optimization problems. This paper demonstrates that the concept of robustness is essential
for numerical analysis. We show that if X is a complete metric space and Y has a countable
base, then a robust mapping f: X—Y is precisely an approximatable mapping. For the
problem of solving equation (1. 1), we only need Y to be a metric space (Y, d), which
may not have a countable base. This is because the problem is equivalent to the following
problem:

to find € X such that d(f(Z).,3)=0. (6. 1)
If f:X—Y is a robust mapping, then it is obvious that the function z—>d( f(x), ¥) from
X to R ; (having a countable base) is also robust, and so, approximatable. Notice that
the problem (6. 1) is a global minimization problem.

In Zheng [10]—[12], for a global minimization problem, the objective function f is
always assumed to be lower semi-continuous and “upper robust” (according to our
definition). Now we know that it is equivalent to assume that f is l.s.c. and robust, or f is
a l.s.c. approximatable function. In general, a l.s.c. function is not approximtable. (1. 2) is
a typical example.

In Chew-Zhen®, Zheng"'" and other works, a theory of integral global optimization
is presented. In this theory, we require an objective function to be integrable and robust.
In general, a robust function may not be integrable. Now we know that the set of points of
discontinuity of a robust function is always an F, set of the first category. When X is [0,
1]*, it is reasonale to assume that this F, set of the first category is a Lebesgue null set,
and then a robust function becomes a Riemann integrable function. In particular, when
k=1, a robust function will be topologically equivalent to a Riemann integral function [ 6,
Theorem 13.3]. This situation is very favourable to the theory of integral global
optimization.

In the applications of integral global optimization, we often require the sum of two
robust functions to be robust. Before this paper, we only knew that it suffices to require

one of the functions to be continuous. Now we have indeed a necessary and sufficient
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condition for the robustness of the sum of two robust functions; that is, they must possess
the same property of discontinuity.

In [2],[11] and others, a Monte Carlo implementation of the integral global
minimization algorithm was also proposed. It is shown that the global minimizers can be
obtained with high probbility. Due to the stochastic nature of Monte Carlo
implementation, one would suspect that some global minimizers may be lost during the
course of computation. However, according to our computation experiences over the past
twenty years, we can always find global minimizers even for discontinuous functions [ 2],
[16]. The main theorem of this paper could give a new theoretical explanation of our
method, but it would be the subject of another paper.

The main results in this paper can be generalized to the case of set-valued mappings.

The reader is referred to [ 8] for details.
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On Existence of Robust Minimizers”

Abstract: The concepts of robustness of sets and functions were proposed for the theory of
integral global optimization. A robust minimizer of a nonlinear minimization problem can
be approximated by a sequence of points at which the objective function is continuous. In
this paper, we discuss the existence of robust minimizers. With the integral global
optimality conditions, we extend the Palais-Smale condition to establish the existence
results of robust minimizers for nonlinear programs whose objective function may be

discontinuous.
1 Introduction and Preliminaries

Let X be a topological space, S a subset of X and f: X—R"' a real valued function.

Consider the following minimization problem: Find the minimum values of f over S
¢ =inf f(x)

©€5

and the set of global minimizers;
H*={z€S.f(x)=c"}.

If the objective function f is bounded below, then f has the infimum ¢* over S. However,
the set H* of global minimizers may be empty. In this paper, we will study conditions for
non-emptiness of the set of global minimizers.

The existence of global optimal solutions is a fundamental question in optimization
theory. It is Weierstrass who proved the celebrated existence theorem using compactness
arguments: a continuous real-valued function attains its minimum and maximum on a
compact set. This classical theorem has been generalized to various cases. In this section
we summarize several existence results for minimization problems.

It follows directly from the definition of lower semicontinuity and from the
Weierstrass theorem that a lower semicontinuous function attains its minimum on a
compact set. Based on this fact, we have immediately the following standard results
concerning the existence of global minimizers.

Recll a real-valued function f: X— R! is said to be inf-compact if there is a real

number ¢>>c¢* such that the level set H.={x€ X: f(x)<c} is a non-empty compact set,

# In collaboration with Shi S Z, Zhuang D M. Repainted from C. A. Floudas and P. M. Pardalos (eds. ), State of the
Ari in Global Optimizanon, 1996,47—56.
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Proposition 1.1 If f is lower semi-continuous and inf-compact then the set of
minimizers H* is not empty.
For many practical optimization problems, while the requirement of lower
semicontinnity in the above proposition is moderate, that of inf-compact is demanding.
Now assume that X is a normed space, f:X—R"' a real valued function. £ is said to

be coercive if
‘ }IHYE][(.Z) =—+oco,

Note that when f is coercive, the level set H,={x€ X f(x)<Ic} is bounded for all
real number ¢. If f is also assumed to be lower semi-continuous then H, is a closed and
bounded set, which is compact when X is finite dimensional. Thus:

Proposition 1.2 [f X is a finite-dimensional normed space, [ is lower semi-continuous
and coercive then the set of minimizers H” is not empty.

The renowned Eberlein-Smulian Theorem states that in a reflexive space, any weakly
closed bounded set is weakly compact. Based on this theorem, we immediately arrive the
following two propositions:

Proposition 1.3 [f X is a reflexive Banach space, f is weakly lower semi-continuous ,
coercive, and bounded from below, the set of minimizers H" is not empty.

Proposition 1.4 Let X be a closed, bounded and convex subset of a reflexive Banach
space. [ be a convex and lower semicontinuous real-valued functional on X, then the set
of minimizers H” is not empty.

Let f be a continuous differentiable functional on a Banach space. We say that f
satisfy the following Palais-Smale condition if for each sequence {x,} X,

{f(z,)} is bounded the sequence {x, } possesses

df(x,)—>0 - a convergent subsequence. (D
Proposition 1. 5 If X is a Banach space, f& C' (X) is bounded from below, and
satisfies the Palais-Smale condition, then the set of minimizers H”™ is not empty.

The Palais-Smale condition is important because it places the “compactness” condition

onto the objective function f itself. It has very extensive application in many areas.
2 Approximatable Functions and Robust Minimizers

In optimization practice, we not only need to know the existence of optimal solutions
but also need to find these solutions numerically. It is for this reason that we introduced
the concept of approximatable functions in [ 6,7 ]. Recall that a function f: X—R"' is said
to be approximatable if the set C of points of continuity of f is dense in X, and for each x
€ X, there is a sequence {x,}CC such that

x,—~>x, and f(x,)—>f(x). (2. D
The existence results discussed in the previous section, with the exception of Proposition

1.5, do not ensure the approximatablility of minimizers. For example, let X=R"' and
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fao= [T 70 (2.2)
—1, x=0.
It is easy to see that f and X satisfy every condition in these propositions. However, the
global minimizer x* =0 is not approximatable.

Recall that a set D in a topological space X is said to be robust if

cl int D=cl D, (2.3)
where int D denotes the interior of D and cl D the closure of D. Locally, a point 2, €D is
said to be a robust point of D if xy €cl int D, or if there is a net of point {z,}Cint D such
that x,—>x,. Thus, a set D is robust if and only if each point of D is a robust point of D.
A function f:X—R' is said to be a robust function on X if for each open set GC X, the
inverse image f~'(G) is a robust set. Locally, f is said to be robust at x, &€ X if for any
>0 and a neighbourhood U(y,) = (3, —e,y, T€) of yo=f(xy), the point x, is a robust
point of £ '(U(y,)). For more details of robustness of sets and of functions see [§—10]

The importance of the concepts of robustness is emphasized by the fact that a robust
function is always approximatable. Moreover, when the space X is a complete metric
space, the approximatability and the robustness of f are equivalent [6,7].

In the above example, the function f is not robust at 2, =0. Indeed, by taking e=
0.5, we obtain the inverse image of an open set f~'((—1.5,0.5))={0}, which is not a
robust set.

The example suggests that a non-robust minimizer is not desirable if we are interested
in finding optimal solutions numerically. This motivates the following definition:
Definition 2.1 A point x* € X is a robust minimizer if

fis robust at x* and f(x)=f(x"), Yx€X. 2.4
By adding the appropriate robustness requirements to the proportions in the previous
section, we obtain sufficient conditions of the existence of robust minimizers.
Proposition 2.1 If X is a topological space, f:X—>R' is lower semicontinuous, robust
and inf-compact s then there exist robust minimizers of f in X.
Proposition 2.2 [/ X is a finite dimensional Banach space, f is lower semicontinuous ,
coercive and robust , then there exist robust minimizers of f in X.
Proposition 2.3 1/ X is a reflexive Banach space, [ is weak lower semicontinuous ,
coercive and robust then there exist robust minimizers of f in X.
Proposition 2. 4 Ler X be a closed and convex subset of a reflexive Banach space, f be a
convex, lower semicontinuous and robust real-valued functional on X, then there exist
robust minimizers of [ in X.

Since a continuous function is always robust, the conclusion of Proposition 2. 5 can be
strengthened as:

Proposition 2.5 If X is a Banach space, f&C' (X)), bounded from below, and satisfies

the Palais-Smale condition, then there exist robust minimizers of f in X.
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3 A New Existence Theorem of Robust Minimizers

The proposition 2. 5 ensures the existence of global robust minimizers. However, the
analytic requirements on the objective function f is quite demanding. For example, this
proportion does not apply to continuous objective functions. In this section we will modify
the Palais-Smale condition to establish a much more general existence theorem of robust
minimizers which is applicable even to optimization models with discontinuous objective
functions.

Let X be a metric space, f: X—R' a real-valued function bounded from below. Let
¢ =inf.exf(x), let c>>c” be a real number. We recall the concept of modified variance of
f with respect to c.

Definition 3.1 The modified variance of a function { with respect to c is defined as

Vilfso= (f(x) — ) dps 3. D

p(HO) Ju
where p1 is a Q-measure defined on X and H. is the level set of { with respect to c: H. = {x:
fa)<c}

Note that, when c=c" , the definition of V, (f,¢) can be extended by a limit process:

Vi, =limV(/ic,)

The modified variance plays an important role in the integral global optimization. In
particular, the following optimality condition was established in [§—10].
Theorem 3.1 Let (X.Q,u) be a Qmeasure space, [:X—>R' a measurable realvalued
robust function on X. Then c¢* =inl,exf(x) isthe infimum of f on X if and only if the
modi fied variance of | with respect to c* equals zero, i.e. V,(f,c*)=0.
Definition 3.2 Let X be a metric space, f:X—>R"', C the set of points of continuity of f.
We say f possesses the variance sequential compactness property if for each sequence {x, } X,
{x,} CC - the sequence {x,} possesses

(3.2)
)

Theorem 3.2 Let X be a metric space, f:X—>R"' a bounded below, lower semicontinuous

Vi(f, f(zx,))—>0 a convergent subsequence {x,,
and robust function, and C the set of points of continuity of f. 1f f possesses the
variance sequential compactness property then there exists a robust minimizer x~ such that
x, 2" and  f(z, )= f(x") =infexf(2). (3.3)
A point x* € X is a global minimizer of f with ¢* = f(2* ) is the global minimum
value if and only if
Vi(f.c*)=0. 3. D
The reader is refereed to [2,8—10] for more information about integral global optimality
conditions.
Proof of Theorem Let ¢* be the infimum of f, for each integer n, there is a point y, € X
such that

60



. 1
fy)<c +2n'

With the robustness of the objective function f, we can select x, & C (C is the set of points

of continuity of f) with the property that
11
f(:r7,)<f(y,,)+2n<c +n. (3.5

In this way, we obtain a sequence of point {x, } CC satisfied (3. 5). Furthermore we can
assume that { f(x,)} is a monotone sequence without loss of generality. Therefore, we
obtain a sequence of point {x,}CC such that
flx) v :llen)? f(). (3.6)
By Theorem 3.1 we have
Vi(f, f(x,))—0. (3.7
Hence, from condition (3. 2), there exists a convergent subsequence {x,, | of {z,}. Thus,
there is a point " € X such that z, —x". We now prove that =" is a robust global
minimizer of f satisfying (3. 3). Since ¢* is the global minimum value of f, we have
fx")=c". (3.8)
Furthermore, by lower semicontinuity of f, for each e >0, there is a neighbourhood
U(x™) of x* such that
fo>f(x")—e, YaeUx").
Because &, —x ", there exists a positive integer N such that for n, >N, x, €UCx")
and then
fle, ) >f(x")—e ¥ m>N.
Letting n—>co in the above inequality, we obtain from (3. 6) that
c=f(x")—e.
Subsequently, by the arbitrariness of ¢, we obtain
S <",
It implies
[z )=c" :?gi{lf(‘r).
Furthermore, since f is assumed to be robust at x*, x* is also a robust minimizer of f.
Remarks 3.1 Proposition 2. 5 is an easy corollary to Theorem 3. 2. Indeed, if f is in C'
(X), then the necessary and sufficient condition V| ( f,c¢* )=0 implies that d f(x*)=0.
Remarks 3.2 The assumption of the variance sequential compactness in Theorem 3. 2 is
weaker than the Palais-Smale condition. Indeed, simple examples show that for a
continuously differentiable function f& C', the existence of a sequence {z,}, satisfying
condition (1. 1) (f(x,) is bounded and d f(x,)—>@) may not guarantee that V, (f, f(x,))—0.
Hence, Palais-Smale condition requires more sequences having convergent subsequence.
Example 3.1 Let X=R', and
f()=(2*—0.exp(—a?). (3.9

The function has a unique global minimizer 2* = 0; it has also two maximizers x =
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+ 1.5, and two asymptotical local minimizers ==co, The Palais-Smale condition requires

the sequences {z,} converging to 0 and converging to +/1. 5 have convergent subsequence.,
and they have, The Palais-Smale condition also requires the sequences converging to f=co
have convergent subsequence, they do not have. However, the condition of variance
sequential compactness (3. 2) only requires the sequences converging to 0 have convergent
subsequence.,

It is proved that the Palais-Smale condition implies the coercivity property [ 3]. The
variance sequential compactness property does not imply the coercivity. Indeed, the
function (3. 9) satisfies variance sequential compactness property, but it is not coercive.
This also shows that the Palais-Smale condition is more stringent than the variance
sequential compactness condition.

The most important improvement of Theorem 3. 2 is that the theorem can be applied
to a minimization problem with a discontinuous objective function,

The following example shows that the conditions of Proposition 2.1 are more
restrictive than those of Theorem 3. 2
Example 3.2 Let X=/*, and

f)=Cllx||?—=0.Dexp(— || x| D). (3.10)
The function has a unique global minimizer 2*=§. The conditions of Theorem 3. 2 hold.
However, (3.10) is not inf-compact. Indeed, for each ¢c=>c* =—0. 5 the level set H, is a
nonempty closed set. Take 0<Ze<Cc+0. 5 small enough such that

B.={x: ||« [| <e}ZH..
In fact, let =0. 54>’ and a point xE B, i.e.s || x || <e, then
(2]l 2—0.5)enp{— || = || 2}<<(&#—0.5)<6—0.5=c.

Thus, x€ H.. However, the ball B, is not compact in the space /2. Hence, the level set

H. is not compact.
Example 3.3 Let X=R' and 0<(a<1; let
f(o)=|x|°.

The function has a unique global minimizer x* = 0 while any reasonable defined
derivative of f at x* cannot exist because f(x,)—>co as x,—>x".

For this function the variance is

24" 2

I+ (A+20)"
and V(f, f(x,))—0 implies that |x,|*—0. Therefore, x,—>0. We see that the condition
(3.2) of Theorem 3. 2 is satisfied.

Vl(fsf):

4 Applications and Generalizations

4.1 Modifications of Condition (3. 2)

The modified variance optimality condition (3. 4) has several equivalent forms. The
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following theorem is established in [2]:

Theorem 4.1 Let (X,0Q,u) be a Qmeasure space, f:X—>R' a measurable realvalued
robust function on X. Then the followings are equivalent :

(D ¢* =inl,exf () isthe infimum of f on X.

(2) the mean value of [ with respect to ¢* equals c”

(3) the variance of f with respect to ¢* equals zero.

(4) the modified variance of f with respect to ¢* equals zero.

(5) the m-th moment of f with respect ot ¢ equals zero.

Here, the mean value, variance and m-th moments of a function | with respect to ¢ are

defined as

1 ‘
M 0= | @ d

= —1 ) — 2
V(fio) f#(H[)JHA (f(@) —MCfre)?dus
SN — 1 . __\m
M, (f.c) —#(H(‘)JH[ (f(x) —o"dp.

Also, see [2,8—10] for the integral global optimality conditions.

Based on this, we can substitute the variance sequential compactness condition by its
equivalent conditions:
Theorem 4.2 Let X be a metric space, f:X—R"' a bounded below , lower semicontinuous
and robust function, and C the set of points of continuity of f. If [ possesses one of the

following properties then there exists a robust minimizer x " such that

z, 2" and f(x,)—>f(x")=infexf(2). 4.D
(1) for each sequence {x,} X,
{x, ) CC the sequence {x,} possesses
o . = (4. 2)
MCf, f(x,))— f(x,)—>0 a convergent subsequence {x,, }
(2) for each sequence {x,}CX,
{x,}CC the sequence {x,} possesses
= (4. 3)
V£, f(x,))—>0 a convergent subsequence {x,, |
(3) for each sequence {x,} X and for some positive integer m ,
-1 CC the sequence {x,} possesses
{x,} sequ {x.} P ses (4.0

=
M, (s f(x) s f(x,))—>0 a convergent subsequence {x,, |
(4) each sequence {x,} X possesses the variance sequential compactness property.
4.2 Constrained Problems

Let X be a topological space, S a subset of X, and f:—R'. Consider a constrained
minimization problem: to find infimum of f over S:

¢ =inff(x)
€S

and the set of global minimizers. Here, the constraint set S may be characterized by a set

of equality and inequality constraints. If S is metrizable, then Theorem 4. 2 is still
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applicable. Therefore, Theorem 4. 2 may be applied to constrained minimization problems.
4.3 Existence of Robust Fixed Points

Let X=(X,p) be a metric space, T a robust mapping. Recall that a mapping T: X—
X is said to be robust if for each open set GCX the inverse image T~ '(G) is a robust set;
see [6] and [7]. Finding the set of robust fixed points of a mapping T is equivalent to
finding the set of global robust minimizers of g(x)=p(x, Tx) with the global minimum
value of g being equal to zero. Therefore, we have the following existence theorem of
robust fixed points:
Theorem 4.3  Let (X,p) be a metric space, T:X—>X a robust mapping. Suppose that
g(x)=p(x, Tx) is a lower semicontinuous function and C is the set of points of
continuity of g. If

(1) thereis a sequence {vy,} X such that g(y,)—>0;

(i1) for each sequence {x,} CC, from V|, (g, g(x,))—>0 implies that there is a
bof {x.ts

Then There exists a robust fixed point x* such that

convergent subsequence {1‘%

Z,, > and Tx,,k»Tx* =x".
We have considered approximatability and approximation of fixed points of a robust
set-valued mapping in [ 6] and [11]. We can consider the existence of robust fixed points

of a set-valued mapping similarly.
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Upper Robust Mappings and Vector
Minimization: An Integral Approach”

Abstract: A study of upper robust mapping from a topological space to R” and
development of optimality conditions for vector minimization of upper robust mappings are
presented in the framework of integral based optimization theory. Under some general
assumptions, optimality conditions are established for several well developed scalarization
techniques such as weighting, e-constraint and reference point. These optimality
conditions are applied to design integral algorithms for finding the set of efficient solutions
of a vector optimization problem. A numerical example is presented to illustrate the

effectiveness of the algorithm.
1 Introduction

Vector optimization problems originated from decision-making problems appearing in
economics, management sciences and other scientific disciplines where it is often required
that decision making be based on optimizing several criteria. A vector optimization
problem is therefore to find all efficient, i. e. best points in a set with respect to some
partial order. In this paper, we consider the vector optimization problems with respect to
the partial ordering induced by the nonnegative orthant of R" . However, vector
optimization problems with respect to other ordering in R" can be treated in a similar
fashion. Let X be a topological space and f=(f*, f*,++, ") : X—>R" a mapping. A point T
€ X is said to be a efficient solution or nondominated solution of a vector
minimization problem

f(Z)=min f(x) (1. D
if there exists no other feasible solution x such that f ()< f (Z), for all i=1,+:-,n, with
strict inequality for at least one i. If we denote the nonnegative orthant of R” by R” , the
for z=(z" 2%+, 2") and y= (3", y* s+, ") in R", 2" y means that 2'< y’ for all
i=1,,n; r Lp y means that 'y’ for all i=1,++-,n and 2’5~ y’ for at least one i.

Most traditional gradient based scalar optimization techniques usually cannot locate

global minimizers but only local minimizers. This shortcoming causes severe difficulties in

% In collaboration with Kostreva M M, Zhuang D M. Reprinted from European Journal of Operational Research, 1996,
93:565—581.
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numerical vector optimization: when a vector optimization problem is scalarized, the local
minimizers of scalarized problem may not lead to efficient solutions of the original vector
optimization problem. Integral global optimization offers an alternative. Integral global
optimization theory (robust analysis and integral global optimality conditions) and
methodology (integral global optimization algorithms) have been developed in the past two
decades. The rigorous mathematical foundation of the integral global optimization has been
well accepted in mathematics community. The power and flexibility of the integral global
optimization algorithms in single objective optimization have been thoroughly
demonstrated. In this research, we develop integral global optimization theory and
algorithms for vector optimization. We establish the optimality conditions for the well
known scalarization methods such as weighting problems and reference point problems.
We apply these optimality conditions to design integral algorithms for approximating a set
of efficient (nondominated) solutions for a vector minimization problem. Since integral
optimization algorithms do deliver global minimizers for scalar problem, it is guaranteed
that the solutions generated from the integral algorithms are efficient.

Our integral approach does not attempt to find all efficient solutions of the vector
optimization problem (1.1), but only those solutions that could be approximated
numerically. The following example illustrates the idea.

Example 1.1 Let
Py = {Iz+y2 ,  (x,y)70,0),
—1, (x,y)=10(0,0),

and

x|+ 1yl 70,00,

—1, (x,y)=1(0,0).

The mapping f=(f*, )T has a unique efficient solution (0,0)T with the efficient function

f2(1f,y):{

value (—1,—1). However, there is no reasonable way to numerically approximate such
efficient solutions. In other words, such efficient solutions should be excluded when we
consider numerical methods of solving vector optimization problems. The concept of up per
robust map ping is introduced for this purpose.

The following is the organization of the paper. The brief description of integral global
optimization theory is presented in Section 2 for the convenience of the reader. Some new
results on upper robust mappings and their properties are developed in Section 3. These
results are directly related to vector optimization. Optimality conditions for some well
known scalarization techniques are established in Section 4. The algorithms and an

numerical example are presented in Section 5.

2 Integral Global Minimization

The concept of robustness is an essential component of the theory and methodology of
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integral global minimization. We highlight some fundamentals here. We also include some
basic results of integral approach of global minimization. The reader is referred to [ 2] and
[16—18] for details.
2.1 Robust Sets, Functions and Mappings
Let X be a topological space. A set D in X is said to be robust if
cl D=cl int D, 2. D
where cl D denotes the closure of the set D and int D the interior of D.

A robust set consists of robust points of the set. A point x&cl D is said to be robust
to D (or a robust point of D if & D), if for each neighbourhood N(&) of x, N(x) \int D
# . A set D is robust if and only if each point of D is robust point of D. If x is a robust
point of a set D, then D is called a semineighbourhood of x. A point x is robust to D if and
only if there exists a net {x;}Cint D such that x;—>x.

An open set G is robust since G=int G. The empty set is a trivial robust set. A closed
set may or may not be robust. A union of robust sets is robust. An intersection of two
robust sets may not be robust; but the intersection of an open set and a robust set is
robust. If A is robust in X and B is robust in Y, then AX B is robust in X XY with the
product topology. A convex set D in a topological vector space is robust if and only if the
interior of D is nonempty. An important property of a nonempty robust set is that its
interior is not empty. A robust set or its complement can be represented by the union of an
open set and a nowhere dense set.

A function f; X—R is said to be upper robust if the set

F,={x: f(x)<c} (2.2)
is robust for each real number c.

An upper semicontinuous (u.s.c.) function f is upper robust since in this case (2. 2)
is open for each ¢. A probability function on R” is also upper robust. A sum of two upper
robust functions may not be upper robust; but the sum of an upper robust function and an
u.s.c. function is upper robust.

A function f is upper robust if and only if it is upper robust at each point; f is upper
robust at a point x if & F. implies that x is a robust point of F.. An example of a non
upper robust function on R' is

N 0, x=0,
flo= 1, x#40.
f is not upper robust at x=0.
2.2 (Q-measure Spaces and Integration

In order to investigate a minimization problem with an integral approach, a special
class of measure spaces, which are called Q-measure spaces, should be examined.

Let X be a topological space, Q a o-field of subsets of X and ; a measure on 2. A
triple (X,02,0) is called a Q- measure space iff

(i) each open set in X is measurable;
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(i) the measure x(G) of each nonempty open set G in X is positive: u(G)=>0;

(ii)) the measure p(K) of a compact set K in X is finite.

The n-dimensional Lebesgue measure space (R", 2, ) is a Qmeasure space; a
nondegenerate Gaussian measure g on a separable Hilbert space H with Borel sets as
measurable sets constitutes an infinite dimensional @Q-measure space. A specific
optimization problem is related to a specific Q-measure space which is suitable for integral
global optimization approach.

Once a measure space is given we can define integration in a conventional way.

Since the interior of a nonempty open set is nonempty, the Q-measure of a measurable
set containing a nonempty robust set is always positive. This is an essential property we
need in the integral approach of minimization. Hence, the following assumptions are
usually required:

(A) £ islower semicontinuous and there is a real number b such that {x & S. f(x)<b} is a
nonempty compact set.

(R) f is upper robust on S.

(M) (X,Q,u) is a Qmeasure space.

The following lemma is useful for the integral approach of global minimization.
Lemma 2.1 Suppose that the conditions (M) and (R) hold. 1f c¢>c* =min,esf (zx),
then n(H.(1S)>>0, where H.={x: f(x)< c} isthe level set of f.

2.3 Integral Optimality Conditions for Global Minimization
Suppose that the assumptions (A), (M) and (R) hold, and ¢c>>¢* =min,csf (x). We

define the mean value, modified variance and m-th moment (centered at a), respectively,

as follows:
M(f,c;S):m Jmsfmd,l,
and
v, (f,c;S):m J‘HLms )=o) dus
M,,,(f,c;a;S):m jms F@)—a) dyam=1.2

By Lemma 2. 1, they are well defined. These definitions can be extended to the case c=c¢*

by a limit process. For instance,

. - 1
Mll(f,t;a;s>_}:I¢I}/j(H(k ﬂs)

The limits exist and are independent of the choice of {¢;,}. The extended concepts are well

J (f(x)—a)"du,m=1,2,-
H, NS

defined and consistent with the above definitions.

With these concepts we characterize the global optimality as follows:
Theorem 2.1 Under the assumptions (A), (M) and (R), the following statements are
equivalent .

(1) x* €Sis a global minimizer of f over S and ¢* = f(x" ) is the global minimum

68



value.

(ii) M(f,c* ;S)=c" (the mean value condition).

(ii1) V,(f.c¢* 3S)=0 (the modified variance condition).

(v) M, (fyc*35¢*3S) =0, for one of the positive integers m =1, 2, -+ (the higher

moment conditions).

3 Upper Robust Mappings

As we pointed out before, the reason to introduce the concept of the robustness of
sets and mappings is to exclude from our consideration those points that cannot be
approximated numerically. As it turns out, when we design algorithms to solve
optimization numerically, the continuity of an objective functions and constraints are not
essential, but their approximatability is. In [12] and [13], the approximatability of a
mapping is described as follows: let X and Y be topological spaces and f: X—>Y. Suppose
C is the set of points of continuity of f. f is said to be approximatable iff C is dense in X
and for each € X, there exists a net {x,}CC such that

limzx,=% and limf(x,)=f().

We also define a robust mapping as follows: Let X and Y be topological spaces. A
mapping f: X—Y is said to be robust if for each open set GCY, f'(G) is a robust set
in X.

An approximatable mapping is robust. If X is a Baire space and Y satisfies the second
axiom of countability, then a mapping is robust if and only if it is approximatable [12,13].

For the purpose of studying vector optimization problems (1. 1), we investigate the
properties of upper robust mappings from a topological space X to R". Among other
things, we characterize such mappings by their approximatability at efficient points. The
properties of upper robust mappings established here are of significance in other areas of
mathematics.

Definition 3.1 Let f: X—>[R" be a mapping. f is said to be upper robust at x if for each
vector ¢ in R”,

IEF(»:{IGX:]((I)<R]FC} (3.
implies x is a robust point of F.. f is upper robust if it is upper robust at each point of x&
X, or F. is a robust set in X.
Proposition 3. 1  Suppose that . X—R"is upper robust. Then for each j . the j-th component
of fs fy isan upper robust function.

Proof. For each c€ R', the level set F. of f7 is a union of robust sets:

{xr€X: fj(.’[)<(‘}:O{IEX: Fila)<<c, fila)<<lk, i=1, n3iFj},

k=1
because f is a upper robust mapping. Thus, /7 is an upper robust real-valued function. [ ]

The following example shows that even if each of f';: X—R', i=1,,n, is upper
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robust, f=(f",+>+, ") may not be upper robust.
Example 3.1 Let

()= L x=0, and [ (x)= 70,

x, =0, 1, a>0.
Taking c=(1,1)", we have {x: /' (2)<<1}=[0,1) and {x: 2 (2)<<1}=(—1,0]. Tt is
clear that
F.={z: ff()<1, fA(=)<1}=[0,D)N(—1,0]={0}

is not a robust set. However, if one of the components of f is upper robust and the
remaining ones are upper semi-continuous, then f is an upper robust mapping.

The following proposition describes a convenient way to verify the upper robustness
of a mapping.

Proposition 3.2 Let X be a topological space and . X—>R"a mapping. Then f is upper
robust at a point x € X if and only if for any given ¢ = (', 2€") >pn 0=(0,+,0),
there is a semineighbourhood N (x) of x such that

floO) << f()+e VaeN. (3.2)
Proof. Suppose that f is upper robust at z. Then for e=(e',*+,¢") >y 0, letting c=
f(Z)+e, we have

TeF.={x: f(x)<w f()+te}. (3.3)
This implies, by Definition 3.1, that T is a robust point of F., so N(Z) =F., is a
semineighbourhood of . Now for each & N(Z), we have by (3. 3)

S <g [(T)Te.
Conversely, suppose that (3. 2) holds and c=(c',+++,¢") € R" is given such that
xEF.={x€X.: f(x)<g c}.
Let e=c— f(Z) > 0. Then there exists a semineighbourhood N(Z) of T such that for
each point x& N(Z), we have
fo)<<p f()+e=c.

It follows that x& N(z)CF.. Hence T is a robust point of F, and f is upper robust at z.  []

The sum of two upper robust mapping may be non-upper robust. However, the sum
of an upper robust mapping and an upper semicontinuous mapping is upper robust. The
reader can easily prove this statement by applying Proposition 3. 2.

A useful way to study a nonlinear functional is to study its epigraph. Here, we use a
generalized concept of epigraph to characterize an upper robust mapping geometrically.
Theorem 3.1 Let X be a topological space. Amapping f=Cf" o, f"): X—>R" isupper
robust i f and only if the epigraph

Epi( ) ={(x,0) E XX R" :f(az‘)<[ggv+ cy with e=(ct e e} (3.4)
is a robust set in the product space X X R”".
Proof. Suppose f is upper robust at x. For each point (x,c¢) € Epi( /) we must prove that
it is a robust point of Epi(f). Let ¢= f(Z) and ¢, ¢. We have 7€ F, . Thus,
F. X (¢ ,o2) CEpi(f) (3.5)
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and
int F.. X (¢;,00) =int(F, X (¢;,20))Cint(Epi(F)). (3.6)
Since the point(Z.c) is in Epi( /), we have c=¢= f(x). For each neighbourhood N
() X (c—e,cte), we have
N(@) X (c—escte) Nint(Epi( /) DN (@) X (c—escte) N (int F. X (c;,90))
DIN@ Nint F, ) X (eysete)# T,

_ 1 . . .
where we take c<R”+ O <g. c+7s in (3.5). The last set is nonempty because T is

assumed to be robust in the set F. .
Conversely, assume that Epi( /) is a robust set in X X R". If, on the contrary, f is
not upper robust at some point, say z. It means that there exist ¢ € R" and a
neighbourhood N(Z) of T such that
S (@ <<, ¢but N(@)int F.=J, 3.7

L@ f@)>w 0 and let ;=¢—2. Then

S <<w co—e<p cos
e, (Z,c) EEpi(f). Consider the open neighbourhood G=N(Z) X (¢, —e,c, +e) of (x,
¢) in XX R". Then, as (Z,c,) is a robust point of Epi( /),
GNint Epi( H# .
Take (x1,c;) €GN int Epi( ). There is a neighbourhood N, (x,) of x; and &, >0(g; <e)
such that

where int F(.:int{x:f(x)<n@"+5}. Let e=

N, (2) X (c;—¢e1sc1 Te ) TN(@) X (cy—escoTe)int Epi( ).
For each point (y,d) € N (x1) X (c; —¢e1,c1Te), we have (y,d) Eint Epi( /) CEpi(f),
which implies that
fO<p d<p o1 te<g ¢ Telp C.

In other words, y& {x: f(2)<¢}. We now have

N, (x) CF = {x: f(x)<w, c}.
Thus, x; €int F.. But this means that 1 € N(Z)(int F., or,

N@) Nint F.# .

The last statement contradicts (3. 7). The contradiction proves that f is upper robust at x. [ ]
Proposition 3. 3  Let X be a topological space and f,: X—R"y, A& A, be a net of
mapping such that each mapping f,is upper robust at x € X. 1f [+ X—>R"is a mapping
with the property that

limkinf LH@o=f(x), YVxeX (3.8

uni formly and , moreover,
then f is also upper robust at x.

Proof. For give e=(e' ,+++,e") >, 0 we have, for sufficiently large A€ A,
[ < fit+4e VaEX (3.10)
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and

L@ <f (&) +e, (3.1D
according to (3. 8) and (3. 9). Since f; is upper robust at x, there is a neighbourhood
N(&) of = such that

f<w fi@+5e VrEN@. (3.12)
It follows that for each x& N(Z),
f@ < i+ e i@ Ee<n [+,

Therefore, by Proposition 3. 2, f is upper robust at . [

Next, we study the ‘approximatablity’ of upper robust mappings. We first consider
the sets of points of continuity and discontinuity of an upper robust mapping.
Proposition 3.4  Suppose that X is a complete metric space and f: X—R" is an upper
robust mapping. Thenthe set D of points of discontinuity is of first category and the set
Cof points of continuity is of second category.
Proof. Let {ri}, i=1,-+,n, be the set of rational vectors in R". Then the set D of points
of discontinuity can be represented as (see [10, Chapter I, Section 13])

D:}gj(f’)’l< 1T G ) \ine (0 1T . ). (3.13)

To prove D is of first category it suffices to show that for any a', ' ER",

n n

FCTT @ o0)\ine 1 (TT s 60)

=1 =1

is of first category. It is easy to verify the following set equality holds:

[ 6) =TI (eo. 0D N ) @stoo) X [ (oo, o0
i=1 i=1 = AL

— - — ol b U - i l o —o0 oo
[T n [P [at,+ }x];[ (—eosten ) .

(3.1

For an upper robust mapping f, V=/""( Hz’:l (—oo,b')) is a robust set and

£ (Les e X IT (—eopem) ) =X\ /(om0 X [ (—eo,00)

i#j i#j
is the complement of a robust set; it is an union of an open set and a nowhere dense set.
Thus,

/o (ﬁ(w;bf)) =V {U (o UT;‘,,)}:VQ{

m=1

-

G UT, |

m=

(3.15)
where (., is open and T, is nowhere dense, m=1,2,++; i=1,+*,n, so G,= (0., is open
and T,,= T, is nowhere dense. Hence, we have

£ @)=

VNGOUVNTD ) =UWV,UTD. (.16

m= m=1
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. . . / .
where V,, is a robust set (an intersection of a robust set and an open set) and T, is a

nowhere dense set, m=1,2,+++; and

. 11 (a6 ) \int £ ( 11 (@ .))CU WV, \int V, ) UT,. (3.17)
i=1 i=1

=1
The right hand side of the inclusion (3. 17) is obviously of first category, and so is the left
hand side.

The set C of points of continuity is of second category because it is the complement of
D in the complete metric space X. []
Corollary 3.1  Suppose that X is a complete metric space and f: X—>R" is an upper
robust mapping. Then the set C of points of continuity of f is dense in X.
Theorem 3.2 Suppose that X is a complete metric space, f: X—>R"is a mapping and C
is the set of points of continuity. Then [ is upper robust if and only if C is dense in X
and for each point x © X\C, there exists a sequence {x,}CC such that

x—>x and lirilai}lpf(xk)gm (). (3.18)

Proof. Suppose that f is upper robust and x& X\C is a point of discontinuity. For each £
= (k"o k") and K =1,2,, for all j&€{1,2,+,n}, the set
Vi={z€X: f()<w f()+1/k}
is non-empty robust; T is a robust point of this set. Thus, by Proposition 3. 4
COAN,(@ Nint V.2, k=1,2,-, (3.19)
where N, () ={x:d(x,7)<1/F'} is the neighbourhood of Z. Taking a point x;, for each
k, from the set (3.19), we obtain a sequence {z,}CC. We then have

€C, x,—7, and f(a)<f@)+1/k. (3.20)
This implies that
o €C, x,—>7, and 1ir£1 supf(ap)<<w (). (3.2D)

Conversely, suppose a point x& X and there is c&€ R*, € F. such that (3. 18) holds.
Since x € F., we have f(x)<lc, where c=(c',++,¢"). Let e=c— f(2). Then by (3. 18)
there is an integer K such that x, € C and

faD< @) Fge<m e YIZK.
Now, 2, €CN F., Hence, we also have 2, € int F., for all #>=K. It follows that =, €

int F, and z;—~=. This proves that x is a robust point of f, and the mapping is upper
robust. [
Theorem 3.3 Suppose that X is a complete metric space, [: X—>R"is a mapping and C
is the set of points of continuity. Then [ is upper robust at an efficient solution x™ if
and only if there exists a sequence {x,}C such that

r—>x"  and lirg:%x_upf(x‘k):f(:z‘* ). (3.22)
Proof. Suppose (3.22) holds. Then by the proof of Theorem 3. 2, we have f is upper
robust at x*.

Conversely, if f is upper robust at an efficient point * , then there exists a sequence
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{x, } CC such that
xp—>x* and lir?%s@upf(;z";?)<[R<"+ (x" ). (3.23)
If for some jE€{1,2,+,n}, lim supg... f (2,)<f'(x*), Then there exists an integer K
such that for all A=K,
Fla)<fi(x"), i), and F(x)<F(x").
We have a contradiction because x* is assumed to be an efficient solution of f. This
verifies (3.22). []

4 Optimality Conditions for Scalarizations

The most common strategy to characterize the efficient solutions of a vector
optimization problem is to find a real-valued function representing the decision maker’s
preference. Once such a function is found, the vector optimization problem is then reduced
to a more usual scalar optimization problem. This approach is often referred to as
scalarization in the vector optimization literature. There are many papers contributing to
the theory of scalarization in vector optimization. Jahn in [ 5] establishes a series of
scalarization results for nonconvex vector optimization problems. Borwein and Zhuang [ 1]
prove several scalarization results for superefficient solutions. In [ 3, Section 4. 3], three
common scalarization techniques are presented. The authors call these scalarization
techniques weighting problems, k-th-objective Lagrangian problems and k-th-objective e-
constraints problems. They also mention the so-called weighted norm problem which are
also referred to as reference point problems.

The authors of [ 3] argue that a reference point problem is a generalized version of a
weighting problem. In our opinion, there is an intrinsic difference between the two in
terms of their applicability: The weighting technique can only handle convex problems
while the reference point scalarization technique characterize the efficient solutions of non-
convex vector optimization problems under suitable conditions [1,5,6]. On the other
hand, the weighting problem and the k-th-objective lLagrangian problem are the same
technique from a computational point of view, as the authors of [ 3] noted.

In this section we establish optimality conditions for weighting and reference point
methods. Optimality conditions for other scalarization methods can also be derived in a
similar fashion. These optimality conditions are novel and important geometrical
properties of the scalarization techniques. The optimality conditions not only characterize
an efficient solution of vector optimization problems with discontinuous objectives, but
also enable us to design integral global optimization algorithms to solve vector optimization
problems numerically. Throughout the section we assume the following:

(RV). fis an upper robust mapping.
4.1 Weighting Problems

The weighting problem is one of the most commonly used techniques of scalarization
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for solving convex vector optimization problems. When the decision space X and the vector

objective f=(f',-++, f") are convex, taking each nonnegative weight vector w from W=
{(wEeR": w'=0; 22':1 w' =1}, one can convert the vector optimization problem

Min f(2)

reX
into a single objective optimization problem:
Min = > w/f (2. 4. 1D
re€X i—1
We establish a set of optimality conditions to characterize efficient solutions of (4, 1).
First, we prove that using the weighting method, the scalarized objective {w, f)

i

= Z:,I:lwif' is an upper robust function provided that the vector objective f is an upper

robust mapping.
Proposition 4. 1  Suppose X is a topological space, f: X—>R" is an upper robust
mapping and w=(w',**,w"), where w' >>0,i=1,+,n. Then the mapping (w' f',+,
w" ") is upper robust.
Proof. For each given c& R", we have

{z€X: w ()< i=1,,n)={x€X;: f[()</w}, 4. 2)
where ¢/ /w/ =oco if w/ =0. The set (4. 2) is robust, so the mapping (w' f', -+, w"f") is
upper robust. [ ]
Theorem 4.1  Suppose X is a topological space, f: X—>R"is an upper robust mapping
and w=(w", )T, where w' =0, i=1,+,n, and w'+-++w'=1. Then

(w, Y= fl+ et f" (4. 3)
is an up per robust function on X.
Proof. By Proposition 4. 1, we need only prove that if f is an upper robust mapping, then
f'++++ f" is an upper robust function. Consider n—1 sets of rational numbers that are
ordered as
Vﬂ,l’é,“',?‘,i”,‘“y =1, ,n—1.

For each real number a, we have

LHS={z: f'(2)+-+ " (x)<a)
= U U (o f @< ) N N 7 <, et )

BE1 k=
N{z: " (x)<<a—(r}, +---+rf ')} =RHS. 4. 4)
Indeed, suppose x& RHS. Then
€ {x: 1 (O<r f e 7 )<y, Aot
Nz fr(o<<a—Gr 4t 1)
for some rLl ,i=1,--,n; it follows that
Sttt o<, te At L a— G et D) =a

So x&€ LHS. Conversely, for a given a suppose that x &€ LHS. Let a,=f (&),i=1, -,

}

1

n—1, define



e=(a—f(x)—(a;+++a,—1))/n>0.
For each a; we can find a rational number i such that a;<7r} , and |a; —ri [<Ze, i=1,--+,
n—1, because the rational numbers are dense in R'. Now the point x satisfies
S o<ry s i=1,,n—1and f"(x)<<a—(r} ++ri ).
It follows that x& RHS.

Thus, under the condition that f is an upper robust mapping, for each given a, RHS
is a union of robust sets. Hence LHS is robust. This proves that f' 4+ f" is an upper
robust function. [ ]

Combining Theorem 2. 1 with Theorem 4. 1, we derive the following theorem.
Theorem 4.2 Let X be a topological space, f: X—R"an upper robust mapping , and w
EW={w:w >=0; 27;:1 w' =1} be given. Under the assumptions of (A) and (M), the
following statements are equivalent ;

() 2" € X is a solution of the weighting problem (4. 1) and ¢* = (w, ) is the

corresponding value.

(i) M w, f7,c¢* ;X)=c" (the mean value condition).

(ii1) V, Kw, f)sc” 3 X)=0(the modified variance condition).

(v) M, (w, [)sc* 3¢ 3X) =0, for one of the positive integers m =1,2, -+ (the higher
moment conditions).

The following example shows how the optimality conditions apply to discontinuous
objectives.

Example 4.1 Let X=R",0<Cay <<ar << <3< 1, and
o (lafe iflxl<<1,
Sfi(x)=/ } i=1,2.
[|1 542, if|lx|>=1,

The mapping f=/{f1,f>}" is discontinuous upper robust. We solve the vector optimization

problem
Min f(2).
€ R?
This vector minimization problem has a unique solution " =(0,0)T. The minimum value

is f*=(0,0)"T. For given weight w= (w, ,w;) 7T,
o (wrlxl At [x e, iflx|<1,
(w, =] )

1"001 |x|? +w, |22 +2, if|x|>=1.
For simplicity, let ¢ =a2 =a. Then, by the strictly decreasing property of the mean value
for continuous function [ 2], M({w, [ sc; X)<<c if ¢>1. When ¢<1, we calculate directly

that

M w, ) c; X)=c/(2+a).
The mean value condition implies ¢* =0 for any given (nonnegative) weight. We can
obtain the same result from the variance condition or the higher moment condition.
4.2 Reference Point Method

Nonconvex vector optimization problems arise in a broad range of application. The
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weighting scalarization technique is not suitable for nonconvex problems. Moreover, it is
not uncommon in practice that verifying the convexity of an optimization problem is a non-
trivial task. Therefore, the reference point technique [ 9, 14, 15] is often adopted in
practice.
Definition 4.1 Let f: X—R" be a mapping. A point y € R" is called a reference point of f
if Y<fi(x), Y2EX, and j=1,+,n.

For instance, let y/ =min,exf’ (x),j=1,++,n, and y (y',++,y")T. Then y is a
reference point.

With a referece point y , let

g ()= D) wd' (37, f(x)), (4.5)
=1
where w/=>0,j=1,,n, are weights and &’( =, ), j=1,,n, are increasing upper
semicontinuous functions with &/ (y/,y/)=0,j=1,+,n.
Definition 4. 2 A solution x of the minimization problem Min,cy g, (x) is called a
reference point solution corresponding to a reference point y , metrics d',+++.d” and the set
of weights w', -+, w".
It is often convenient to take the weighted metrics as weighted norms in R*, the
weighted Euclidean norm or the weighted Chebyshev norm. For example, if we take the

weighted Euclidean norm, the reference point problem becomes

Min D] ) =37 D2, (4.6)
x j=1

If we take the weighted Chebyshev norm, the reference point problem becomes
l}/gl [Erllf-.?%”{wj | —y7 | ).
For the reference point problem, we have the following results:
Proposition 4.2 Let X be a topological space, f: X—>R"an upper robust mapping , w =
0,j=1,+yn, given weights and y a given reference point. Suppose that for each j, d’
(¥, * ) isa non negative increasing upper semicontinuous function of y' =y’ j=1,++,
n. Then
gu()= D) wWd' (37, f1(2))
=1
is an up per robust function. j
Proof. For each given c&€ R” and for each j, the set
(e G fi ey} =12 =0
1{1“;]” (o)<<b'}y, if >0,
where & =sup{y :d’ (y’,y<’}. Thus, for each given c€ R", the set {z:d (', f (x))<c,
j=1,++,n} is a robust set, This implies that g,(x) is upper robust by Theorem 4. 1. []
Combining Theorem 2. 1 with Proposition 4. 4, we have the following theorem:
Theorem 4.3 Fora given c=(¢', -, ¢, under the assumptions (A), (M), (RV) and

of Proposition 4.4, the following statements are equivalent ;
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(1) A point x € X is a reference point solution with ¢c* = 2::1de(yj , () as the
corresponding value.

(i) M(gy,c* ;X)=c" (the mean value condition).

(ii1) Vi (gg,c” 3 X)=0(the modified variance condition).

(v) M, (ggsc 3¢ :X) =0, for one of the positive integers m =1, 2, +=+ (the higher

moment conditions).

5 An Integral Algorithm and Numerical Examples

As we pointed out before, the integral global minimization algorithm delivers global
minimizers for single objective minimization problems. This feature is extremely valuable
in solving vector optimization problems. In this section, the optimality conditions
established in the previous section are applied to design integral minimization algorithms to
approximate the efficient solution set of a vector minimization problem.

For simplicity, we describe an algorithm using a reference point method under the
assumption that the objective function of problem (5. 1) is bounded below and the set of
efficient solutions of the problem is nonempty. The algorithms based on other scalarization
methods can also be designed.

Step 1: Find a reference point. Let
a :=Minf'(x), i=1,",n. (5. D)

€S
Take a point (y',+++,y") as a reference point such that

§i<a1’ i:]""an. (5. 2)
Step 2: Take L sets of positive weights (wj, =+, wi), k=1, -+, L, and minimize the

following L scalar problems:

Min gi(x), k=1..L. (5.3)
where we may take g; as Euclidean norm or Chebyshev norm or let
g = D) W (f (@ —3D}. (5. 4)
1
We obtain a sequence of solutions:
xyscsar and  f(x) ., f(ap). (5.5)
Step 3:  Use simplices produced by these points as an approximation of the solution

set f(MD).

Remark 5.1 We assume that the objective functions of the vector minimization problem
are bounded below so that the minimum values a',*+,a” of (5. 1) are finite. The point
(a'y+++ya") can be found by using the integral minimization method. The reference point
(y',+e+, y") satisfying (5.2) can be chosen by the decision maker or can be chosen
arbitrarily. From computational point of view, choosing y as a reference point is better

than choosing a in (5. 1).
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Remark 5.2 The scalar minimization problems (5. 3), as well as (5. 1), are nonlinear
constrained optimization problems. The objective functions might be discontinuous and the
constraint set might be disconnected. We can use the discontinuous penalty function
technique to reduce a constrained minimization problem to an unconstrained (or box

constrained) ones. For a constrained minimization problem

Min g(x), (5.6)
x€S
let
St+d(x), z=€¢S,
(x)= (5.7
p * O, IGS,

where §>>0 is a constant, and d(x) is penalty-like function such that d(x2)=0 if and only
if x&S. The penalized problem is of the following form:

Min[ g(2) +ap(x) ], (5.8)
where ¢ > 0 is the penalty parameter. The most important advantage of using
discontinuous penalty function (5. 7) is that it such penalized problem is exact without any
constraint qualification requirement. See [ 18] for more details.

The algorithm has been implemented by a properly designed Monte Carlo technique.
For a given reference point and a set of weights, the algorithm converges to an efficient
solution with pre-specified accuracy. We give a numerical example to illustrate the power
of our approach.
Example 5.1 Consider a vector optimization problem (‘Optimal design of a sandwich
beam’) taken from [ 7] and [8]. This is a bicriterial nonlinear optimization problem of
seven variables with seven box constraints and a nonlinear inequality constraint. We will
not restate the actual problem in detail. The reader is referred to the original references.

Applying the above algorithm, we obtain efficient elements of the image set of (fi,
f2) listed in Table 1. In Table 2, we give four compromise solutions. A part of the

approximation of the set of efficient solutions is illustrated in Fig. 1.

Table 1 Iterated minimal elements

/! / /! 1
8.17994331 591.31296876 23.70762509 0.18756257
8.18313330 486.02233937 26.89154701 0.11288390
8.89529322 223.52841014 29.41982501 0.08078902
9.15373034 178.49739085 30.03870987 0.07715545
9.99660688 63.28892780 33.06210990 0.05492974

10.05567952 22.11224264 36.23951089 0.04281627
10.64656909 12.67675951 39.22120208 0.03570512
11.32437797 7.84447413 40.86787715 0.03273413
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f! s /! /
12.19073925 4.79381215 42.08200982 0.03081917
13.60446417 2.57588857 46.89294124 0.02492974
14.44433869 1.74495616 49.30072240 0.02273858
15.64738715 1.25807617 57.14563630 0.01766231
16.10404488 1.09122550 64.61565507 0.01461693
16.50446294 0.96764436 70.64245411 0.01287817
16.85863036 0.87296645 75.91565830 0.01169748
17.18385903 0.79528927 80.70360751 0.01082299
18.00553359 0.63785089 107.09748249 0.00923308
18.53993725 0.55625679 114.50617193 0.00869432
18.89533816 0.50938644 118.37710917 0.00720372
19.12593454 0.48171163 123.11886770 0.00699876
19.60034299 0.43067015 151.35145221 0.00645405

Table 2 Compromise solutions

Estimate as best approximation

Pre-image of the estimate

from the set of minimal elements

(18.00553359,0.63785098)

(30.03870987,0.07507935)

(42.08288982,0.03081971)

(49.30072240,0.02273858)

(0.32647148, 14. 65414324, 0. 00000009, 233. 89503120, 10. 00000304 ,
10.00000226,10.00000030)

(0. 58376922, 26. 08598686, 0. 00000092, 687. 39042936, 10. 00000002,
10.00000265,10.00000602)

(0. 79907522, 35. 44132713, 0. 00000638, 979. 14364790, 11. 60774125,
12. 89346387,15. 16751641)

(0. 88538548,39. 18946234, 0. 00001474, 961. 15533657, 16. 90878365,
19. 01396637, 21. 48119806)
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Fig. 1. Approximation of the set of minimal elements.

6 Conclusions

The theory of vector minimization has not successfully handled discontinuous
functions, since it has been grounded in differential calculus, starting with Kuhn and
Tucker. A powerful and widely applicable alternative has recently been developed in the
integral approach. According to the integral approach, and under the assumption that the
objective mapping is upper robust, all of the well developed scalarization techniques may
be interpreted in a more general context. Such an interpretation has implications for the
theory of vector minimization, for characterizing efficient for solutions and for algorithms

with numerically compute these solutions.
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Integral Global Minimization: Algorithms,

Implementations and Numerical Tests”

Abstract: The theoretical foundation of integral global optimization has become widely
known and well accepted [4,24,25]. However, more effort is needed to demonstrate the
effectiveness of the integral global optimization algorithms. In this work we detail the
implementation of the integral global minimization algorithms. We describe how the
integral global optimization method handles nonconvex unconstrained or box constrained,
constrained or discrete minimization problems. We illustrate the flexibility and the
efficiency of integral global optimization method by presenting the performance of
algorithms on a collection of well known test problems in global optimization literature.
We provide the software which solves these test problems and other minimization
problems. The performance of the computations demonstrates that the integral global

algorithms are not only extremely flexible and reliable but also very efficient.
1 Introduction

Let X be a topological space, f:X—R"' a function and S a subset of X. The problem

considered here is to find the infimum of f over S

c‘*:iggf(«r) (1. D
and the set of global minimizers
H*:{IGS:f(«T):C*}9 (1.2)

if H* is nonempty.

Most of the conventional optimization theory and methods are gradient-based. They
can only be applied to characterize and to find a local minimizer of an objective function.
The gradient based iterative algorithms, which are easy to implement, usually have higher
convergence rates. The gradient-based theory and methods are the main stream of the
research in optimization. However, in many applications, it is often more desirable to find
a global minimizer than to find a local one, especially when we deal with a nonconvex
optimization problem.

An integral approach of global optimization has been developed to deal with

% In collaboration with Zhuang D M. Reprinted from Journal of Global Optimization, 1995, 7:421—454.
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nonconvex minimization problems of a class of discontinuous objective functions (see [4],
[30],[31]). Integral global optimization algorithms are implemented by properly designed
Monte-Carlo techniques. In this work we describe the techniques of the implementations of
the algorithms., We also present the performance of the algorithms on a collection of well
known test problems. A companion diskette containing all the software necessary for
solving unconstrained or constrained minimization problems presented in this paper on an
MS-DOS environment is available upon the request to the authors.

The following is the organization of the paper. In Section 2, we describe briefly the
main ideas of the integral global optimization theory. Section 3 is devoted to the detailed
explanation of the implementation of integral global minimization algorithms for simple
unconstrained models. Some statistical analysis of the implementation is also presented in
Section 3. More implementation techniques are discussed in Section 4. In Section 5, we
consider constrained and discrete or mixed problems. A collection of test problems from
global optimization literature are solved by the integral global minimization algorithm in

Ssction 6.

2 Integral Global Optimization

We summarize the main ideas of the integral global minimization theory. The reader is
referred to [4],[30],[31] for details.
2.1 Optimality Conditions

Recall that a set D in a topological space X is robust iff

cl D=cl int D. 2. D
A function f:X—>R" is upper robust over S iff the set
F.={x€S.: f(x)<c} (2.2)

is robust for each real number ¢. Upper robustness of a function generalizes the concepte
of continuity of a function. Based on such a generalization, a unified approach to
continuous, discrete and mixed minimization problems, integral global optimization, is
established.

For the problem (1. 1) under the assumptions that f is lower semicontinuous and
upper robust; (X,0Q, ) is a Qmeasure space (the measure p have a property that the
measure of a nonempty open set is positive) ; SC X is robust and there is a real number &
such that {x€ S f(x)<{b} is compact, the following statements are equivalent:

1. A point x* € S is a global minimizer and ¢* = f (2" ) is the corresponding global
minimum value;

2. M(f,c* ;S)=c" (mean value condition) ;

3. Vi(f,¢*3S)=0 (modified variance condition),

where
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e 1 |
M= gy | o @ (2.3)

H.NS
and
Q) — 1 J Y
Vilfse; S CHAS) H[(f(.r) )du (2.4)
are the mean value and modi fied variance, respectively, of f over its level set
He={x: f(x)<c). (2.5

2.2 The Algorithm

Step 1: Take ¢, >>¢* and e>0; k.=0;

Step 2: i1 : =M1 3S) 50 : =V ([ S) s Ht NS = {2 € S: f(o) < 15
Step 3:  If v,o ¢ then k:=k+1; go to Step 2;

Step4: ¢ <c; H <H,  (S; Stop.

If we take e=0, then we obtain two monotone sequences:

Ce+1

CO>C1>'">Cb>c}:vl>"° (2.6)

and
H, NSDH, NSD-+DH, NSDH,, NSO 2.1

Let
¢ =lime, and H'=0H,NS,. (2.8)

then ¢* is the global minimum value of f over S and H* is the set of global minimizers.
From the above algorithm, we realize that the integral method for finding global
minimizers requires the computation of a sequence of mean valuse and modified variances,
and a sequence of level sets. Finding a mean value and modified variance are equivalent to
computing integrals of a function of several variables; the determination of a level set is, in
general, more involved. This suggests that a Monte-Carlo based technique for finding

global minimizers is appropriate. The error of integration by the Monte Carlo method is

proportional to ¢/A/t, where ¢ is the number of samples and ¢ is the variance of sample
distribution. Note that the accuracy at early steps of the algorithm is not generally
required. Since ¢* will tend to zero as the mean value goes to the global minimum value
(the modified variance condition), the Monte Carlo approximation will become more
accurate near the global minimum value even though the number ¢ of random samples is
not very large.

In next section, we will discuss the Monte Carlo implementation of the algorithme.
3 Monte-Carlo Implementation of a Simple Model

Let us first consider a simple model of a global minimization problem. Suppose that

the constraint set D is a cuboid in R",
D=A{x.:a <a'<b',i=1,*,n} (3.
and the objective function f is a lower semicontinuous and upper robust function with a
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unique global minimizer x* € D. In other words, for a decreasing sequence {c¢;} which

converges to the global minimum value ¢* , the size of the level sets satisfies;

o =p(H,, ):J-?eaf)li | x—y || >0 as k—>oco, (3.2)
We then have
¢* =minf(x)= min f(x)=minf(x), (3.3)
+€D +€H, ND +€D,

where D, is the smallest cuboid containing the level set H., N D.

Instead of computing M( f.c,; D) and V, (f,c;3 D) in the algorithm in the previous
section, we compute M( f,c,3D,) and V(f, ¢, ;D) at each iteration. The following is an
algorithm for this model:

Step 1:  Take ¢, >min,cpf(2). Let Dy=D be an initial cuboid. Set £=0.
Step 2:  Compute the mean value

I S o
«(H, Dy JH%M,\,f(l)df"

where D, be the smallest closed cuboid containing the level set H, = {x: f(x)<<c;}.

Crt1 :M(f‘vck ;D)=

Step 3:  Compute the modified variance

1 J
p(H(.k N\ D) H,, ND,

Step 4:  If v, ¢, set, k:=k+1, and go to Step 2; otherwise, go to Step 5.

Step 5: Let ¢* <c¢;+y and H* <H
At each iteration, we try to find D, instead of level set H, . where
D, ={x:ai<a'<<b,,i=1,,n},

ay=min{x;: (' ,"‘,1'i,"',1"‘)€H(.k } s

Uy :V1 (f‘yt‘k;Dk): (f(]') 7C‘k)2d/l7

’ StOp.

kA1

b =max{z;: (x" 2’y ) EH, }.
Let e=0. The above algorithm produces a sequence of level constants {c;,} and a
sequence of cuboid {D,}.

Lemma 3.1 For the foregoing simple model ,
(@ )=NDi (3.4)

where x " is the unique global minimizer of the minimization problem.

Proof. By the definition of the level set H., and D,, 2" € H,, (D, , for each /. We have

© € N (H,NDOCND,.
It follows form (3. 2) and the construction of D, , the diameter of D, approaches to 0.
The Cantor theorem "*! applies. []
Monte Carlo Implementation
The implementation of the simple model can be desctibed as follows:
1. Approximation of H, and M(f, ¢,;D):
Let £&=(&, -+, &) be an independent n-multiple random number which is uniformly

distributed on [0,1]". Let
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r=a+ ' —a) &,i=1,",n. (3.5)
Then x=(x',++,2") is uniformly distributed on D.

Take km samples and evaluate function values f(x;),j=1,2,++-,km, at these sample
points. Comparing the values of the function f at these points, we obtain a set W of
sample points corresponding to the 7 smallest function values: FV[j], j=1,2,.1¢,
ordered by their valuse, 1. e.,

FV[1]=FV[2]=-=FV[¢t]. (3.6)
The set W is called an acceptance set which can be regarded as an approximation to the
level set H. where ¢o=FV[1] is the largest value of {FC[;]}. The positive integer ¢ is
called the statistical inder. It is clear that f(x)<Ic, for all xt&W. Also, the mean value of
f over the level set H, can be approximated by the mean value of {FV[;]}:
a=M(f,co; D)~=(FV[1]+-+FV[t]D /¢ (3.7
2. Generating a new cuboid by W .
The new cuboid domain of dimension n
Di={z=(" ", 2" :ai<<2'<b},i=1,,n) (3.8)
can be generated by the following procedure. Suppoe that the random samples in W are 7, ,
oy T, Let
oo =min(z|,**+,7,) and ¢ =max(zi,7,)si=1,,n, (3.9
where ;= (7} ,***,7}), j=1,+,t. We use

ai 761. —a _66
— 00
i—

and 0'=g¢} JFG;:TO (3.10)

1

as estimators to generate ai and b} ,i=1,++,n.

3. Continuing the iterative process:

The samples are now taken in the new domain D,. Take a random sample point x=
(x'ye++,2") in Dy, where

r=al+bl—al) « €,i=1,,n. (3.1D)

Evaluate f(x). If f(x)>=FV[1], then drop this sample point; otherwise, update the sets
{FV[j]} and W such that the new {FV[j]} is made up of the ¢ best function valuse
obtained so far. The acceptance set W is updated accordingly. Repeating this procedure
until FV[1]<¢,, we obtain, new FV and W.

4. Iterative solution:

At each iteration, the smallest value FV[¢] in the set {FV[;j]} and the corresponding
point in W can be regarded as an iterative solution.

5. Convergence criterion:
The modified variance v, of {FV[j]}, which is given by

v/:t%l ) EVEj]— FVLLD, (3.12)

can be regarded as an approximation of V; (f,¢,;D,) at each iteration. If v, is less than the

given precision e, then the iterative process terminates, and the current iteration in Step 4
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would serve as and estimate of the global minimum value and the global minimizer.

4 More Techniques on Implementation

4.1 Adaptive Change of Search Sets

Consider a minimization problem

rlnelgl f (.

The adaptive change of search sets technique allows an initial choice of a computationally
manageable set S, and then during the iteration process moves on to better performing sets
S; while still holding down their “size”. The idea of this technique is to make a more
perceptive use of the information generated from previous iterations to reduce the size of
search sets.

Let ¢, be a real number and S, be an initial compact robust search set where nCH,, N
S)>0. Let

1 " .
#(H, NS ansf(‘”d/"
Then ¢, =c;,=c" =min,esf (x). Take a robust set S; S such that S, H. CS,, which
implies that S,V H., CS, N H,,.

Furthermore, we have

C1 :M(f,co 3S0) =

w(SINH H)=p(S, (VH, Y>>0, 4.D
where »(S, (VH,, )>>0 because pu(S, (V1 H, )>0. Let c,=MC(f,c;3S1).
In general, we require a set S;+; be such that
St MH, CSps k=1,2,---, (4.2)
and let ¢, =M(f,c,3S,), k=0,1,2,++. In this manner we have constructed a sequence

of robust search sets and obtain the following two sequences:

C0>Cl2'”>Ck>ck+l>'” (4. 3)
and
H(ODHQD-"DH[}?DH(HID"- (4. 4)
Denote
SL:Ifj]Sk and Gp=cl S;. (4.5)

Sometimes the structures of sets S,,2=0,1,2, -, are complicated, and a further
assumption is required;

(SM) ; #(S) =p(cl Sp).

.

Let ¢* :}}Lm ¢ and H* :gir{l H, :kDIH
Theorem 4. 1 Under the assumptions (A), (M), and (SM), the limit ¢* is the global
minimum value and H”* (\Gy is the set of corresponding global minimizers of f over Gy.

Optimality conditions of our change-of-set model can also be given. Since the search

sets are changed step by stey, the optimality conditions are described in limit forms.
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Suppose that {¢;} is a decreasing sequence which tends to ¢*, and {S;} is a sequence of
robust sets such that
SLCS and Ska Cskflv k:O,l,Z,"' (4.6)

Theorem 4.2 The following statements are equivalent ;

kt1

(1) ¢ isthe global minimum value of | over G| ;

- 1 L
G0 fim SN Js,znﬂlkf‘”dﬂ =<

(i) lim;J
o (SN H, ) SN,
A technique of reduction of the skew rate

azw%“ﬂ) 4.7
a

was proposed to reduce the amount of computation. Thus, we can adopt the following

(f(x) —c")*dp = 0.

change-of-set strategy: to move the search set in such directions so as to reduce the skew
rate.
Take three constant §,=>0, §; >0>-=>0. The skew rate ¢ is considered not too large if
|6]<<8,. In this case, the search domain need not be changed. If §>>6,, then, we use
Ciy=0-+6600—8) and {0=&+80(6—8) (4. 8)
as the estimators of the endpoint of the new search domain. Otherwise, if §<C—¢,, the
following will be used instead:
¢1=5+6:66—¢) and {0=8T86G ). (4.9
The fact remains that the skew rate is unknown because we would otherwise need to
know the global minimizers x* in advance. Suppose that & is a random variable with

probability density p(x) >0 on [a,b] and &, -+, &y, are samples of & Let I :1min

<i<N

f(&). Tt is not difficult to see that gy will tend to f(x") = min f(x) as N—> oo,

a<a<b

Moreover, if f(x) has a unique global minimizer z* on [a,b], then & —x* as N—>co,

where £\ is given by f(&%)=xy. The above discussion suggests taking

5= 268 ;(_1C+ o) (4. 10)
0

as an estimator for the skew rate §.
4.2 Multi-Solutions

The Monte Carlo implementation technique in the last section can be extended to the
case when the objective function f has multiple global minimizers., The search domain D,

at the k-th iteration can be decomposed into a union of several cuboids of dimension n:

3
D= UDj, 4.1
=
so that each smaller cuboid D} can be treated individually as in the above subsection.
Usually we assume that for each iteration £, the number r, is less than an integer m which
is given in advance.
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5 Constrained and Discreat Minimization

Constrained nonconvex minimization problems arise from broad range of applications.
General speaking, solving a constrained minimization problem is much harder than solving
an unconstrained problem. Integral global minimization technique using a discontinuous
penalty method to convert a constrained minimization problem to an unconstrained one
without any constrained qualification requirements, We outline the main ideas of the
discontinuous penalty method.

5.1 Discontinuous Penalty Method

We use the discontinuous penalty method to solve a constrained problem:

c* :meiglf(x) , (5.1
where SCX is the constrained set.

The discontinuous penalty function associated with S is defined as follows.

Definition 5.1 A function p(x) on a metric space (X,d) is a penalty function associated
with a constraint set SCX if
1. p is lower semicontinuous;
2. px)=01if x€S;
3. infp(x)>0,
€5,

where Sy={u:d (u, S)<p},>0, and d(x,S) is the distance from x to the feasible

set S defined by
d(x,S)=inf{d(x,s) :sES}.
Remark 5.1 In the above definition we do not require the continuity of p, unlike the
traditional definition [20],[7].
Remark 5.2 It is expected that the renalty increases when the distance from a point x to
the constraint set S increases. We replace the traditional property
p(2)>0, if 24 S

by condition 3.

With a penalty function p, we examine a penalized unconstrained minimization
problem associated with (5. 1)

E%i}l;l{f(I)JFaP(I)}y (5.2)

where ¢(Z>0) is a penalty parameter.
Definition 5.2 A penalty function p for the constraint set S is exact for (5. 1) if there is a

real number o, >0 such that for each a—=a, we have

min{ f(x) +ap(x)} =minf (x)=c" (5.3)
reX €S
and
{zx€X.f()taplx)=c" }={x€S.f(x)=c"}=H". (5. 4)

We now construct a class of discontinuous penalty functions for the constrained problem
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(5. 1). Let

) .( 6\)— Oy 1‘659
st o+d(z), x@S.

where § is a positive number and d(x) is a penalty-like function.
For example, for the inequality-constraint set
S:{1‘;g1-(1‘)<0,i:1,“"7} ’
we can take
d(x):‘; || max(g;(x),0) || * or d(x)=max || max(g;(x),0) || *,

where p=>0. If g;,i=1,+++,r, are continuous, then d is continuous.

(5.5

Proposition 5.1 If f is continuous, and d is upper robust on S, or f is upper robust and

d is continuous on S, then f+ap is upper robust on S for every a=>0.
Theorem 5. 15%  The discontinuous penalty function (5.5) isexact.

Remark 5.3 No constraint qualification is required for the penalty function (5. 5).

Remark 5.4 If f is robust piecewise continuous with a robust partition {S,S°}, then for

each ¢ >0 and § >0 the penalized function f (x) + aps(x, ) is a piecewise
continouous function.
A penalty algorithm is proposed as follows;
Step 1: Take ¢y >min,es f(x);6>03n:=0;5>1.0;
Hy={x: f(x)tapla)<cy};

Step 2: Calculate the mean value

L
=y JH” [f )+ anp (o) Jdpes

Step 3: Calculate the nodified variance

1 2
= JH“ FC) +anp () — )2 dpe

robust

(5.6)

If v,1=¢, then n: =n—+1 and a,11 =a, * B> and go to Step 2; otherwise, go to

Step 4;

Step4: ¢ <c,1;H" <H,  ; Stop.

Cnt1

The algorithm may stop in a finite numbers of iteration, in which case we let ¢,+; =c, and

H,.,=H,, k=1,2,+
Applying the above algorithm with e=0, we obtain a decreasing sequence
CLZ20y 220 220, 20 =0
and a sequence of sets
H DH,D--DOH,DH, 1 D--.
Theorem 5. 202 With this algorithm , we have
= =i £
and

lim H,= N H,=H".

n—co

(5.7

(5.8)

(5.9

(5.10)
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5.2 RobustiFication of Integen and Mixed Programming

A discrete or mixed minimization problem can be robustified to be a problem with a
robust piecewise continuous function over a robust set. The following example
demonstrates the process.
Example 5.1 Consider the following combinatorial optimization problem. Let

7t ={z=(2',:+,2") :2' is a nonnegative integer, i=1,+*,n},
S be a finite subset of Z% and f:S—R"' a function defined on S. Let f(2)=f(z",+,2").
The problem is to find the minimum value of f over S;
c* :r~n€1£1 S
and the set of minima
H"={z€8S.f(x)=c"}.

In this case, H* is nonempty.

We now consider this problem in the space R”. The set S is not robust in this space.
We define

D={x=(", 2 ER":([2'+0.5],,[2"+0.5]) ES}
and
F(x)=f([2'+0.5],,[2"+0.5]),

where [a] denotes the integer part of the real number a. The set D defined above is a
union of 7~dimensional cubes, which are robust in R”. For each real number ¢, the set
{x:F(x)<c} is also a union of cubes (or the empty set). Thus, D is a robust set and F is

an upper robust function in R”. Let 2" be a global minimizer of F over D, 1. e.,

F(x*)=minF (2).

x€D
Then x* €int D (or one can find a point x; in the same cube with 2" such that x, €

int D), Therefore, we obtain a robustification of this combinatorial optimization problem.

6 Numerical Tests

The performance of a global minimization algorithm can only be ascertained by numerical
computations on a variety of test problems. There are a lot of test problems for global
minimization available in the literature. We select some here and classify them as follows:

(A) Unconstrained or box-constrained minimization,

(C) Constrained minimization.

(D) Discrete minimization, including integer and mixed programming.

The problems selected here represent some well known test problems in global
optimization community. The selection range from problems with two variables to
problems with a hundred variables, from problems of differentiable objective functions to
the problems of a objective functinon with infinite number of discontinuities; from

problems with box constraints to problems with equality and inequality constraints. We
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also select several discrete or mixed minimization problems. We hope that the selection is
general enough to warrant our claim that the integral global optimization technique is
powerful, flexible and efficient, and it is competitive with any other existing global
optimization algorithms.

All the test problems selected here are solved by packages INTGLOU and INTGLOC,
which are the implementations of the algorithms of integral global minimization. The
softwares are compiled by MS-FORTRAN 5. 1 and are running on MS-DOS environment,
These test problems can be solved within a few seconds to a few minutes on an IBM 386/
25 personal computer with a math coprocessor.

6.1 Unconstrained or Box Constrained Problems

A set of unconstrained or box constrained test problems are presented in this

subsection. We describe each test problem by the following.

1. Objective function.

2. Search domain (boxed constraints).

3. Solution, including the minimum objective function value computed by the integral
global minimization algorithm, the corresponing minimizers.

4. Statistics: we list the number iterations, the number of function evaluations and current
value of V.

The sources of the problems are also provided. Note that the integral global
minimization algorithms do not use any start points.

The stopping criterion employed for all the unconstrained problems selected here is
the modified variance V,=1X10"%,

Problem A, 1t
Objective Function;:
F()=[14(x;Fa,+1)% « (19— 14da, +32F —14x, +6x 22 T325) ]
X[30+(2x; —3x2)2 (18322, +122% +482, — 36212, +2725) 1.
Search Domain
D={(x1,x:) ER?: —2. 0<x;<2.0,i=1,2}.

Solution:
2 =(0.0,—1.0) f*=3.0.
Statistics:

1. number of iterations: 19,
2. number of function evaluations: 1051,
3. current value of modified variance V;:9. 233 X102,
Problem A, 2!
Objective Function:
() =122 —6. 3at +af +6a;, (2 —21).

Search Domain:

D={(x,2,) €ER?:—10. 0<x;<10. 0,:=1,2}.
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Solution:
2" =0(0.0,0.0) f*=2.,2497375X10 ",
Statistics:
1. number of iterations: 17,
2. number of function evaluations: 951,
3. current value of modified variance V ;1. 1543449 <1072,
Remark 6.1 The objective function is so-called three-hump camel back function.
Problem A, 3

Objective Function;

f()=4x1—2. 12t Jr%r? + o x, =45 48,

Search Domain;:
D={(z1,2,) ER?, —2.5<x;<<2.5,i=1,2}.

Solution:

x* =1(0.08984133,—0. 71267531)and(—0. 08993914,0. 7126753), f* =—1.031628.
Statistics:
1. number of iterations; 18,
2. number of function evaluations: 931,
3. current value of modified variance V. 8. 216884 X102,
Remark 6.2 The objective function is so-called the six hump camle back function. It has
six minimizers, two maximizers and seven saddle points.
Problem A, 4*
Objective Function:

() =(1—2x,+c¢ sin) (dray) —x,)*+ (2, —0. 5sin(2xx;))?,

where ¢ is a parameter which can be varied to modify the number of extraneous sigularities
in the function. Here, we take ¢=0. 05, 0.2, and 0. 5.

Search Domain:

D={(x),2:) € R*:0. 0<Cx;<10. 0, —10. 0<"x,<0. 0}.
Solution: The global minimum value of this problem is 0. 0 for each ¢. The following

table presents the numerical approximation of the global minimum value and the

minimizers.
c=0.05 c=0.2 ¢c=0.5
X1 1. 85130447 0. 98250584 1. 89738692
Z —0. 40208593 —0. 05484892 —0. 30049412
f 1. 2122348 X107% « 107 1. 7292806 « 10~ % 7.7683103 « 10 %
Statistics;

1. number of iterations: 22,

2. number of function evaluations: 1660,
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3. current value of modified variance V;:1. 04116761072,
Problem A, 5
Objective Function;
flo)= (sz%xwaixl *6>2+1O<1—i>cos a1+ 10.
Y T 8w
Search Donain;:
D={(x1,29) € R?:—5. 0<{x,;=<10. 0, 0. 0<{x,<15. 0}.
Solution: The integral global algorithm find three global minimizers in this region:
(—3.14159291,12. 275030), (3. 141579,2. 274958), (9. 42798,2. 474921)
with the global minimum value
£ =0. 39788736.
Statistics:
1. number of iterations: 23,
2. number of function evaluations: 1267,
3. current value of modified variance V;; 1. 0X107%',

Problem A, 6
Objective Function: Shekel’s family (SQRIN)

m

_ 1
fo= 2 (r—a)" (x—a) +c’

i=1

where the parameters a; and ¢; are given by the following table:

1 a; G
1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.02 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

Search Domain;:
D={(x1,,x) ER*:0. 0<x;<<10.0, i=1,--,4}.
Solutions:
Shekel 5:
x" =(4.00003727,4.00013375,4. 00003730,4. 00013346), f*=—10.153200.
Shekel 7:



x" =(4.00057280,4. 00069020, 3. 99948997, 3. 99960620), f* =—10.402941.
Shekel 10;
x" =(4.00074671,4. 00059326, 3. 99966290, 3. 99950981), f* =—10.536410.
Statistics : Shekel 5
1. number of iterations: 41,
2. number of function evaluations: 2453,
3. current value of modified variance V;; 1. 7979744 <10 %',
Shekel 7
1. number of iterations: 42,
2. number of function evaluations: 3028,
3. current value of modified variance V;; 1. 0X10" %,
Shekel 10
1. number of iterations: 41,
2. number of function evaluations: 2735,
3. current value of modified variance V;; 1. 0X10 %,
Problem A, 7t

Objective Function;

fGy==2Jc exp(— Dja;(x;— p;)*)
=1 j=1
where x=(x,,***,x,), and the parameters are given in the following tables:

Hartm 3: m=4, n=3

i ai ¢ bii

1 3.0 10.0 30.0 1.0 0. 3689 0. 1170 0. 2673
2 0.1 10. 0 35.0 1.2 0. 4699 0. 4387 0. 7470
3 3.0 10. 0 30.0 3.0 0. 1091 0. 8732 0. 5547
4 0.1 10.0 35.0 3.2 0. 03815 0. 5743 0. 8828

Hartm 6: m=4, n==6

i aij Ci

1 10. 0 3.0 17.0 3.5 1.7 8.0 1.0
2 0. 05 10. 0 17.0 0.1 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0. 05 10.0 0.1 14.0 3.2
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i bij
1 0.1312 0. 1696 0. 5569 0.0124 0. 8283 0. 5886
2 0. 2329 0.4135 0. 8307 0. 3736 0. 1004 0. 9991
3 0. 2348 0. 1415 0. 3522 0. 2883 0. 3047 0. 6650
4 0. 4047 0. 8828 0. 8732 0. 5743 0. 1091 0. 0381

Solutions:

Hartm 3

x" =1(0.11461478,0. 55564892,0. 85254688), f* =—23.8627821.
Hartm 6

x*=1(0.20169,0. 15001,0. 47687,0. 27533,0. 31165,0. 65703), f*=—3.322368.
Statistics:
Hartm 3
1. number of iterations: 23,
2. number of function evaluations: 1150,
3. current value of modified variance V;; 1. 0 X107,
Hartm 6
1. number of iterations: 49,
2. number of function evaluations: 3345,
3. current value of modified variance V;; 1. 0X107%,
Problem A, 8-
Objective Function:
U b} + bz, 2
fla)= Z, (@0 e e )

where a; and b,,i=1,+++,11 are given as follows:

[ a; 170;
1 0. 1957 0. 25
2 0. 1947 0.5
3 0.1735 1
4 0. 1600 2
5 0. 0844 4
6 0. 0627 6
7 0. 0456 8
8 0.0342 10
9 0.0323 12
10 0. 0235 14
11 0. 0246 16




Search Domain:
D={(z;,,a) ER":—0. 32, <0. 3,i=1,-,4}

Solution:

a7 =10(0.19282941, 0. 19095407, 0.12315108, 0. 13581648), f* =3.0748802X10*.
Statistics:
1. number of iterations: 54,
2. number of function evaluations: 7592,
3. current value of modified variance V;; 1. 0 X107,
Problem A, 9"

Objective Function:

81
for= DR
i=1

where
2 . 2

IR e I

z;=4.0+0.1G+1),i=1,2,---,81,

_ 2 — 2
y;=130. 89exp{—[M] }+52. 6exp{—[w] },izl,z,---,81.

and

1.2 0. 97
Search Domain:
1202, <150, 302, <70,4<2,<10,
5, <<15,0. 5 <4, 0. 2< <2,

Solution:
x1=130.89,2,=52.59,x2;=6.73,2,=9. 342 ,25:=1. 2,24=0. 97,
f*=1.6383836x10 ',

Statistics:

1. number of iterations: 77;

2. number of function evaluations: 5187;

3. current value of modified variance V;; 1. 0 X107,

We can consider a minimization of a function

81
fr= > |R |
i=1
or
f(x)= max |R;|
i=1,-,81

with the same search domain
Problem A. 100'*

8 8 8
f(x) =— (2;@))( (Exf >+ (213)2
i=1 =1 =1
Search Domain:
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D:{(l‘l 7"'718)6 RS :O- Ogl'igl- O’ izl,"‘,S}_
Problem A. 11+

Objective Function:

f(x) :%{sin2 (rxy) + i (x; — 1. 0O2[14+10. 0sin® (rxi) ]+ (&, — 1. 0%},
i=1

Search Domain;

D={(x;,*,x,)ER": —10.0<x;<<10.0, i=1,+,n).
Solution:

" =(,-,1) f*=0.
The following tableau gives the number of iterations N;, the amount of function evaluation
N/, the function value f* and the current value of modified variance V; corresponding the

cases of number of variables n=5,10,20,50, respectively.

The stopping criterion for this problem is V<1077,

n 5 10 20 50 100

N; 52 93 172 380 863

Ny 2765 5276 12376 49359 128483
I 1.076 + 1071 6.43 « 10 1.65+ 10 3.41 10 % 2.90 « 10 *
Vi 4,12« 107% 8.77+107% 7.07 « 107% 8.18 « 107% 9.71 « 10 %

Problem A, 120'%

Objective Function:
g =sin* Bra)+ 27 (r; — 1. 0)2[ 1. 0+ sin’ (3maiy) ]
+ (2, — 1. 0’[1. 0+ sin* (2ma, ) ]+
fx) = gla) +[g(—nx)]’

where [ y] denote the integer part of y. Thus, the objective function f is discontinuous.
Search Domain:

D={(x; >, 2,)ER": —10. 0 x;<,10.0, i=1,+,n}.
Solution:

x°=(1.0,-,1.0), f*=0.

The following tableau gives the number of iterations N;, the amount of function
evaluation N, the minimum function value f* and the current valuse of the modified
variance V| corresponding cases of number of variables n=5,10,20,50, respectively. The

stopping criterion for this problem is V<1077,

n 5 10 20 50

N; 56 101 186 412

Ny 3208 5996 12549 54734

A 5.838578 « 107" 6. 414436 « 107" 1. 180750 « 10 ** 2.285634 + 107"
Vi 4, 986358 + 1074 5. 83548 « 107 % 5.241681 « 107 8.942764 « 107
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Problem A. 13
Objective Function;
2,71 ‘ X ‘

f(f)_Jl.O-f— n

n
Zi:] | i |

0, x = 0.

—+ sgn [sin

Search Domain;
D={(x1,yx,): —10.0<x;<<1.0, i=1,.n}.
Solution;
x*=(0,-,0), f*=0.
Remark 6. 3 The function has an infinite number of discontinuous hypersurfaces. Its
unique global minimizer is at the origin where the objective function has a discontinuity of

“the second kind”. Since the restriction of the variable value that sine function can take,
the function f takes the value zero when 2,,-1,1 | ;| /n<<10°. The following tableau

gives the data of this text problem.,

n 5 10 20 50
N; 77 128 226 711
Ny 5203 10223 25527 105747

6.2 Constrained Minimization Problems

We present a set constrained problems in this subsection. We describe each test
problem by the following format:
1. Obiective function.
2. Constraints, including constrain functions and boxed constraints.
3. Solution, the minimum objective function value computed by the integral global

minimization algorithm, the corresponding minimizers.

4, Statistics, including the number of iterations, the number of function evaluations and
the current value of modified variance V.
The discontinuous penalty method presented in Section 5 is used to solve all the
constrained problems in this subsection.

Unless otherwise stated explicitly, the stopping criterion used in the programs for
solving all numerical tests in this subsection is 1. 0 X107,
Problem C, 1t
Objective Function;

F()=100C(x, — )+ A —a)%.
Constraints;
hx)=at—x,+x,—0.9=0, —1.0<a;, 2»<l.0.
Solution:
" =1(0.965932, 0.932907) and f* =0.001162
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with
h(x*)=2.109617 « 1071,
The penalty function
p()=alh(x)|"?, a=1000
is used to solve this minimization problem.
Statistics:
1. number of iterations: 31;
2. number of function evaluations: 2829;
3. current value of modified variance V;: 4. 05785X10 ¢,
Problem C, 2%
Objective Function:

f()=—x,—x, T as.

Constraints;

sin(4dnx;) —2sin’ (2nas ) —2sin? 2ras ) =0, — 5 ay » 12O,
Solution;

x"=(4.75, 5.0, —5.0), and f* =—14.75.
Statistics:

1. number of iterations: 49;
2. number of function evaluations: 4440;
3. current value of modified variance V; ;0.
Problem C., 3%
Objective Function:
f()=—2at—x10,—225.

Constraints;

x1 a1, 1. 52, tx,<1. 4,

0. 0<x,<10. 0, —10. 0<1,<C0. 0.
Solution:

" =(.6, —100, f*=—19.52.
Statistics:
1. number of iterations: 43;
2. number of function evalustions: 3914;
3. current value of modified variance V. 4. 94434 X 10 1°,
Remark 6.4 This is a counterexample to Ritter’s method [22]. The global minimizer will
not be found by Ritter’s method unless one happens to begin with (7. 6, —10) as the first
local optimum,
Problem C., 4%
Objective Functilon:

flo)y=—zt—xi—(x;— D7

Constraints:
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1 ta,— 250, —a, +x,— 230, 122, +5x, +122,<22. 8,
122, +122, +72,<17. 1, — 62, 20 +23<1. 9,
—10. 0=<{x;<<10. 0, 0. 0L, <<10. 0, 10. 0<Ca5<<10. 0.
Solution:
x"=(3.42, 0, —3.42), f*=—31.2328.
Statistics:
1. number of iterations: 74;
2. number of function evaluations 8876;
3. current value of modified variance V. 4. 4847610 ',
Remark 6.5 This is a counterexample to Tuy’s method [ 26 ]. Alocal optimum occurs at
the vertex x°=1(0,0,0) with f(2°)=—1; Tuy’s method will produces an infinite cycling
and the process does not terminate,
Problem C. 50
Objective Function:
fl)=—(x;—D?—25— (x5 —1)%.
Constraints;
1 ta, s <l, —a Ty <<—1,
122, +5x, +122,<34. 8, 122, + 122, +72,<17. 1,
—6x st <<—4. 1, 0. 0<xy s 22 s 155. 0.
Solution:
x*={,0,0, ff=—1
Statistics:
1. number of iterations: 37;
2. number of function evaluations: 2043;
3. current value of modified variance V,; 7. 66012X107'6,
Problem C. 6/
Objective Function:
f()=(xt—x, ) —(x; Fab—x5)7%
Constraints;
(ry—a;—1.2) "+, <4. 4, 2, tx,+2,<6.5,
1.4<<a<5. 0, 1. 6<<a,<C5. 0, 1, 83 <<5. 0.
Solution:
x*=(1.4, 1.809502, 1.8), [ =4.576804.
Statistics:
1. number of iterations: 39;
2. number of function evaluations; 2111;
3. current value of modified variance V;: 8. 174401071,
Problem C, 7"

Objective Function;
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f(o)=f1(x)+ fo(x3) s
where
2825 , 0<a»,< 100,
30y » 0=y <2300, s
fHila)= Sfo(xy) =229y, 100<L2,<200,
3lay, 300<a;<400,
305, 2002, <1000,

Constraints:
2

) :300—%@5(1. 48577—x6)+0'139§)478§§%os<1. 47588),
XXy . 0. 9079873

=131 O78c05(1. 48477+16)+7131. 078 cos(1.47588),
o XXy . ) 0. 907984 .

T5="131. 078 O7851n(1. 48477+16)+7131. 078 sin(1, 47588) ,

XXy _ 0.90798 , . _
200 131, O7851n(1. 48477 ‘r6)+7131. O78.rgs1n(1. 47588)=0,

0 <<400, 0<Ca»<<1000, 340<x3<<420,

340y <420, —1000<C25<,1000, 0<Ca3<<0. 5236.
Solution:

x" =1(202.99666, 100. 0, 383.07092, 419. 99999, —10. 90767, 0.073148),

S =8889. 8999.
Statistics:
1. number of iterations: 56;
2. number of function evaluations: 5893;
3. current value of modified variance V;: 6. 18995X10 !¢,
Remark 6.6 The objective of this test problem is a discontinuous robust function with
four nonlinear equality constraints. We take x; and x4 as independent variables. Then x;,
x5 x4 and x5 are functions of x5 and 4. Thus, in addition to the box constraints on these
independent variables, there are 8 more nonlinear inequality constraints. The
discontinuous penalty function is applied to these inequality constraints.
Problem C. 87"
Objective Function:

f(x)=0. 020422, (x; t22 T25)+0. 01872525 (2, +1. 5725 +24)

—+0. 06072, 2422 Cry Fa0 +203) 0. 043725203202 (ey +1. 572, +240)
subject to the inequality constraints:
x;=0, i=1,--,6,
g1 () =x 12073570, 75205 —2070=0,
22 (2)=1—0. 000622, x42% (), + a2 +25)
—0. 0058z, x3x% (1 +1. 572, +24) =0

The problem was solved by Ballard, Jelink and Schinzinger [ 3]. The minimization
process starts with a feasible point:

x1=>5.54, xs=4.4, x3=12.02, x,=11. 82, 25;=0. 702, x43=0. 852
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and leads to a solution

x1=>5.3336, x,=4. 6585, x3=10.4365, x,=12. 0840, x5 =0. 7525, x;=0. 8781.
The objective function value at the solution is f* = 135. 1155. Price [ 21] resolved the
problem with the controlled random search method and suggested that it be used as a test
problem of constrained global minimization.,

The following solution is obtained by the integral global minimization with the
discontinuous penalty technique in a large search region D:

D={x€ R":0.0<<x,;<<20.0, i=1,-+,6}.

x1="5.41411876, x;=4. 71604587, x3=10. 34384982,

xy=11. 88555219, x5;=0. 74910661, xs=0. 88027699,
and

f=135.09767268.
Statistics:
1. number of iterations: 599;
2. number of function evaluations: 87475;
3. current value of modified variance V;: 3. 03331016,
Remark 6.7 The solution 2~ is very closed to the boundary of constraints:

g1 (x")=9.9685+10%, and y, (x")=1.5982 + 10 '°.
Problem C. 9/
Objective Function:

fF(a)=0. 78542, 25(3. 333325 +14. 933423 —43. 0934) — 1. 5080, (x +a%)

+7.4770(xi F+23) +0. 7854 (a2t a5 2%).
Constraints;
1525 =27, xya8222=397.5,

roxsae/xi==1.93, xpasat/xi>>1.93,

2 2
10\/(745Iﬂ 116,91 « 10° 10\/(@W 1157, 5 « 10°
X

X X3 X X3
= <1100, 3
6 X7

o340, 5<x/x,<12, 1.5x¢+1. 9<x,,
11, +1.9<as, 2. 6 <<3.6, 0. 7<<x,<<0.7,
172328, 7.3, <<8.3, 7.3 ;8. 3,
2. 9<xs<3. 9, 5. 0<Ca;<<5. 5.

<850,

Solution:
x"=(3.5,0.7,17.0, 7.30, 7.72, 3.35, 5.29), [ =2994.42.
Statistics
1. number of iterations: 128;
2. number of function evaluations: 8839;
3. current value of modified variance V;; 2. 2227310716,
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Problem C, 10t
Objective Function;
f(x)=1.104712% 2, +0. 04811 x50, (14+2,).

Constraints:

13600 20ty 20 9 6
20 (1) = J + +¢-/107>o,
’ 10° N B S

5. 04

1"413

4,013 E
g (=150 VE ( E>>o.006,

g;g(x):S— >07

2. 1952

I4I3

g5:O. 25 >O,

H1 =6000/(1. 414x125) s E=2323107/4, G=4x;2310°,
fg:3000(14+.r2/2) 2+<I1+1’3 2/]7

J O 7O7Z’1I2<6+(rl+213> )9

0. 125<<x,<<20. 0, 0. 0<<x»=<<20. 0, 0. 0<Cx3<<20.0, 0. 0<Cx,<20.0.

Solution;

x*=1(0.15321, 16. 93611, 3.00768, 0.32293), and f* =1. 88446227.
Statistics:
1. number of iterations: 159;
2. number of function evaluations: 23202;
3. current value of modified variance V;: 5. 8142010 ',
Remark 6. 8 A solution was reported in [ 23] with f* =2, 38116. Here, we find a
different feasible solution with significantly better objective function value.
6.3 Discrete and Mixed Minimization Problems

Robustification technique enables us to treat discrete and mixed programming
problems as continuous ones. In this subsection, we present several discrete or mixed test
problems. The integral global approach with discontinuous penalty method is applied to
solve these problems. The format of the descriptions of the problems is the same as the
previous subsection.
Problem D, 1t

Objective Function: Source: [ 6] with discrete constraints.

Flo)=[14(x,+a,+1?% « (19— 14z, +32% —14a, +6x,2, +32,) | X

[30+ (22 —3x2)%(18—32x, + 1227 + 482, — 36212, +2725) 1.

Constraints:

D={(xy,23):21,2,=0. 0017, i=—2000, —1999, -+, 1999, 2000},
Solution:

£ =(0.000, —1.000), f*=3.0.



Statistics;
1. number of iterations: 9;
2. number of function evaluations: 291;
3. current value of modified variance V;: 0.
Problem D, 2t
Objective Function:
S
i—1 Li
where n=3, a;=33. 7539, a,=1. 4430 and a;=1. 3885.

Constraint
n
Z-Z‘[ - Ma 1<11 <Nz” Xy IS integer’ 1= 1’ Tt M
i=1

where N; =16, N,=20, N;=28, and M=24.
Solution:

x*=(16, 4, 4) and f* =2. 8150.
Statistics:
1. number of iterations: 5;
2. number of function evaluations: 171;
3. current value of modified variance V,: 0.
Problem D, 3t
Objective Function:

fl)=(x;—3)*+ (2, —2)2+ (a5 +4)°.

Constraints;
; at x:
g1 =xFai+23°—10=0.0, g, :4.—1166—352+3' 9321+3>o. 0,
g3=—dxtai+a3*°+122=0.0, 23>0, 1, and x; are integers.
Solution:
x"=(3,3,0.0) and f*=17.0.
Statistics:

1. number of iterations: 23;
2. number of function evaluations: 1228;
3. current value of modified variance V: 2. 48615X107'°,
Remark 6.9 It was reported in [ 16 ] that the problem has minimizer +* = (4,3,0. 598)
with the function value f* =23. 141604. In Loh’s dissertation [ 15], the constraints have
been changed to: g,==0.1, i=1,2,3, where g,=x, +2x,+23°—1.0 and g,=g,;,» i1=2,3.
Let us name this new problem as D3A. A solution of D3A given in [15] was x* = (4,3,
0. 631) with the function value f* =23, 45.

The solution of D3A obtained by the integral global minimization algorithm is x* =
(4,3,0. 1) with the function value f* =18. 81. The following is the related statistics:
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Statistics of D3A;
1. number of iterations: 29;
2. number of function evaluations: 1891;
3. current value of modified variance V;: 5. 95563 X 10 1°,
Problem D, 4t
Objective Function:

f(x)=—x3—x,—x5.
Constraints:

20x; +30x, +a5 + 22, + 22180, 30x; +20x, + 225 + 2, +22:<150,
—60x, T30, — 752, +2,<<0, 0, <1,:=1,2,
0<a; <75, i=3,4,5, x, integer i=1,+*+,5,

Solution:

x*=(1,1,24,52,00, [f*=—76.
Statistics:
1. number of iterations: 14;
2. number of function evaluations: 1486;
3. current value of modified variance V,: 0.
Remark 6. 10 There are at least six alternative global minimizers. After 1131 function
evaluations, the global minimizer is found. The variance does not equal zero until 1486
function evaluations.
Problem D, 5
Objective Function:

f(x)=x1x005 T a1 0425 T x0200006 T 2607208 T 2220577
Constraints:

221 T 2x,+8xs=12, 11ay +7x, +13x=41, 62>+ 92,26 +5x7;=60,

3xy 525 +T7x=42, 62,27 +923 +525>=53,

dxsx; a5 >13, 22 +da, +7x, +3x5 +2,<<69,

x5 62505 T4x3 20,47, 122, +8xsxs 2250673,

x3 4z +2x6+92,<31, <7, i=1,3,4,6,8,

<15, :=2,5,7, z; integer i=1,+,8.
Solution:

x"=(5,4,1,1,6,3,2,00, f*=110.
Remark 6. 11 This is the most difficult one among the five test problems presented in
[5]. After 919 function evaluations, the global minimizer is found. The variance does not
equal to zero until 1370 function evaluations.
Statistics:
1. number of iterations; 15;
2. number of function evaluations: 1370;

3. current value of modified variance V. 0.
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Problem D, 6''"-
Objective Function;
f(x)=5.3578547x5+0. 8356892, x5 +37. 2932392, —40792. 141.
Constraints:
0<{85. 334407+0. 0056858x,a5 +0. 00062622, 2, —0. 0022053252592,
90<C80. 51249-+0. 00713172525 +0. 00299552, 2, +0. 002181325110,
20<09. 300961-+0. 00470261325 +0. 00125472, 23 +0. 0019085232, <25,
78 <102, 23<Ca,<<45, x, ., are integers, 27<x;<45, i=3,4,5.
Solution:
x*=(78,33,29.99525603,45. 0,36. 77581291), f*=—30665.53867176.
Statistics:;
1. number of iterations: 98;
2. number of function evaluations: 11849;
3. current value of modified variance V. 5. 5543010 ',

Remark 6. 12 1In [5], the problem was restated as a mixed programming problem.

7 Conclusions

The fundamental theory of integral global optimization is based on robust analysis and
Q measure theory. The theory provides a set of necessary and sufficient conditions to
characterize global minimizers and suggests an intuitive approach to locate the global
minimizers. The theory is mathematically sound and is well received in mathematics
community.

The detailed accounts of the implementation of integral global approach for solving
unconstrained minimization problems is presented. The discontinuous penalty method and
robustification technique provide an unified approach to solve unconstrained problems,
constrained problems, continuous, discrete or mixed problems. Most remarkably, the
discontinuous penalty method is exact, and there is no constrained qualification
requirements for the method. The collection of numerical tests presented here illustrate
the effectiveness of this unified approach.

There are many different algorithms available to solve unconstrained, constrained or
discrete, mixed optimization problems. Some of them, based on gradient methods or
others, may have better performance than the integral approach for some problems with
special structures. However, to the best of our knowledge, there is no method which is
both flexible enough to handle discontinuous problems or discrete problems in a unified
fashion, and very efficient. We are confident that the integral global optimization is a

valuable addition to over growing global optimization techniques.
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Robust Analysis and Global Optimization*

Abstract; In this paper, the properties of robust sets and robust functions are studied.
Also, we study minimization of a robust function over a robust set and extend the
optimality conditions of [ 3] and the algorithm of [4,5] to our case. The algorithm is

shown to be effective.
1 Introduction

Let X be a Hausdorff toplogical space, S be a compact subset of X, and f be a lower

semi-continuous (l.s.c.) function defined on S. Then, the minimum of f over S exists:

szei?f(.r) (1. D
and the set of minima
H={z| f(x)=¢,2€ S} (1.2)

is nonempty.

Until now, the problem of finding a solution of (1. 1) under such loose conditions has
rarely been considered, although such a solution is not without value. The objective
function may be discontinuous, the constrained set may be disconnected, but many
problems from natural and social sciences, as well as from industrial applications, do
require minimizing a discontinuous function. On the other hand, problems in application
may require the constrained set S to be disconnected by physical forbiddance. If we only
consider the problem of finding a local minimum, it would not concern us whether S is
connected or not.

However, we still have to place certain restrictions on the set S and the function f.
This is the topic that robust analysis studies.

This work is an extension of earlier work''*?), We first study the properties of robust
sets and robust functions. Then, the minimization problem of a robust function over a
robust compact set is considered using the integral approach. Optimality conditions in [ 3]
and the algorithm in [4] and [ 5] are extended to this case. Numerical tests and industrial

applications'® show that the algorithm is effective.

% Reprinted from Annals of Operations Research. 1990, 24.273—286.
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2 Robust Sets and Robust Points

We begin with definitions of a robust set and a robust point. Let X be a topological
space and D be a subset of X,
Definition 2,1 A set D is said to be robust iff
cl D=cl (int D) (2.D
Definition 2.2 A point x € cl D is said to be robust to set D iff for each neighborhood
N(z) of x
N(x)int DF#J. (2.2)

An open set is robust. The concept of robustness is a generalization of that of
openness. A closed set may be nonrobust. For instance, a point x is closed in R but it is
nonrobust. Note that the concept of robustness is closely related to the given topology. A
subset of integers is nonrobust on R', but is robust with respect to discrete topology on
the set of integers.

Remark 2.1 We define only the robustness of the points in ¢l D because if x&cl D, then
there is a neighborhood N(x) of x such that N(x) N cl D=, i.e. (2.2) does not hold.
Thus, the points which are not contained in cl D are always nonrobust.

The following theorem shows that each point of a robust set is robust to this set and

vice versa.

Theorem 2.1 A set D is robust if and only if each point of D is robust to D.

Proof. Suppose there is a point x € D which is nonrobust to D, then there exists a
neighborhood N(&) of x such that N(x)[\int D=. This implies x€ cl (int D). Thus,
x€cl D\cl (int D)= . D is then nonrobust.

Conversely, suppose each point of D is robust to D but, by contraries, D is
nonrobust. That is, A=cl D\cl (int D)5~ . Take a point xE€ A. Since xEcl (int D), we
can find a neighborhood N(x) of x such that N(x) ()int D=. Since x&€cl D, N(x) )
D= . Take a point ;1 € N(x) (1D and take a neighborhood N; (x;) of x; such that
N, (x;)CN(x). Then, N, (x;) Nint D=¢. This means that x;, is nonrobust to D. We
have a contradiction.

Suppose a point x is robust to both D and G, then point x may be nonrobust to their
intersection D(G. For instance, let D=[0,1] and G=[0,1/2]1U[1,2]. They are robust
on R'. The point x=1€ D(G=[0,1/2]1U{1} is nonrobust to DG.

Theorem 2.2 Suppose x is robust to D and x € int D, then x is robust to D(\int G. Point
x is then robust to D(G.
Proof. For each neighborhood N, () CN(x) \int G, we have N, (x))int D7~ because
x is robust to D. Now we have
N(x)Nint (DN int G)=N(x) Nint Gint DDON, (x) int D#J.
Therefore, x is robust to D()int G.
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With the help of Theorem 2. 1 and Theorem 2. 2, we can easily prove the following
theorems.
Theorem 2.3 The union of robust sets is robust.
Theorem 2.4 The intersection of a robust set and an open set is robust.
The following statements hold. One can prove them by using the above theorems:
(1) if D is robust, then cl D is also robust;
(2) a point x is robust to D if and only if x& cl(int D)
(3) if D is robust and F is closed, then D\F is robust;
(4) a set D is robust if and only if bd(D)=bd(int D), where bd(D)=cl D\int D, the
boundary of D.

3 Robust Functions

Let f: X—> R be a real valued function defined on a topoligical space X. In this
section, we will consider a class of discontinuous functions related to the concepts of
robust sets and points. A function f is said to be upper remi-continuous (u.s.c. ) iff the set

F.={x| f(x)<c} 3.D
is open for each real number. f is said to be u.s.c. at a point x, iff 2, € F, implies x, € int(F,).
We generalize these concepts to robust functions.

Definition 3.1 A function f is said to be robust iff the set F.={x| f(x)<c} is robust for
each real number c.

Definition 3.2 A function f is said to be robust at a point x, iff 2, € F, implies x, is
robust to F..

An u.s.c. function is robust, so it is a continuous function. A monotone function f
on R' is robust. Indeed, suppose f is increasing, then F.=(—co,q), where a= f(¢);
the point ¢ may or may not be contained in F.. In both cases, F.is robust. If fis u.s.c. at
a point x,, then f is also robust at point xy.

The following theorem is expected.

Theorem 3.1 A function f is robust if and only if it is robust at each point.

The sum of two robust functions may be nonrobust. For example, let

0, x<<0,

1, 2<<0,

fi1(x) 0, >0, and f;(x) {17 >0, (3.2)
then f} and f; are robust. However, their sum
1, 0,
fo=fi (I)Jrfz(x):{ e (3.3)
2, x=0,

is nonrobust at x=0.
Theorem 3.2  Suppose that | is robust at xo and g is u.s.c. at xo ( for division, g is
supposed to be l.s.c.at x,). Then, the following functions are robust at x :
(D af (=03
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(2) f+tg;
(3 feg (glag)>0);
W f/g (gla,>0).

It is easy to prove the following proposition using theorem 3. 1;

Proposition 3.1 Supposethat [ is robust and g is u.s.c. (for division, g is supposed to be
l.s.c.)s then the following functions are robust .

(D af (=003

(2) f+g;

(3 feg (glx)>0);

W@ f/g (glx,>0).

If f,(2) is robust at a point x, for each & A, then the function f(x)=infc,f,(x) is
also robust at point x,. The limit of a decreasing sequence of robust functions preserves
the robustness, and so on. We will not discuss the properties and structure of robust
functions in detail, which is beyond the scope of this paper. Before transferring to global
optimization, we would like to mention a proberty related to the epigraph of a function.
Recall an epigraph of a function f is defined as (see [7]):

epi (H)={(z,0) ]| flx)<c}. (3. 4)
The epigraph is a subset of the product space XX/R.
Theorem 3.3 A function [ is robust at x, if and only if each point (xy.c) Eepi( f) is
robust to the set epi () in the product space X X R with the product topology.
Therefore, a function { is robust if and only if its epigraph epi (f) is robust in the
product space X X R.

4 Relative Robustness

Return to consider the following minimization problem:
c=minf (x), 4. 1)

x€S
where we assume that

(A1) Sis a compact set in X;
(A2) f:S—R is an Ls.c. function.

To study such constrained problems, the concept of relative robustness has to be
investigated.
Definition 4. 1 An objective function f is said to be relatively robust to S at a point x, (&
clS) if 2o €F.={x| f(x)<c} implies x, is robust to F.(1S.

The following proposition gives us sufficient conditions for the relative robustness of a
function.
Proposition 4.1 If (1) fis robust at xo & int S; or (2) xy is robust to S and f is u.s.c. at
xos then [ is relatively robust to S and x,.

These conditions are sufficient. For instance, let S=[ —A,0]U[1,A], where A>1,
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11—z, x€[ —A,0],
()= 4.2
e { o, (4.2)

and
) x, xE€[—A,0],
f2<x>—{1_x, eloA. (4.3)

In both cases, x=0 is not in int S, nor is f continuous at x=0. f) is relatively robust
to S at x=0, and f; is not.

The concept of inf-robustness is introduced in [ 8] for minimization problems.
Definition 4.2 A ste S is said to be inf-robust with the minimization problem (4. 1) iff for
each ¢, > there is ¢(<l¢,) such that F.()S is a nonempty robust set.

In [ 8], we consider only the case of continuous objective functions; the definition of
inf-robust is simplified as: a set S is inf-robust iff there is a real number ¢ such that F.()S
is nonempty and robust.

If S is inf-robust, then f is relatively robust to S at each (global) minimum point.
However, for some problems the set of global minima may be empty. In this case, we can
utilize the inf-robust concept to construct an algorithm to find the infimum of f over S.
For example, let S=(0,1], A=U=1 (1/(2k+1), 1/2k], B=S\A= U=, (1/(2k,1/(2k
—1)] and

x, xEA,
f(x)=)x, x€B()(irrational numbers), 4. 4)
1, x€ B[ (rational numbers).
f is inf-robust, but the set of minimum points is empty; f is relatively robust to S at x=
0, which is in the closure of S.
In the following consideratiom, we assume:
(R) [ is relatively robust to S at a global minimum point of (4. 1).

As an example, consider the following combinatorial optimization problem.

Let Z%.={z=1(z,,**,2,) | where g, is a positive integer i=1,++,n}, S be a finite
subset of Z%, f:S—>R be a function defined on S, f(2)=f(z,+**,2,). The problem is to

find the minimum value

Z:%?f‘(z) 4.5
and the set of miniam,
H={z€ S| f(2)=c¢}. (4. 6)
For this case, H is nonempty.
We define
D={z=(zy,x) € R"[([ay +1/2],++ [z, +1/2D €S} 4.7
and
F(o)=f{x;+1/2],[x, 1720, (4.8)

where [« ] denotes the integer part of the real number a. D is a union of cubes and they are

robust in R”. For each real number ¢, the set {x|F(x)<c} is also a union of cubes (or
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empty). Thus, D is a robust set in R” and F is a robust function. Let T be a global
minimum point of F over D, 1. e.
F &)=minF(x), (4.9

x€D
then z€& int D (or one can find a point x;, in the same cube as x, such that x; €int D),

Therefore, assumption (R) is satisfied.
S Optimality Conditions

In order to find global minima with the integral approach, a special class of measure
spaces is required. Let X be a normal topological space, Q be a ¢-field of subsets of X. A
measure space (x, Q) is said to be a Q measure space if:

(M1) each open set is in Q;
(M2) the measure of each nonempty open set is positive;
(M3) the measure of each compact set is bounded.

The Lebesgue measure in R” is a @ measure; a nondegenerate Gaussian measure on a
separable Hilbert space is also a Q-measure. A specific measure space can be utilized to
solve a specific minimization problem.

The following lemma is a sufficient condition for global optimality.

Lemma 5.1 Suppose assumption (Al),(A2),(R),(M1) and (M2) hold, and S\ H.#
&y where H. = {x| f(x)<c} isa level set of f. If

n(SNH)H=0, (5.1
then ¢ is the global minimum wvalue of f over S and S(\H, is the set of global minima.
Proof. Suppose, by contraries, that ¢ is not the global minimum value and that c<Zc is.
Let 29=c¢—¢>>0. There is a global minimum z such that ¢= f(z) and f is relatively
robust to S at & because of assumption (R). x€F.,. Thus, N(x) int (SﬂF{f,})i@/,
where N(2) is a neighborhood of x. We now have int (S(1F.-,) and

int (SOF.-)CSNH., (5.2)
which implies, with the assumption (M2), that
u(SNH)Z=p(Gnt(SOF.-,)). (5.3)

This is a contradiction.

Condition (5. 1) is a suffictient one. If ¢ is the global minimum value of f over S, it
may happen that (S H,)>>0. From the proof of lemma 5. 1, if c>>¢=min,esf (), then
n(SHH>0.

We now proceed to define the concept of mean value, variance and higher moments of
f over its level set and constrained set S as in [ 3]. These concepts are closely related to
optimality conditions and the algorithm for finding global minima.

Definition 5.1 Let c>>c=min,esf (x) and suppose assumptions (Al),(A2),(R),(M1),
(M2) and (M3) hold. We define the mean value, variance, modified variance and the mth

moment (centered at a) of a function f over its level set and the constrained set S,
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respectively, as follows:

- _ 1 Y
M(f,c;S) #—(S 2 Hf')mJH(_f(l)dﬂ’ (5.4
_ 1 _ LQyy2
V(e = o H{)SJH‘(f(x) MCfrc:8) dus (5.5)
and

— 71 ~) — m — ese

M, (f.c;S) —#(S A H(-)J (f(x) —a)"dys m = 1,2,--. (5.6)
SAH.

The function f is measurable, H, (]S is compact, and x (S () H,) >>0; they are well
defined. When c=¢, (S H,) may be equal to zero. Definition 5. 1 has to be extended by
a limit process.

Definition 5. 2 Under the assumptions of definition 5. 1, we can extend it to ¢==¢ as

follows:
M(f.c;S) = }:rr}m jH F()dus 5.7
V(ficsS) = }Ilgm J CFa) —MCfres9)  dus (5.8)
Vi(fresS) = }Alr?manHk(f(x')—c)Zd#, (5.9)
and
M, (frc;S) = }Klggm j F@) — @) dps m = 1200 (5.10)

k
The limits exist and they are mdependent of choices of ¢;,. The extended concepts are

well defined and consistent with those of definition 5. 1. The proofs are similar to those in
[3]. With these concepts, we characterize the global optimality as follows.

Theorem 5. 1 Under assumptions (Al), (A2), (R), (M1), (M2) and (M3), the
following statements are equivalent ;

(1) &€ Sis the global minimum of (4.1) and c= f(Z) is the global minimum value ;
(2) M (f,e;9 =¢;

(3) V(f,c;5)=0;

(D Vi (f,e;8=0;

(5) M, (f,c;S)=0, form=1,2,---

6 An Algorithm

In this section, an algorithm is proposed for finding the global minimum of a
discontinuous function under assumptions (A1), (A2),(R),(M1),(M2) and (M3). Take
a point 1, €S. I ¢,=f(x,) =c=min,cs f (), then x, is a global minimum point and ¢, is

the global minimum value. The algorithm stops. In general, ¢,=>¢, and x(S(1H,)>>0 by
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lemma 5. 1. Let

a=M(f,¢0;S). (6. 1)
Then
<o=c. (6.2)
In general, let
1 =M fyc38),  k=0,1,2,-. (6. 3)
If there is a positive integer &, such that
a, =M(fac 35S (6.0

then the algorithm terminates. Otherwise, let ¢ = ¢, and H=SN Hy, 3 we obtain a

decreasing sequence

COZ20) 220 20 ey 2C (6.5)
and a monotone sequence of sets
SAH,DSNH, D-+DSNH, DSNH,, D (6. 6)

The limits exist. Let
Z:}Lm ¢ and ﬁ:}Lm H,.

Theorem 6. 1 Under assumptions (Al), (A2), (R), (M1), (M2) and (M3), Cis the
global minimum value and H is the set of global minima of f over S.
Proof. 1f the algorithm terminates at a finite step c=¢, » then we have c=M(f,¢;S) in
(6.4). When the algorithm does not stop in a finite step, we also, from (6. 3), by letting
k—>co, obtain

c=MC(f,c;S). (6.7)
Hence, with theorem 5. 1, ¢ is the global minimum value. Let x€ H(S; then for each %
(or k=>ky) we have f(x)<lc,. Letting k—>co (or setting k=Fk,), we obtain

S =e. (6. 8)

However, f(x)=¢ for all x€ S. Hence, H={z| f(x)=¢;x€ S}, i. e. H is the set of
global minima.

In applications, we can use a modified variance condition to verify if V.=V, (f.c;.S)
<Ze, where e >0 is the precision given in advance. If V|, =>¢, then the procedure is not
terminated.

Note that the errors at each step in the algorithm will not be accumulated. Suppose
we calculate c; =M(f,¢,;S) with an error A, and obtain d; =c¢, + A, , then calculate c,=M

(f,d,;S) with an error A; and obtain d; =c¢,+A,, and so on. In general, we have

c;\,:M(f,dkﬂ;S) and A}\,:dkifk, k:1,2"", (6.9)
and obtain a decreasing sequence {d,}. Let
E:}im dy. (6. 10

Theorem 6.2 Under the assumptions of theorem 6.1, dis the global minimum wvalue if
and only if
}ir}} A, =0. (6.1
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The following theorem shows that the algorithm has a descent property.
Theorem 6.3 Under the assumptions of theorem 6. 1, if there is a positive integer k, such that
i1 =MC(f1¢,5S) or SN H% ,
then the function f is constant on S|) H%O .
The algorithm can be implemented by the Monte Carlo technique, as in [4] and [5].
Numerical tests show that the discontinuity of the objective function dose not
influence the computation procedure essentially. An industrial application (see [ 6]) shows

that the algorithm is effective.
7 Numerical tests
Two examples show that the algorithm is effective. The numerical tests were

performed on an IBM-PC with BASIC implementation.
Example 7. 1

minimize f (1), (7. D
x€D
where
fo)=glx)—[glx)]/n, (7.2)

n—1

g(x) = 2 lsin(ra) + DV — 102 A + sin(rai ) + (x, — 107 ], (7.3)
i=1

D={x=(x1 2, | —10<x,<10, i=1,**,n}, (7. 4)
[ v] denotes the integer part of y. The function f is discontinuous, with many jumps and
local minima. It has a unique global minimum at x=(1,+:+,1). Table 1 gives the number
of iterations N;, the amounts of function computation N, logV; —logV. corresponding to
variables n=5,10,20,50, where V,, and V. are the volumes of the initial and final search
domain, respectively.

Table 1 Results for example 1

n 5 10 20 50
N; 43 85 155 395
N, 1917 4251 9565 46. 623
logV, —logV. 74. 66405 146. 3872 2995. 586 731. 648
Example 7. 2
mirjiennqize fx, (7.5

where

. . 1
JlJrnJ_Z |2, | +sgn|sin o 0. 5] 1, 270
flo)= |~ 2|z [ (7.6)

i=1
10, x=0,

and D is the same as (7. 4). The function has infinite discontinuous hypersurfaces. Its
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unique global minimum is at the oright, which has a discontinuity of the second kind.

Table 2 gives the data of this example.
Table 2 Results for example 2

n 5 10 20 50

N; 68 144 261 609

N, 3027 7375 22,481 71,423
logV, —logV. 105. 4427 224. 0189 459. 386 1211. 395
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Global Minimization of Constrained Problems
with Discontinuous Penalty Functions”

Abstract;: With the integral approach to global optimization, a class of discontinuous
penalty functions is proposed to solve constrained minimization problems. Optimality
conditions of a penalized minimization problem are generalized to a discontinuous case;
necessary and sufficient conditions for an exact penalty function are examined; a
nonsequential algorithm is proposed. Numerical examples are given to illustrate the

effectiveness of the algorithm.
1 Introduction

Let X be a topological space, S a nonempty subset of X, and f: X—>R a real-valued
function. Consider the following constrained optimization problem:

¢ =inf f(2). (1. 1

€S
In general, minimizers of (1.1) may not exist. We will not examine particularly the

existence problem of global minimizers here.

Assume that (A): f is lower semicontinuous, S is inf-compact.

Under (A) minimizers of (1. 1) exist. Here, inf-compactness means that there is a
real number 6>>c¢* such that the level set

H,={x: f(x)<b)
i1s a nonempty compact set.

The problem of minimizing a function over a constrained set has been investigated
since the 17" century with the concepts of derivative and Lagrangian multiplier. The
gradient-based approach to optimization is the mainstream of that research. However, the
requirement of differentiability restricts its application to many practical problems.
Moreover, it can only be utilized to characterize and find a local solution of a general
optimization problem. In this work, we will investigate a constrained minimization
problem with discontinuous objective function by using the integral approach.

The penalty function method, representing a constrained minimization problem in

terms of unconstrained ones, is one of the propular numerical methods of nonlinear

% In collaboration with Zhang 1. S. Reprinted from Computers and Mathematics with Applications, 1999, 37.:41—58.
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programming because the idea is simple and quite universal. The penalty approach to
constrained optimization is attributed to Courant""', and was developed and popularized by
Fiacco and McCormick™™ and others. In recent years, a considerable amount of
investigation has been devoted to methods that attempt to solve a constrained problem by
means of a single unconstrained minimization. It is termed exact penalty method"> ",

A major disadvantage of the penalty approach is the choice of penalty parameters. The
use of large values of the penalty coefficient leads to a minmization problem where the
Hessian is ill-conditioned, if one uses a gradient-based method. Moreover, for an exact
penalty function, a constraint qualification is required.

Taking advantage of the integral approach of global optimization, a class of
discontinuous penalty functions is proposed in this work. Using the theory and algorithms
of the intergal global minimization, one can solve a constrained problem by unconstrained
minimization technique without requirement of a constraint qualification.

In this paper, we first recall basic concepts of robust sets, functions, and the integral
approach to global minimization (Section 2).

In Section 3, we consider general penalty functions which may be discontinuous. We
derive conditions for a penalty function to be exact and propose several discontinuous exact
penalty functions in Section 4. We study optimality conditions for the penalized problem
with the integral approach in Section 5 and propose an algorithm for approximating
solutions of constrained optimization problems in Section 6; these problems may have
discontinuous objective function with disconnected constraint set. Numerical examples are

given in Section 7 to illustrate the effectiveness of the algorithm.

2 Robust Sets and Functions. Integral Global Minimization

In this section, we will summarize several concepts and properties of the integral
global minimization of robust discontinuous functions, which will be utilized in the
following sections. For more details, see [11,12].

2.1 Robust Sets and Functions
Let X be a topological space, a subset D of X is said to be robust if
cl D=cl int D, 2.1
where cl D denotes the closure of the set D and int D denotes the interior of D.

A robust set consists of robust points of the set. A point x& D is said to be a robust
point of D, if for each neighborhood N(x) of x, N(x) (int D=, A set D is robust if
and only if each point of D is a robust one. A point x& D is a robust point of D if and only
if there exists a net {, }C int D such that x;—x.

The interior of a nonempty robust set is nonempty. A union of robust sets is robust.
An intersection of two robust sets may be nonrobust; but the intersection of an open set

and a robust set is robust. A set D is robust if and only if dD=23dintD, where dD=clD\int D
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denotes the boundary of the set D.
A function f: X—R is said to be upper robust if the set

F.={x: f(x)<c} (2.2
is robust for each real number ¢. A sum or a product of two upper robust finctions may be
nonupper robust; but the sum of an upper robust function and an upper semicontinuous
(u.s.c., for the product case nonnegativity is required) function is upper robust. A
function f is upper robust if and only if it is upper robust at each point; f is upper robust
at a point x if x& F. implies x is a robust point of F.. An example of a nonupper robust

function on R! is

/ is not upper robust at x=0,

Let S be a robust set in a topological space (X, 7), where  is the topology of X. We
can introduce a relative topology zs and obtain a new topological space (S, zs). In this new
topological space, we also have concepts of robust set and upper robust function with this
relative topology. Then, we have concepts of relative robust set and relative upper robust
function.

2.2 (Q—Measure Spaces and Integration

In order to investigate a minimization problem with an integral approach, a special
class of measure spaces, which are called Q- measure spaces, should be examined.

Let X be a topological space, Q a o-field of subsets of X, and p a measure on Q. A
triplet (X,Q,) is called a Q measure space iff

(1) each open set in X is measurable;

(2) the measure £(G) of a nonempty onen set G in X is positive: x(G)=>0;

(3) the measure x(K) of a compact set K in X is finite.

The ndimensional Lebesgue measure space (R”, 2, p) is a Q measure space; a
nondegenerate Gaussian measure g on a separable Hilbert space H with Borel sets as
measurable sets constitutes an infinite dimensional @Q measure space. A specific
optimization problem is related to a specific @ measure space which is suitable for
consideration in this approach. Once a measure space is given, we can define intergration
in a conventional way.

Since the interior of a nonempty open set is nonempty, the Q measure of a measurable
set containing a nonempty robust set is always positive. This is an essential property we
need in the integral approach of minimization. Hence, the following assumptions are
usually required.

(A) f is lower semicontinuous (l.s.c.) and S is inf-compact.

(R) f is upper robust on S.

(M) (X, 2, p) is a Qmeasure space.
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2.3 Integral Optimality Conditions for Global Minimization

We now proceed to define the concepts of mean value and modificed variance of f over
its level set. These concepts are closely related to optimality conditions and algorithms for
global minimization.

Suppose that Assumptions (A), (M), and (R) hold, and ¢>c¢* =min,esf (x). We
define the mean value and modified variance, respectively, as follows:

1 " o
n(H. N S)JH(nsf (l)d}h

Q) 1 oz
Vi = s S)JHLqu(x) O dp.

They are well defined. These definitions can be extended to the case c=c¢* by a limit

M(f,c;S) =

process. For instance,

Q) — 1 1 N2
Vi) = lim ot SJHLan(f(l) O dpe

The limits exist and are independent of the choice of {¢;}. The extended concepts are well
defined and consistent with the above definitions.

With these concepts, we characterize the global optimality as follows.
Theorem 2. 1  Under Assumptions (A), (M), and (R), the following statements are
equivalent .

(1) " €Sisa global minimizer of f over S and ¢* = f(x") isthe global minimum
value,

(2) M(f,c*;S)=c" (the mean value condition) ,

(3) Vi(f.c™3S)=0 (the modified variance condition).
2.4 An Integral Algorithm

An integral global minimization algorithm for finding the global minimum value and
the set of global minimizers of an upper robust function over a robust constraint set is
given as follows [13].
Step 1. Take ¢,>c* and e=>0,k;:=0.
Step 2. cpr1: =M 535S s v =Vi(fyersS) ’H%H nS: ={x€S: f(O<cr1}.
Step 3. If vpy,==¢, then k:=k+1, go to Step 2.
Step 4. ¢ <c¢p1, H” CH%H ; Stop.
If we take e=0, the algorithm may stop in a finite number of iteration, and we obtain

the global minimum value with the set of global minimizers. Or, we obtain two monotone

sequences
COZ20) 220 Z 0 ZCp1 =
and
H, NSDH, NSD-DH, NSDH,, NSO
Let

?:klim ¢, and H~ :ké] H, NS.
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Theorem 2.2 Under Assumptions (A),(M), and (R), cis the global minimum value of
fover S, and H” isthe set of global minimizers.

Note, that errors at each iteration in the algorithm are not accumulated. The
algorithm has been implemented by a properly designed Monte-Carlo method. The

numerical tests show that the algorithm is competitive with other algorithms.
3 Discontinuous Penalty Functions

Let X be a metric space, S a subset of X, and f a real-valued function. Consider the
constrained problem
¢ =inf f(2), (3.
€S
with the penalty approach. Recall, that a continuous and nonnegative function p: X—R'
is said to be a penalty function associated with the constraint set S if
p(x)=0, if and only if z&S.
With such a penalty function, we can find the set of global minimizers of a constrained

U4 In this section, we will generalize this definition to

problem by an integral algorithm
the discontinuous case.

Now, suppose S is a closed robust subset of a metric space X and f a real-valued
function on X. Under Assumption (A), the set of global minimizers of the constrained
problem (3. 1) is nonempty. Moreover, (A) also implies that f is bounded below on X,
i. e., there is a constant L such that

f(ax)=L, forall z€X.
The minimizers of the constrained problem (3. 1) can be approximated by a sequence of
solutions of associated penalized unconstrained problems.

The discontinuous penalty function associated with the constraint set S is defined as
follows.

Definition 3.1 A function p(x) on a metric space (X,d) is a penalty function associated
with a constraint set S if;

(1) p is lower semicontinuous;

(2) p(x)=0if x€S;

(3) infies, p(2)>0, where Sp={u:d(u,v)<p, ¥V vE€ S} and g>0.

Remark 3.1 In the above definition, we relax the requirement of continuity from the
traditional definition'**) as we wish to utilize discontinuous penalty functions.
Remark 3.2 It is expected that the penalty increases when the distance from a point & S
to the constraint set S increases. We replace the traditional property
p()>0, if x€&S,
by assumption (2. 2)
With a penalty function p, we examine a penalized unconstrained minimization

problem associated with (3. 1)



rlneifl{f(x)Jrap(x)}, (3.2)
where a(Z>0) is a penalty parameter. Under Assumption (A), the penalized level set
Hi={x: f(x)tap(x)<b}
is a nonempty closed subset of H,. Thus, H{ is compact in X. It follows that the
minimizers of (3.2) also exist. Furthermore,
r;’éi)lgl{f(f}l”) +ap(2) }<f}1€i?{f'(1)+ap(x) } :E;leiélf"(.r) =c".

We will construct two sequences {a,} and {c,} so that @, # c© and ¢, y c(=c¢",

assuming b>c), as n—>co with the property that

rggl{f‘(.r)_‘_a,,p(;T)}%L‘* , as n—>co, (3.3)

where, in order to simplify the notation, we denote
H,={x: f(x)ta,p(x)<c,}. (3. 4)
Proposition 3.1 Ifc¢, yc=c*, then

mmﬁ;ﬁﬁﬁzﬂns (3.5)

Proof. We first show that { H,} is a monotone sequence. It follows that the limit in (3. 5)
exists and equals the intersection. Suppose x& H,+,. Since a,+1=a, and ¢, 1<%, s

() Fap (D F(2)ta, p(a)<c,i1<c,.
Therefore, & H,. This proves H,+CH,. Now, we show that

N H,=HANS.

If x&€ H. S, then p(2)=0 and (&) +a.p(x)=f(2)<c<c,,» V,=1,2,--. Hence, x€&
H,, for n=1,2,---. This proves

H.NSC H,.

n=

On the other hand, suppose x& (1,21 H,. Then, f(x)<f(x)ta.p(x)<c,, for n=1,
2, uee

Letting n—>co, we have f(x)<c, i.e., xEH.. If &€ S, the p(2)>0 and f(2) +ta.p(2)
—>0c0 as n—>co, This contradicts that f(z) +a,p ()<<, <<c¢;, for n=1,2,++-, Hence, €&
H.(S. This proves

ﬁﬂgﬂnﬁ

n=

The proof of Proposition 3. 1 is completed.
Remark 3.3 We will use the concepts of mean value and modified variance to study a
global minimization problem. If ¢<(¢* =min.csf (x), then H.(\S=. From the above
proposition, there is an integer N such that H,= for n==N. In this case, we cannot
even define mean values and variances on X. Thus, this situation should not be allowed to
happen in the integral algorithm.

The following proposition shows that in the above framework, the global minimum
value of a constrained problem is the limit of the global minimum values of penalized

problems.
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Proposition 3. 2 Suppose that {a,} is a positive increasing sequence which tends to
infinity as n—>o° and {c,} isa decreasing sequence which tends to cZ=c* as n—>oo, Under
Assumption (A), we have
rjnei{l{f(x)JFa,,p(x) ¥ :Jr_gilg{f(lr)Jra”p(x) b =a,—>c" :%Ef(l‘). (3.6)
Proof. Since f and p are l.s.c. , H, is closed, and thus, compact. Therefore,
lrrelgi{f(f) +a,p(x)}

exists for each n. Since H.(N\SCH,, we have
min{ f(x) +a,p(x)}<< min {f(2)+ap(x)}= min f(z)=min f(x)=c".
+€H, <€ H, NS H,NS 2€S

KIS

Hence,
lim sup gllgn{f(x)Jfan;D () <™. (3.7
We now prove
lim inf gllilna,,:{f(l')+a7,P(1T)}:E>Cx . (3.8)

Suppose, on the contrary, é< c*. Let ¢” —=29>0; then, there is a subsequence of {a,}

(we denote it with the same notation) and an integer N such that a,—¢ and a,<<c—7%, Vn

>=N. Let x,€ H, be a global minimizer of min,¢ u {f(x)Fa,p(2)}, then
fZ)<f(x)Fap(z,)<c" =y n=1,2,0

We now have #, € H,+ —,NH,, n=N+1,N+2,--+. Because of the monotonicity of {H,},

H- ,N H,# &, implies that H-,(\ H, # &, k=1, ++, n—1,n Hence, the

intersection of these nested closed (compact) sets is also nonempty:

N(He,NH)=H.,(H,=H:,NH.NSAJ. (3.9

Therefore, we have a point £ which is in bost S and H,* ;- This contradicts the fact that

=

¢ is the global minimum value of f over S.
Combining (3. 7) and (3. 8), we obtain (3. 6).

4 Discontinuous Exact Penalty Functions

In this section, we will derive conditions for a penalty function to be exact. With
these conditions, several discontinuous exact penalty functions are proposed.
Definition 4. 1 A penalty function p for the constraint set S is exact for (3. 1), if there is

a real number q, >0 such that for each a==a,, we have

meir_l{f(x)+ap(\r) } :meiglf(x):c* 4.1
and
{x: f(D)taplx)=c" }={x€S:f(x)=c"}=H". 4.2

Lemma 4.1 A necessary condition for a penalty function p(x) tobe exact is as follows.
Condition (E1) There are ay=>0 and f=p8(ay)>>0 such that

p<1>>“*—;@, for all €S, (4.3)
0
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Proof. Suppose that p(x) is an exact penalty function, but (E1) does not hold. Then,

there are sequences a; A ©©, 3,>>0 and x, € Sg, such that
<L) (4. 4)
ar
or
) Fanp (x)<c™. (4.5)
Let & be a solution to the penalized minimization problem
r}&i}r{l[f(x)Jfakp(x)], (4.6)
then
[(@tap (@O)<f(x) tap(x)<<c', fork=1,2,- 4.7
It implies
E%i)?[f(x)+akp(x)]<c* , fork=1,2, (4. 8)

This contradicts the definition of the exact penalty function.
Remark 4.1 Condition (E1) states the following properties.
(i) If 2€S, then p(x)=0 and (4. 3) becomes f(x)==c* ; this is just the definition of ¢*.
(ii) There is a nonnegative function #(x) such that if x& S, then we have
p(2)=a0b(x) and f(a)=c" —b(2). (4.9
These mean that for points outside of the constraint set S, the objective function f(x)
cannot dectease too quickly and the penalty function p(x) cannot increase too slowly.
Example 4.1 Consider the problem min,~,x. The penalty function
x%,x<0,
p(x)= 0, 230
is not exact because Condition (E1) or (4. 9) does not hold.
Condition (E1) cannot ensure the feasibility of solution of the associated penalized
problem. Thus, one more trivial necessary condition is stated.

Condition (E2) There is oo >0 such that if a>q, and x, is a solution of
géi}r(l[f(x)—Fap(x)]:c* , (4.10)
then z, is feasible.

In their paper, Di Pillo and Grippo'® state a feasibility assumption (a,) (see [ 6,
Theorem 1, p. 1339 ]). It is easy to verify that (a,) implies (E2). Condition (E2) is easy
to verify when we study discontinuous penalty functions.

We are now ready to prove that (E1) and (E2) are necessary and sufficient for an
exact penalty funtion,

Theorem 4.1 A penalty function p(x) is exact for the minimization problem (3.1) if
and only if (E1) and (E2) hold.
Proof. We have shown that conditions (E1) and (E2) are necessary. For the sufficienty,
we {irst prove that there is a,~>0 such that

E;éi}t(l[f(x)+ap(1')]:c* ,  for all a>>a,. 4.1D
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Condition (E1) implies that there are ap=>0 and £>>0 such that

S Fapl) =f()Faplx)=c" s forall z€ Sy, a=>ay. 4.12)
Thus,
¢ <rr€1i5n[f(1‘)+ap(x)]<mei£1[f(1‘)Jrap(x)]:rr_leiglf(x) =c". (4.13)

Since min,¢sp (x) =5>>0 and f is bounded below, f(x)>>L, there is a1 such that a >
|L|+c*. It follows,

f(@)Ftapla)=c*, forall x&S,. (4. 14)
Thus, if we take a==a,=max (a¢sar)» then
c” grréi)rg[f(x)Jrap(x)jgrrelign[f(x)+ap(1')]<6* . (4.15)
e T ;r‘?’

This implies (4. 11).

fxE{xES:f(x)=c"}, then p(x)=0 and f(z)+ap(x)=f(x)=c",i.e., 2 E
{x: f()Fap(x)=c"}, for all . If 2 € {x: f(2x)Ftap(x)=c"}for a==qa,, then from
(E2), x should be feasible, i.e., z €S. Thus, x E{xES: f(x)=c"}.

We now construct a class of discontinuous penalty functions for the constrained

problem
meiglf(x), (4.16)
where S is a robust set and f is upper robust on S. Let
0, €S,
p()= " (4.17)

S+d(x), €S,
where § is a positive number and d(x) is a penalty-like function.
Theorem 4.2 The discontinuous penalty function (4.17) is exact.
Proof. Take ap=(c* —m,) /8, where mW:minl.esv f (). Then, if x€S,, we have

P =e=C M= S (4.18)

ao Qo

This is (E1). Suppose, for a==a,», we have
i_réi)r(l[f(x)—Fa/)(I)]:c*. (4.19)
If a solution z of (4.19) is not feasible, then p(z)==8 and
ap(2) a0 p(2) Za0d=(c" —m)=c" — f(2).
This implies a contradiction
f()tap(x)>c*, for a™>a.

Remark 4.2 No constralint qualification is required for this kind of penalty functions. For
example, for the inequality-constraint set

S={z:g,(x)<0,i=1,,r},

we can take

d(x)= 2 | max(g:(x),0) ||? or d(x) = max | max(g:(x),0) |7,
i=1 i

where p>0. If g;,i=1,-,r, are upper semicontinuous so is d.

In order to apply an integral global algorithm, we still need robustness of f+ap.
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Proposition 4.1 11 d is upper robust on S, then p(x) is also upper robust on S.
Proof. For each ¢, we have

., if ¢<0,
JS, if 039, (4. 20)
1{165:6+d(1)<c} , 1f ¢>6.
We know that & and S are robust. The set {x € S.8+d(x)<c} is also robust because
d(x) is assumed to be upper robust on S. It follows that {x & S: p(x)<c} is robust for

{x€S:p()<c)=

every real number ¢. Hence, p(x) is upper robust on S.

Proposition 4.2 1f fis u.s.c. , and d is upper robust on S, or f is upper robust and d is

u.s.c. onS, then f~+apis upper robust on S for every a =>0.

Proof. 1f d is upper robust on S, then ap, a=>0, is also upper robust on S. If fis u.s.c. ,

then as the sum of an u.s.c. function and a upper robust function, f—+ap is upper robust.
If f is upper robust on S, we cannot directly apply this result to prove f=+ap is upper

robust on S. We enumerate all rational numbers #;, 75, **-. For each real number ¢,

we have

co

{1‘€S:f(1')+ap(1‘)<c}:kL:Jl({IGS;f(x)<m} N{x€ES:ap(ax)<lc—r ). (4.21)
We know that
g, if g,<<0,
{2€S:iap()<c—r ) ={2€S: p(a)<g,} =S, if 0<g, <9, (4.22)
GNS., if g.>6,
where

cTr

a= L and G={x:0+d(x)<gi}={zx:d(x)<g,—5)}. (4.23)

G is open since d is u.s.c. and then G()S is robust. Thus, each term in the union of
(4. 21) is & which is robust; or {x: f(2)<r:} (1S which is also robust since f is upper
robust on S; or {x € S: f(x)<r,} (VG(1S which is an intersection of robust set and an
open set, so it is robust, too. As a union of robust sets, the set {xES.: f(x) +ap(x)<c}

is robust for each ¢. Hence, the function f~+ap is upper robust on S.
S Penalty Optimality conditions

We now generalize the penalty optimality conditions”"'* for continuous functions to
those for upper robust functions. In this section, we will examine the concepts of
penalized mean value, modified variance, and higher moments conditions.

Let S be a subset of a metric space X, f a real-valued function on X, and p a penalty
function for the constraint set S,

Definition 5. 1 Let ¢,<c" =inf,cs f (x). We define the penalty mean value, modified

th

variance and m™ moment (centered at a) ., respectively, of f+a,p over the penalized lever
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set
H,={x: f(x)ta.p(x)<c,},
with a Q measure ;2 on X as follows:

1
#(H,)

)y — L . PN
Vi(frenip) #(H”JH” [F ) +anp () — e, P
1

#(HH)L” £ +ap () —adidus m= 1,2,
Under Assumptions (A),(R), and (M), they are well defined.

Now, we consider the convergence properties of the penalized mean value, modified

M(foeys p) = JH (£ + anp () Ndyes

M, (ficsasp) =

variance, and higher moments as n—>co. As usual, we assume that
¢, vy c=¢ =min [ (2). (5. 1)

x€S

Theorem 5.1 Suppose S is robust and [~+ap(a>>0) is robust on S. Under Assumptions
(A) and (M), we have , for c=c" ,
lim M(f,c,; p)=M(f,c;S) (5.2)

oo

Proof. We first prove that when ¢>>¢*, (5. 2) holds. Since n(H.[1S)>>0, we have u
(H,)>0 because SNH.CH,, n=1,2,+-. Thus,
M fsc,sp)—Mf e S [ +1,,

where

_ 1 1 .
I = ‘#(Hu) w(He () S)‘ UH [f(I)JFanp(I)]dp‘

and

- m UH” L) +a,p () ]du *JHMS[]“(I) Jra”p(r)]d/x‘ .
We have, L<f(2)<f(x) ta,p(x)<c,<c,, for all n=1,2,+-. Thus,
11
nw(H,)  p(H NS
where A=max(c;,|L|). It follows, by Proposition 3.1, I;—0 as n—>co, Next, we have
2A

|1, \<m c \p(H)—pu(HNS |,

I,

\m<\

'A'/,L(H})»

which tends to zero as n—>oo,
When c=c¢", since f(x)+a,p(x)<c, on H,, Y n, we have

= 1 - == s
M(frc,sp) = #(H”)JUH (£ +ap (@) ]du < err 0= 1,240
It follows that
lim sup M(f e, ;P)<mit} C,=c=c’, (5.3)
We now prove
N B )
hf,,ri{P“%T“)JH”Ef(I)+a~f)<x>]d/x>c : (5.4

Suppose, on the contrary, that (5. 4) does not hold. Then, there is a subsequence of
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1
w(H,)

which we denote with the same notation, such that

JH Lf(x) +a,p () ]du,

1 J , P
EEE#(H,,) H, Lf @) Fap ) Jdu = e <c”.
Let 2p=c* —¢>0. Thus, there is a positive integer N such that for n=N,

e : - | . .
#(H”)JH”f(l)dfl < /,((H,,)JI—I” [f(l) +a,1p(l):|d/,( < C 77'

This implies that

H:- ,NH,#J, forn=N,
and hence,

H:- ,NH- NS#J.

That is to say, we have points both in H.- -, and S. This contradicts the assumption that
¢ is the global minimum value of f over S.
Theorem 5. 2 Suppose S is a robust set and f + ap (a>0) is robust on S. Under
Assumption (A) and (M), we have, forc=c*,

}i}EVl(fl,c,,;p):Vl(f,C;S). (5.5)
Proof. Whan ¢>>c¢", the proof is similar to that of the mean value case. Suppose ¢ =
¢”. Since

Vilfse,;p0=0, n=1,2,-,
it follows that

lim inf V,(f,c,;p)=0. (5.6)

n—>co

We prove that lim sup,... V1 (f,c,; p)=0. Suppose, on the contrary, it does not hold.
Then, there is a subsequence (for which we keep the same notation) such that
Vi(fsens p)—>29>0.
Thus, there is an integer N such that
Vi(fscsp) >y, when n=N.
Since f is bounded below on H, (1S, there exists a real number g—=0 such that

f(o)tap(a)+g=0, VYaEH,. (5.7

Therefore,

1 . N
Vl(f,c,,;p)—ﬂ(HH)JH”[f(J)Jra”p(:c) ¢, ) du

! . 2 N2
©(H,) {JH LA +ap o)+ 4] d/x+JH” (g+¢)dy

—2(g+e)| [ +apo + gl >

It follows that
(e, +g)+(gte)>2(gt+e,) « (gt H+y
Letting n—>co in the above inequality, we obtain
(c"+g)+(gte ) =2(gFc ) » (gte )+,
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and have a contradiction: 0217>0. Therefore, whece c=c¢*, the limit of (5.5) exists and
is equal to 0. But, accrding to the modified variance condition, ¢* is the global minimum
value if and only if V,(f,c* ;S)=0. Hence, when c=c¢"* , we have

lifp Vilfse,; )=0=V(f,c" ;5.

Theorem 5.3 Under the assumption of Theorem 5.1, we have, forc=c”,
lim M,,(fyc,3¢,39) =M, (f,c;c3S). (5. 8)

n—>co

Proof. When ¢>c¢* or when c=c* and m is odd, the proof is similar to that of the mean
value case. Suppose m=2r and »>1, then M,,(f,c,;c,;p)=0. Thus,

lim inf M, (fsc,5¢,5 ) =0. (5.9
On the other hand,
O e — 1 - ) — ™
Mn(f’cnyﬁimp) #(H”)JH”[]((I)+a7,[)(x) Cy dﬂ
20—1) 1 g )2
<A #—(HH)JH” () +anp () — e T du
= A*""PV, (fye,5p) >0, asn—>oo, (5.10)

where | f(2)+a,p () —c,|<<A, Y€ H,S.
Therefore, we have proven that

lim M, (fsc 56,3 p)=0=M,, (fsc" ;5¢" ;5. (5. 1D

700

The last equality holds because of the higher moment conditions for global minimization.
The above theorem, in fact, also gives us necessary and sufficient conditions for
global minimization with a penalty function.
Theorem 5.4  Under the assumptions of Theorem 5.1, ¢* (¢, v c=c* ) is the global
minimum value of f over S if and only if one of the following conditions holds :
(D lim,.. M(fyc,5p)=c",
(2) lim,...Vi(f,c,;p)=0,

(3) lim,...M,,(f.c,3¢,3 p)=0, for some positive interger m=1,2,
6 A Penalty Algorithm

In this section, we propose a penalty algorithm in terms of a penalty mean value and
modifed variance. We then prove that the algorithm produces a sequence which converges
to the global minimum,

Take a real number

¢ >min f(x),
x€S

an exact penalty function p(x) and a penalty parameter a;. Let

#(11_11)JH [f(x) +alP(I):|d/l.

Replace ¢; by ¢; and a, by az =a; * f(where f2=1. 0 is a prespecified constant) and go to the

Co = M(fvcl ;P) -

next iteration.
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Lemma 6.1 [fn(H,)>0, then u(H;)>0.
Proof. By the definition of H;, we see that c;<Ccy. If ¢, =¢;, then (H,)>0. Indeed,
suppose, on the contrary, that 4(H,)=0; then ¢, is the global minimum value of f~+a:p.
But,
) >r1r‘1€ig1f(x)>rjr‘1€i£1f(1) :r}éi)r(l[f(x) +a p(2) J=0,.

The last equality holds because we have an exact penalty function. This contradicts that ¢,
=(y.

Now, suppose ¢;<Zc¢; and suppose, on the contrary, that p(H,) =0; then ¢, is the
global minimum of f+a,p in X, i.e.,

() t+apla)=c, VreX.
Since x(H;)>>0, there exists e=>0 such that 0<Ze<Zlc¢; —¢, and
1(G.NS)>0,
where
G.={x:cote<f()<c1 )

otherwise, ¢; would be the global minimum of f over S. Hence,

¢ =M(freisp) = [/ @@ +arpla) Jdu

remh

- (11_11)<JH \(;ms[f(l‘)+a1p(l‘)]d#+J ﬂsf(l")d/j>

G
3

& o G.NS
= i (D = p(G N S+ e to) %(H])

= (2 +g . ‘L[—(#G(EPE? )S) > Co.

This is a contradiction. The poof is now complete.
Continuing the process described above, we obtain a sequence of real numbers ¢,
which converges to the global minimum of f(zx) on S X.
A penalty algorithm is proposed as follows.
Stet 1. Take ¢y >min,cs f(2), e>0, n: =0, f>1.0, Hy={x: (&) t+ap(2)<co ).
Stet 2. Calculate the mean value

1
Cop1l = ILTI_L,)JH” [f(2) + anp (l”)]d/x. (6. 1)

Stet 3. Calculate the modified variance

1 " . .
T #(H”)JH” F@) +anp () — ) dpe

If v,11==¢, then n:=n+1 and a,:1 =a, * B> and go to Step 2; otherwise, go to Step 4.

Step 4. ¢" <¢,+1» H"<H, . Stop.
Applying this algorithm with e=0, we obtain a decreasing sequence
CLZZCy 220 220, 2201 220 (6.2)
and a sequence of sets
H DH,D--DOH,DH, 1 D--. (6.3)
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Theorem 6.1  Suppose that S is robust and [+ ap (a=>0) is upper robust on S, and
Assumptions (A) and (M) hold. With this algorithm, we have

lim ¢,=c¢* =min f(x) (6. 4)
froo 2€S

and
lim H,=( H,=H". (6.5)

Proof. According to the algorithm, we know that ¢,=>c¢* for n=1,2,++, and the sequence

{c¢,} is decreasing. Thus, the limit
lim ¢,=é=c” (6. 6)

b>co

exists. Letting n—>co in (6. 1), we obtain

¢=lim ¢,; =lim M(f,c,; p)=M(f,¢;S) (6.7)

n—>co n—>co

It follows from Therem 5. 4 that ¢ is the global minimum value of f over S, i.e., ¢=c".

The equality (6. 5) is valid by Proposition 3. 1.

7 Numerical Tests

An important way to ascertain the performance of a global minimization algorithm is
to see if it can pass numerical tests successfully.
There are a lot of test problems for constrained minimization available in the
literature. We select four problems, testing as follows.
Example 7. 1177 The objective function is
f(I) :fl (I] ) +f2 (12 ) .
where
2825, 0<x,<C100,
‘ 3y 0<a; <300, \ B
f1<.l”1): fz (1‘2): 29.T27 100<x2<200,
31a;, 300<x; <400,
30,5 200<a,< 1000,

With constraints

R X3y . - 0.90798x%
a1 =300 131.078cos(1. 48577 1,6)+7131. 078 cos(1. 47588),
o mr . 0.907982%
=131 O78c05(1. 48477+ x) + 131,078 cos(1.47588),
I o T R ) 0. 9079827 .
xs 3. O7851n(1. 48477+16)+7131. 078 sin(1. 47588),
T . ,0.90798 , . B
200 31 O78sm(1. 48477 16)+131‘ 078 sin(1. 47588)=0,
0<x; <400,
0<x,=<<1000,
340<1‘3 <420 ’
340<x, <420,
—1000<x5<1000,



0<{as<0. 5236.

The objective of this problem is a discontinuous robust function with four nonlinear
equality constraints. We take x; and x4 as independent variables. Then, x1,,,2, and x5
are functions of x; and x4. Thus, except box constraints on these independent variables,
we have eight more nonlinear inequality constraints. The discontinuous penalty function is
applied to these inequality constraints.

With the penalty algorithm, we obtain the solution

x" =1(202.9967, 99.99992, 383.071, 420. 000, —10. 90771, 0.007314806),
f* =8889. 899.
Example 7, 203181 [ et
F(2)=0. 78542, 25 (3. 333325 +14. 933423 —43. 0934) — 1. 5080x; (i +2%)
+7.4770(xi +23) 0. 7854 (xy 2t t s 22)
with constraints
x1 25252227,
r1xixi=397.5,

Xo L

Y
316>1, 93,

4

XXX
£351>>1. 93,

X5

2
! ~.«/[74514} +16. 91X 10°<C1100,

0. 1at Ty X3
2
! 3\/ 52507 4 157, 510850,
0. 1x3 o X5
.1’21'3<40,
52,
Xo

1. 526 +1. 9y s
1. 1a+1. 9<as s
2. 6<<x<3. 6,
0. 7<<x,<20. 8,
172, <28,
7.3<x,<8. 3,
7.3<x5<8. 3,
2. 9<<x<<3. 9,
5. 02, <5, 5.
We recalculate this problem with the discontinuous penalty method, which is more
efficient, and obtain the following solution:
x*=(3.5,0.7,17.0,7.30,7. 71531991, 3. 35054095,5. 28665446)

and

136



£* =2994. 425.

Example 7. 3  Consider a nonlinear integer programming problem from [19, 20 ].

objective function is
[ =x 12005 T 120205 Y xox a6 T a6 2708 T 202205207 5
with constraints,
221+ 2z, +8xs =12,
11y +72, +1325=>41,
625+ 92426 +527,2=60,
3xy +5x5 72 =42,
6x,x7 +9x5 +5x5;>=53,
Axyx; +a:>13,
221 +4a, + 72+ 325 +2,<69,
x5 T 6505 4o, 20, <47,
122, +8xy x5 + 21520473,
x3+4as +2x6 9231,
<7, i=1,3,4,6,8,
x <15, i=2,5,7,
x, integer, 1=1,--,8.
Solution:
x"=(,4,1,1,6,3,2,00, f*=110.

The

Remark 7. 1 The discontinuous penalty function is applied to handle the constraints.

After 919 function evaluations, the global minimizer is found. The modified variance does

not equal zero until 1370 function evaluations. The acceptance-rejection technique could

not be applied here because the acceptance-rate is extremely low.

Example 7.4 Consider a mixed programming problem from [17,19]. The objective function is

f(a)=5.357854725+40. 8356892, x5 +37. 2932392, —40792. 141,
with constraints
0<{85. 334407+0. 0056858x;.25 +0. 00062622, 2, —0. 0022053152592,
90<C80. 51249+0. 00713172525 +0. 00299552, 2, +0. 002181325110,
20<C9. 300961+0. 0047026252, +0. 00125472, 25 1+0. 001908525 2,25,
78 <102, 23<x;<<45, x.,a, are integers,
27<a; <45, i=3,4,5.
Solution;
x*=(78,33,29.995256,45. 0,36. 77581), f*=—30665. 54.

8 Conclusions

In this paper, the methodology of integral global optimization is applied to constrained

minimization problems by discontinuous penalty technique. Under very weak assumptions,
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the discontinuous function is exact without any constraint qualification requirement.

The examples presented in this paper are illustrative of several noteworthy ideas.
Example 7. 1 has discontinuous objective function. We recalculate Example 7. 2 in [ 13,21 ]
with a discontinuous penalty function. Example 7.3 is a nonlinear integer programming
problem for which one cannot use the acceptance-rejection technique because the rate of
acceptance is very low, as mentioned in [19], Example 7.4 is a mixed programming
problem. For these examples, the new solution methodology works remarkably well,
making computation seem like an almost routine task. It is our claim that there is no

existing methodology which can match that performance.
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Finite Dimensional Approximation to Solutions of

Minimization Problems in Functional Spaces”

Abstract: In this paper we consider minimization problems whose objectives are defined on
functional spaces. The integral global optimization technique is applied to characterize a
global minimum as the limit of a sequence of approximating solutions on finite dimensional
subspaces. Necessary and sufficient optimality conditions are presented. A variable
measure algorithm is proposed to find such approximating solutions. Examples are

presented to illustrate the variable measure method.

1 Introduction

Let U be a topological space, S a subset of U and J a real-valued function on U. The

problem we consider here is to find.

¢ :iSEJ(”) (1. D
and the set of global minima:
H* ={ueS|J(w=c"}. (1.2

Under the assumption
(A): J is lower semi-continuous, S is closed and there is a real number & such that
the set H,={u€ S| J(u)<b} is a nonempty compact set, the set H” is nonempty. It is
clear that under this condition the function J is bounded below, i.e., there is a real
number M, such that
Jwy=M, VYucU. (1. 3)
Problems from calculus of variations, optimal control and differential games require
one to consider the case when the underlying space U is infinitedimensional. But, in
general, it is difficult to find the global minimum value ¢* and the set of global minima H*
when U is an infinite dimensional space. We usually can only find approximation solutions
to them:
ci =inf J(w) and H,; ={u€cS"|J(w)=c]}, (1.

ues"
where S” is a subset of S, the set of such approximation solutions is usually a subset of a

subspace U, of U. It is therefore natural to ask how to construct the sequence {S"} such

% In Collaboration with Zhuang D. M. Repainted from Optimization, 1992, 26:33—50.
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that the sequence {c, } converges to the global minimum value ¢* and { H, } “converges”
to the set of global minima H*. We will use the integral global optimization approach. To
do so, it is necessary to define so-called Q measures p, and 4 on each space U, and U,
respectively. Furthermore, we need a concept of convergence of the sequence of measures
{pn} to a measure p. In this work, we generalize the variable measure method developed in
[1] and [ 7] to the case that the variable measures s, are defined on the subspaces U, which
are also variable. In Section 2, several concepts and results in the integral global
minimization are summarized, which is useful for later investigation. Concepts and
properties of Q-convergence of a sequence of Q-measures are discussed in Section 3.
Integral global optimality conditions are provided in Section 4. With these results a
variable measure algorithm is proposed in Section 5; a convergence theorem is also
demonstrated in this section. Examples from optimal control and differential games are

presented in Section 6.

2 Integral Global Optimization in Infinite Dimensional Spaces

In this section we will summarize several concepts and properties of the integral global
minimization developed in [10,117], which will be utilized in the following sections.
2.1 Robust Sets and Robust Functions
A set D in a topological space U is robust if
cl D=ch int D. 2.

An open set G is robust since G=int G. The empty set is a trivial robust set. A closed
set may be robust or nonrobust. The concept of the robustness of a set is closely related to
a topologicel structure of the set. For instance, the set D={1,2} is nonrobust on R! but
it is robust in Z(=set of all integers) with the discrete topology.

The interior of a nonempty robust set is nonempty. A union of robust sets is robust.
An intersection of two robust sets may be nonrobust; but the intersection of an open set
and a robust set is robust. If A is robust in U and B is robust in V, then AX B is robust in
U XV with the product topology. A convex set D in a topological vector space is robust if
and only if the interior of D is nonempty.

A robust set consist of robust points of the set. A point u&cl D is robust to D (or a
robust point of D) if for each neighbourhood N(u) of «, N(u) int D# . A set D is
robust if and only if each point of D is robust to D.

A Function J defined on a topological space U is robust if the set

F.={u|J(w<c} (2.2)
is robust for each real number c.

An upper semicontinuous (u.s.c. ) function is robust since (2. 2) is open for each ¢; so

is a probability function on R”. The infimum of a family of robust functions is robut. A

sum or a product of two robust functions may be nonrobust; but the sum of a robust
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function and an u.s.c. (for the product case nonnegativity is required) function is robust.

A function J is robust if and only if it is robust at each point or by each point. Here,
J is robust at a point u if u€ F. implies u is robust to F.; J is robust by a point u if there
is a neighbourhood N(u) of u such that N(u) () F, is robust for each ¢. An example of a
nonrobust function on R' is

(0, u=0
JGo= 1. wto,
We see that J is nonrobust at «=0.

We can investigate a robust function by its epigraph. A function J is robust if and

only if its epigraph
epi (D={(u,o)|J(<c} (2.3)
is robust in the product space UX R,

When we consider a constrained minimization problem, the concept of relative
robustness is needed. Let S be a given set in a topological space U and u, € cl S. A
function J is said to be relatively robust to S at u, if for each ¢, uy € F, implies u, is robust
to F.(\S. A function J is relatively robust at «€ S if and only if J is robust at « with the
relative topology on S. If J is relatively robust to S at each point u in S, then J is called a
relatively robust function on S; or we simply say that J is robust on S.

In the following consideration we always suppose that there is a global minimum point
u” €8S such that J is relatively robust to S at this point x*. Or we simply make the
following assumption;

(R): J is robut on S.

2.2 (Q-Measure Spaces and Integrations

In order to investigate a minimization problem with an integral approach, a special
class of measure spaces, which are called Q- measure spaces, should be examined.

Let U be a Hausdorff space, ) a o field of subsets of U and x a measure on Q. A
triple (U,Q,) is called a Q measure space iff

i) Each open set in U is measurable.

ii) The measure x(G) of each nonempty open set G in U is positive: p (G)=>0.

iii) The measure p(K) of a compact set K in U is finite.

The n-dimensional Lebesgue measure space (R", Q, p) is a Qmeasure space; a
nondegenerate Gaussian measure g on a sparable Hilbert space H with Borel sets as
measurable sets constitute an infinite dimensional Q- measure space. A specific optimization
problem is related to a specific @ measure space which is suitable for consideration in this
approach. The construction of a Q- measure space in an infinite dimensional space is in
general nontrivial. For instance, it has been shown that for each »>>0 there exists on the
space [.. a nondegenerate Gaussian measure x such that the measure of an arbitrary ball
with radius » is zero. This measure is not a Qmeasure. We will examine several

Q- measure spaces later in Section 6.
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Since the interior of a nonempty open set is nonempty, the Q-measure of a
Q measurable set containing a nonempty robust set is always positive. This is an essential
property we need in the integral approach of minimization. Hence, the following
assumption is usually required:

(M): (U, 2, p) is a Q measure space.

The following lemma gives us a sufficient condition for the global minimum.
Lemma 2.1 Suppose that the conditions (A), (M) and (R) hold, and H.(\S# & ,
where H,.={u|J(w)<c} isthe level set of J. If

n(H.NS)=0, 2.0

then c is the global minimum value of J and H.(\S is the set of global minima.

In the following, we need other form of the above lemma.
Lemma 2. 2 Suppose that the conditions (A), (M) and (R) hold. 1f ¢>c¢" =
min,es) (w), then

w(H.(1S)>0. (2.5

2.3 Integral Optimality Conditions for Global Minimization

We now proceed to define the concepts of mean value, variance and higher moments of
J over its level set. These concepts are closely related to optimality conditions and
algorithms for global minimization.

Suppose that the assumptions (A), (M) and (R) hold, and ¢>>c¢* =min,esJ (w). We
define the mean value, variance, modified variance and mth moment (centred at a),

respectively, as follows:

M(J. s S) = ijmJ<u>dp
VU, e S) = mhﬁsﬂu)—z\ﬂ], ¢ SNy
Vi, $) = mjmsuw) — Odu
M,(J, i as S) = m&mum — " d

By Lemma 2. 2, they are well defined. These definitions can be extended to the case

¢ ==c” by limit process. For instance,

S
M}l(]’ 3 as S> }:?#(H‘k ﬂ S) H(kn

The limits exist and are independent of choice of {c¢,}. The extended concepts are well

g(](u)*a)”’d/l, m=1,2,-  (2.6)

defined and are consistent with the above definitions.

With these introduced concepts, we characterize the global optimality as follows:
Theorem 2. 1 Under the assumption (A), (M) and (R), the following statements are
equivalent .

1D u” €Sisa global minimizer of J over S and ¢* =]J(u" ) is the global minimum
value ;
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1) M(J, ¢*; S)=c" (the mean value condition) ;

i) V{J, ¢ 3 S)=0 (the variance condition) ;

iv) Vi(J, ¢" 3 S)=0 (the modi fied variance condition) ;

v) M, (J, ¢*5 ¢*; S)=0, for one of positive integers m =1, 2, +=+ (the higher

moment condition).

3 (-Convergence of Measures

As we wish to investigate the approximation to an optimal solution in an infinite-
dimensional space by a sequence of certain optimal solutions in finitedimensional
subspaces, it is instructive to consider a sequence of measure spaces and examine its
convergence. We have known several concepts of convergence of measures in the theory of
probability and stochastic processes, such as weak convergence, etc. But, these concepts
of convergence cannot work with Q-measure spaces. Thus, the concept of Q-convergence
is introduced as follows.

Let (s Urs )55 (Qs U,s p,) be measure spaces and (Q, U, ;) a Qmeasure
space, where U, is a subspace of U and Q,={ANU,|A€Q}.

Definition 3.1 A sequence of measures {,} defined on measurable spaces {(U,, Q,)} is
said to be Q-convergent to a Q measure y defined on (U, Q) if for each open set GCU
i (GNUD—>u(G)  as n—>co, (3. D

and denoted by g, ‘Qﬁu.

Remark 3.1 1. In [1] and [7] we introduced the concept of Q-convergent sequence of
measures which are defined on a common compact space U. Here, we generalize this
concept to the case that these Q-measures {y,} defined on different spaces.

2. In this work, we concentrate our attention to minimization problems in infinite-
dimensional spaces. Thus, we generally assume a finite measure x defined on a measurable
space (U, Q) 1. e, p(U)<+oo,

3. Since U is open itself, and p(U)< 4o, thus,

w(UNU) =p, (U )—>pU), as n—>co. (3.2)

4, Suppose G is a nonempty open set, It follows from (3. 1) that there is and integer
no such that p, (GNU,) >0 for all n=n, (n, may depend on G). Thus, in the following
consideration we will simply assume that {z,} is a sequence of Q measures.

The following theorem gives us several equivalent conditions for Q-convergence which

are useful in the sequle.
Theorem 3.1 Suppose (Urs Q15 p1) s (U, s Qys ) sosand (U, Qs p) are Qmeasure
spaces, where U, is a subspace of U, n=1,2,+-. Then the following statements are
equivalent .

1) For each bounded lower-semi continuous function J defined on U,
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.9 el

1) For each bounded upper-semi continuous function | defined on U,

JU”J d#”AJU] dyes
i) For each open set G in U,

w (GOUD—>u(G)
iv) For each closed set F in U,

w (FOU,D)—>u(F).

Proof. If J is u.s.c. , then—] is L.s.c. » and vice versa. Thus,

JU J d »JFJ d,A:)—L J du, »—LJ dpe. (3.3)
Hence, 1) and ii) are equivalent.
If Fis closed, then U\F is open; if G is open, then U\G is closed. For each closed F,

if p2, i’/j , then by ii1), we have,
(U, NF) =, (U, N (U\G)) =, UNU, NG =p,(U,) — 0, (U, NG
—>u(U) —pu(G) =p(U\NG) =pu(F) (3. 4)
i. e.,ii)=>iv). We can prove iv=>iii) similarly.
We now prove 1) and iv) are equivalent.
1) =iv): If F is closed then the indicator — I of F is bounded and L s.c. Thus,

we have

1 (F U,,)JU Ie dya, »JU Ii dpu = u(F). (3.5)
iV) 31) Denote C,‘+|>C,’ ’
D,’:{UEU‘(‘,<J(Z¢)<(‘,+1}:HL~i71\H(»I_7 (3.6)

where H. ={u| J(w)<c¢;} is a level set, which is closed because J is l.s.c. We have for
each ¢ >¢; s
w(D; U, =4, ((H, . \H. D NU,)=p,(H., NU,)—p(H, NU,)

ﬂﬂ(HgH )_/x(H[i ):/u(PI(,I,+1 \H{] )=p(D). (3.7
Suppose M(=>0) is the bound of J: |J(u) |<<M for all «€U. Construct a partition of
[—M, M]:

—M=c,<lc;<l-+c,=M. (3.8)

Then we have

HU”] dre. 7J.UJ dp‘< UU”] A — ti:;ci#”(Di N U")‘
+ | f‘lc,,l,,(D,. nNu, — Ec,ﬂ(m |
i=0 i=0

m—1

Depy—| dﬂ’ L+ L+ L. (3.9

=0

+

The first term on the right can be estimated, for any ¢=0,
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m—1

i=0

iJ (e, — ) du,

i—oY D:NU,

< max (1 —¢) » p, (U,) <<e/3, (3.10)

0<i<<m—1

if we choose the partition (3. 8) such that maxy<;<,—1 (c;+1 —c¢;) is sufficiently small. Note
also that 4, (U,) is bounded because p, (U,)—>p(U)< co. Similarly, for such a partition,
we can obtain I;<Ze/3. By (3.7) the second term I, approaches 0 as n—>co, This implies 1).

Remark 3.2 We are familiar with the concept of weak convergence of measures in the
theories of measures and stochastin processes. Recall that a sequence of measures {s,} on

Borel sets of a metric space U is said to be weakly convergent to a measure y if for each

bounded continuous function J.:U —> R, J J dp, — J J dp. The requirement for a
U U

Q-convergence is more than that of a weak convergence.

Q
Proposition 3.1 Under the assumption of Theorem 3.1, p, —>p if and only if for each
closed set F in U and for each bounded l.s.c. function J on U one has

JWFJ diy > JF] due. 3.11)
Proof. By the equivalence of (i) and (iv) of Theorem 3. 1 and by letting F=U in (3. 11),

we see that the condition (3. 11) is sufficient for p, —Q>p because U is closed. Conversely,
for each given closed set F' and a given bounded l.s.c. function J, we can prove (3. 11)
similarly to what we did in proving iv)=>1) of Theorem 3. 1. Here, (3.7) becomes

1 (D;NFOU,D—>p(D; N F). (3.12)
I, becomes

m—1
L= [ T de— Yemm nFAU

=0

< max (¢ —¢) » m, (FN U, <e/3, (3.13)

OZi<=m—1

and I, approaches 0 following from (3. 12). This completes the proof.

4 Optmality Conditions with Variable Measures

In this section, we will generalize the variable measure models developed in [1] and
[ 7] to consider approximating the constraint set in the space U by a sequence of sets that
are contained in the intersections of the constraint set and subspaces U, of U.

Let S be a closed subset of U, J a real-valued function on U. Suppose that U, is a
closed subspace of U, and S" is defined as a subset of S(YUy. (Often, we may choose S"=
SAU,.) The functon J restricted on U, can be regarded as a function on U,. Later on, we
will consider construction of U, and the measure p, on U,. In this section, under the

assumptions (A), (R) and (M), we examine convergent properties of the mean values,
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variances and higher moments in this setting.

Definition 4.1 Let ¢c>min.ecs J (w). We define

M, ¢s S5 s = mjmglﬂmdﬁ{,
V(. e S ) = mjmsnum —M(Js ¢s S'5 1)) ?dus
Vil s S5 ) = mjmgu(u) — ) dps
M,(Js s S5 as s = mjmgxﬂu) s M= 1.,

the mean value, variance, modified variance and mth moment (centred at a) , respectively,
of J over the intersection of the level set H.={u|J (#)<{c} and the constraint set S,.
Under the assumptions (A), (R) and (M), they are well defined.

Now we examine the convergence properties of the mean value, variance and higher
moments just defined. As usual, we consider that

c,=c, =minJ (w), n=1,++, and ¢, c}migl] (u)=c".
ue S" weS

Lemma 4.1 Suppose that c=c* » ¢,==c,; and ¢, yc. 1f p, —Q>/1, and
(S = (S). 4.1
Then,
}ij{}/‘”(Hf,, ﬂS”):Iu(H(.ﬂS). 4. 2)
Proof. Note that,
0=z, (SNU,) =2, (8" = (1, (SNU,) —pr (S)) 4 (pu(S) — 12, (S")).

Since S is closed, from p, i’# we see that,

1 (SNU,) —p(S)—>0;
Now, with condition (4. 1), we have

1 (SNU,) — 2, (S)—0. (4.3
We now prove

lim g, (H, NSNUD=pu(H.NS). 4.1

Since H.CH. and p, 4Q>)a , we have,
i (He N SaUD) =, (HNSOU,D—>p(H (1S).
It follows that
li{gi)nf/,c,,(Hf” ASNU)=p(H.NS).
Fix j. If n==j, then H(.”CH% » and g, (H. (1Sn U,,)</17,(H(I NSaU,) ., thus,
lir}?)iup w(H. NSOU, )<}i£r3 p (CH NSNuU,» =up(H, ns.
Letting j—>co, we then obtain, from the continuity of the measure s,
lir}’l:s:_up w(H. NSOU, )<1Lm p (H, NS =p(H NS).
It follows that the limit in (4. 4) exists afnd (4. 4) is valid. Finally, letting n—>co,
we obtain
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la (H, NS —p(H NS < (H. NS =4, (H. NSOULD |
+ e (H. NSNU,) —p(H.NS) |0,
where the first term tends to zero because of (4. 3). To see the second trem tends to zero,
note that the followings follows from (4. 3) again:
0<p,(H, NSNU,)—p,(H, 1S
=p, (H, N (SNUNS)
<, (SNU,\S")—>0.
Theorem 4.1  Suppose that for the minimization problems ¢* =min,es J (u) and ¢, =
minges J (w), n=1, -+, the assumptions (A), (R) and (M) are satisfied. Under the
conditions of Lemma 4.1, we have, forc=c"*,
(D lim,... M(J 5 ¢,5 S"5 ) =MJ 5 ¢5 S; p);
(D lim, . V(s 05 S"5 )=V 5 ¢5 S5 )5
Gi) lim... Vi (Jy ¢35 S /jn):Vl(]’ c; S; #);
Gv) lim, ... M, (J s ¢,5 "5 ¢u5 p) =M, (J s ¢35 S5 ¢;5 p).
Proof. We first prove that whee c>>c¢" the first equation (i) holds. Since x(H.(1S)>>0, we
can assume, by Lemma 4. 1, that i CH. N S") >0 for n sufficiently large. Thus, we have
My cis S p) —MU s ¢5 Ss 0

=—1 I S
B /17;(H[” N S”)Ju‘”msﬂj (u)d#" p(H, N S)J”(nsj (u)d/l
_ 1 B 1 -
a (/x,,(H(.” nNsH wpH. NS >JHL”mgl](u)d/x,,
S S B
+#(H« ns (JH(”ms”J (wdp, JHAHS(']U“ J (u)d#,,)
+;(J J Gud —J J (w)d >
«(H. NS U nsno, S P .
- Il + IZ + 13.
Since
1 - 1 . . n
Il|<;1,,(H(.”ﬂS“) #(Hlﬂs)‘ A« p(H. (1S,

where A is the bound of | J(«)| on S*N H. » and p, (H, NS )<, (U,), it follows from
Lemma 4. 1 that I, >0 as n—>co,

Next, we have

|IZ‘<,1(H+HS) *2A ¢ [, (H. NS —p, (H.NSNU,D |
. 2A S AS
\mﬂm( . NSH—u(HNS |

+|#(H(HS)7#7,(H(HSHU”) ‘)9

. Q
which tends to zero as n—>co because of Lemma 4. 1 and because p, —>u. I;—0 follows
from Proposition 3. 2.

When ¢c=c¢"*, since J(u)<c, on H. ¥ n, we have,
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1

M, c,; S7;ﬂ):m

| T <e.
HAHHS”

It follows,

lim sup M(J s ¢,5 S, w)<lim¢,=c=c".

o0

On the other hand, M(J, ¢,; S"; p,)=c, =c", thus,
lim inf M(J 5 ¢,5 S"; ) =c".

Therefore, the limit in (i) exists, and
Im M(J s ¢,3 S"5 p)=c" =M, ¢*; S5 .

The last equality is valid because of the global optimality conditions for constrained
minimization, see [ 2] and [7]. We now prove that (iv) holds. (Equation (ii) and (iii)
follow from (iv). ) When ¢>>c¢" or when c=c¢" and m is odd, the proof is similar to that of
the mean value case. Now we suppose m=2r is even and c=c"*. We consider the case r=
1 first. Since
Vills s S"5 ) =0 k=1,2,--
we have,
lim inf Vi (J, ¢,5 S*s5 ) =0.

We now prove that lim sup, ...V, (Js ¢,5 S"5 ) =0. Suppose, on the contrary, it does
not hold. Then there is a subsequence, we keep the same notation, V,(J, ¢,; S"; L) >27
>0. Thus, there is an integer N such that
VilJs s S"5 ) >ns  when n=N.
Since J is bounded below on H.(]S, so there exists a real number g0, such that
](u)+g>07 VuquﬂS-
Thus,
1

w(H, (1S

S S , )
i (H N sn)UH[”ﬂs,,(f(u)-O—g) du,

+[ e dn =2t

n

Vil cs S5 ) = JH[ LU=,

LU+ d#,,]> 7

H(” n
It follows that
(e, @)+ (gte)>2(g+c,) » (gte ) tp=2(g+c,) » (gte )+
Letting n—>co in the above inequality, we obtain
(" +g)+(gte ) =2(gtc") « (ghte™ )+,
which is a contradiction: because 0=%>>0. Therefore, whce c=c¢" the limit of (iv) exists

*

and is equal to 0. But, according to the variance condition, ¢* is the global minimum value
if and only if V1 (J, ¢"; S; ) =0. Hence, when c=c¢", we have

lm Vi (Js ¢35 S"5 ) =0=Vi(J, ¢" 5 52 p0).

When m=2r and r>1, M,,(J, ¢,; S"; C,5 p,)=0. Thus,
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lim inf M,,(J s ¢,3 S"s5 ¢u3 p) =0.

n—>co

On the other hand,
I S
w(H. S
I S
w(H. (S

=A""Vi(Js ¢35 "5 ) >0, as k—oo,
where | J () —¢,|<<A, Yu€H, NS.

These prove that
lim M, (Js ¢, S"5 ¢,3 ) =0=M,(J, c"; S; ¢"; p.

oo

The last equality hold because of the higher moment conditions for global minimization.

Mu(]’ Cns S”; Cu's ,Uu) - JH[ ﬂS”(](u) 7(3,,)”’(:1,(1,,

20— . 2
<A JHL U@ =),

The ablve theorem in fact gives us necessary and sufficient conditions for global
minimization with variable measure,
Theorem 4.2  Under the assumptions of Theorem 4.1, ¢* (¢, ¥ c=c¢") is the global
minimum value of J over S if and only if one of the following conditions holds .

(D lim, ... M(J 5 ¢,5 S"5 p)=c";

(D) lim, ...V (J 5 ¢,3 S"5 p,) =03

(i) lim, ... Vi (Js ¢,5 S*5 p,) =03

(v) lim,... M, (J s ¢,5 "5 ¢y pr) =0y m=1,2,-+-

5 A Variable Measure Method

In the previous section we have discussed the optimality conditions with variable
measures. There, the condition (4. 1) is required. In this section we first give a sufficient
condition for (4. 1) to be valid. With this condition an algorithm with variable measures is
proposed. We then prove that the algorithm produces a sequence of reals which converges

to the global minimum.

Theorem S.1  Suppose S"DS and p, —Q)/,L. If
(SO Z=p(S),  n=1,2,- . D
then
/1,,(5”)*/1(5).
Proof. We have, from (5. 1)
lim inf p, (S =u(S). (5.2)

n—>co

On the other hand, since S"CSNU,, so
ﬂzz(su)<#7z(sﬂUn)7 71:1’2""

It follows from g, —Qm that
lim sup g, (S")<lim sup p, (SNU,) =lim z, (SNU,) = p(S). (5.3)

n—>oo 70

Combining (5. 2) and (5. 3), we have proved that
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lim 4, (S =pu(S).

Remark 5.1 At first glance, it seems that the condition (5. 1) is unrealistic, because S"
CSNU,CS. However, quite often one can construct a measure in an infinite dimensional
space which satisfies this condition. See examples in Section 6.
We now proceed to describe the proposed algorithm. Let U;, U,, **+, be a sequence
of subspaces of U such that
U, CU,CU;---CU

and

cl{ U1 U, ) =U.

Let S' =S N U,, then S' is robust in the subspace U,;. Take a real number ¢; >
min,es, J (u). Construct a Q measure p; satisfying (5. 1). We then have p; (H,, NSH>0.
Let

=M, 5 S'; /11)-
Let

S*=SNU,,
then S* is robust on the subspace U,. Construct a Q measure g such that the condition
(5.1) is satisfied. In order to continue this process we need to prove the following lemma.
Lemma 5.1 If,(H, (S')>0 then p, (H,, (1S*)>>0.
Proof. 1f c;=cy» then py (H,, (1S*)>>0. Indeed, suppose, on the contrary, s (H,, NS
=0, then ¢, is the global minimum of J over S*, but ¢; >min,es J(u) =min,cg J(u)=
¢y » this is a contradiction.
Now suppose ¢;<Zc¢;. If p (H,, N S?)=0, then ¢, is the global minimum value of J

over S%, 1. e.,

Jw=c;,, Yu€eSh.
Since S'CS?, thus

Jw=c,, Yu€ St
Because 1 (H., NS>0, so there exists e >0 such that 0<e<(¢; —¢;, and

w1 (G.NSH>0,
where
G.={u|c; +e<J(w)<ci )

Hence,

1

fr— . l- R —
Co M(]9 (G S H /,é]) #1(H[] ﬂ SI)JHLIﬂslj(u)d#]

1

a m (JH{;1 I'WSI\GEHS' ](u)dﬂl +JGEHS' ](u)dﬂl )

C

> 2
- H1 (Hﬁ ﬂ ShH

_ wm(G.NSH
CZ+€/11(H(1 ﬂsl)>62.

1y S 1 . 1(Gsﬂsl
(u(H, NS)—Gu(G. NS ))H‘Z“)#Jl—l(Hfl s
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It deduces a contradiction. These complete the proof.
Replacing ¢; by ¢;» we can construct S° and y; in a similar way, so that p; (H,, NS
>0. In general, for each positive integer n, from c,—; we construct S" such that
S—'cCs'CS
and construct a Q measure y, such that
1 (S Z=p(S)
and let
o1 =My 5 S"5 ). (5. 4)
Applying this algorithm, we obtain a decreasing sequence
C1 220 22000 20, 1 2
and a sequence of sets
H NS'={ucS'|](w=<c,}, n=1,2,- (5.5)
Remark 5.2 Since 4, (H,, NS>0, n=1,2,+-+,
c,>>c, =minJ (u).

ueS"
Theorem 5.2 With this algorithm , we have

lime,=c* =limJ (w),
n—>8 ueS

and

1%} igl cl

Proof. According to the algorithm, we know that ¢,—>c¢, =c¢*, for n=1,2,++, and the

| (H,NSHCH" . (5.7

n=

sequence {c,} is decreasing. Thus, the limit
lim ¢,=é=c” (5.8)

n—>co

exists. Letting n—>c° in (5. 4), we obtain
c=limc, =lim M(J, ¢,; S"; #,,):M(]a ;3 S /u).

n—>co n—>co

It follows from Theorem 4. 2 that ¢ is the global minimum value of J over S, i.e., ¢=c*.

Furthermore, since H, (1S"CS, n=1,2,+--, so we have U,~,(H. (1S)CS, k=1,
2,+++. By the assumption (A), S is closed, thus, we also have, clU,~,(H. S)HCS, k=
1,2,+--. Hence,

oo

N ol UH, NS)HCS. (5.9)

k=1 n=*k
Moreover, suppose u is a point of the set (1,2, ¢l U,~x(H, (1S"), then it is a limit point

of a subsequence u, which consists of elements in H, (1S": lim, ...u, =u. But J(u, )<
Cu s it follows from lower semi-continuity of J that
](u)glimcni =c*,

i.e., u € H". Finally, from the assumption (A), the set H. is compact, the sets
cdU,=(H. NS"), k=1,2,+, are compact as they are closed and contained in the compact

set H. . Note also that these sets are decreasing (nested). This implies that

N el UH, NSH~2. (5.10)

n==r

©o
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The proof of the theorem is now complete.
Corollary 5.1 Let ¢, =minees J (w) and H ={u€eS"|Jw) =c; }, n=1,2,++. Then

M L *
lim ¢ =c*

oo

#N el (

Remark 5.3 In this corollary the value ¢, and the set H, is independent of the choice of

=)

/H:)CH*.

n=~r

the measure p,. It is only required the existence of a sequence of Q measures y, onU, s n=
1,2, «=-. In practice, we usually take a fixed integer n and find ¢, and H, as the
approximations of ¢* and H* , respectively. Moreovevr, if J is continuous, then the last

set inclusion above becomes equality.

6 Examples

In the previous discussion, we construct a sequence of subspaces {U,} of U with the
property that cl {U,=, U,}=U and a sequence of Q-measures {y,} defined on subsets S"=
U,NS of subspaces {U,}, where S" is robust on U,, n=1,2,+-. In order to prove the
convergence theorem we require that {z, }Q-converge to x and that the condition (5. 1) be
satisfied. At present stage, we are unable to provied sufficient conditions to guarantee the
existence of the constructios of {U,} and {u,}. However, with specific structures of
certaing given problems, one oftem can realize the required constructions of {U, } and {u, |
in order to employ our variable measure algorithm. In this section we give two examples to
show the constructions {S"} and {4, } for a given constraint set S. One of them is from an
optimal control model, and the other one is from the theory of differential games.
Example 6.1 ILet U=/* and

S={uel’| || ul <M},
where M is a given constant. In optimal control the constant M means the bound of energy
of the control u. See [5]. Let
U,={u€l?lu=C(aaz,**s a,,0,0:+)} (6. 1)
and
S'=U,NS
i. e., the nt+1st, n+2nd, ++, components of each element of S" are zeros. Obviously
S'CSTI TS, n=1,2,00n,
Suppose p is a nondegenerate Gaussian measure on /* (see [9]). It is a Q-measure.

For each measurable set D in /%, let
D”:{u:(al 9%y Uy s bqul ’ "')6[2 ‘ (Cll 9" e ly s Uyt 9'")6D} ’ (6 2)

i.e., D" and D have the same projection on U,. D" is a measurable set in /*. Now we

define the measure of D as
w(D) =, (DOU,. (6.3)
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We remark that, according to the construction (6. 2), we have
SCS',  n=1,2,-.
Indeed, suppose u=(a;» ***s a,» @yi1» =*)ES, and || u || <M, i.e., 2171 a? < M. Tt

follows that,
Za?<M29 i.e-v (alv"" 0, "')65”7 Vnzlvzv"'
i=1

Thus, € {u€l?|lueES)=S", n=1,2,--. Hence,
i (SNUD =1, (S =p(SHO=p(S),  Vn=1,2,

Finally, we have to prove that the sequence of measures {yu,} Q-converges to .

Suppose F is a given closed set in U=/*, then
FCF',  Va=1.2.. FCF.

Conversely, suppose that there exists an element « € ;2 F* and u= (@, s+ ays ***).
Then for n=1,2,---,

w,: =y sy a,s 0yo) EF.
Note that

= a;i—>0 as n—>oo,
k=n+1

Thus u=lim,...u,. As F is closed, u& F. Therefore,

oo

F=lim F'= F".

n—>co n=

It follows from the continuity of the measure u,

o (FNUD =p(FHY—>u(F),  n—>co,

1. e.s {p, ) is Qconvergent to s.

| o, —ull?

Example 2 Let {b,} be given sequence satisfying the following conditions:

b,>0, V,=1,2,-, ibn:M

n=1
For instance, we can take, b,=M]|2", n=1,2, +--. Let
S={{a,} la,|<b,s n=1,2,++}.
It is a convex compact set of the Frechet space U= I[,2, R,, where R, is a one-
dimensional space consisting of real numbers, n=1,2,+++ Since S has nonempty interior, S

is a robust set in U.

Let
1 _
p” ([) :J 2[)” b [)H<t<b7l b
0, otherwise.

Let B" be a Borel set in R", B, a cylindrical set with a base B". Let { be the smallset
o-field generated by this kind of cylindrical sets. Then we have a measurable space (U,
Q). Define
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(B = | (a0, (1)t e, (6. 4)

then we have a family of consistent measures. By the Kolmogorov Extension Theorem
[8], we obtain a measure p, and (U, Q,u) becomes a Q measure space. See [4].
Suppose D is a measurable set of U. Let.
U,={ucl?lu=C(ai,as s a,» 0, 0, =) }=111, R, X0 (6.5)
where 0=(0,0,++), and

D":{u:(al 9"t Ay buvl ’ ) | (al 9%y Ays Ayt °")ED}
i.e., D'isa cylindrical set with the base which is the projection of D on [I%; R;. Define
1 (DOUDp= (D"

and
S'={u€ES|lu=C(a;saz,=**» a,s 0,5 =) }.
Obviously, S"CS""'CS. Moreover, S" is a robust set in R*=11’-; R;. And, it follows

from the definition,

SCS', n=1,2,- (6.6)

and
p(H<p (S =11, (S")y n=1,2, (6.7)

Q .. . . .
We can prove that p, —>p similarly, and obtain {S"} and {p,} with the required

properties.
7 Conclusion

Approximating global optimalities of objectives on functional spaces by finite
dimensional solutions is of fundamental significance because numerically one can only find
finite dimensional approximations to the global minima on functional spaces. The variable
measure method developed above is not only of theoretical interests but also of practical
value. In our recent work [ 12 ], the method is utilized to derive a discontinue penalty
function method which enables us to numerically solve optimal control problems with

nonconvex state constraints with great efficiency.
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Solution and Control of PDE
VIA Global Optimization Methods "

Abstract: Based on the concept of pequivalent solutions (not to be confused with
approximations to the exact solution), a new consideration is given to ill-posed-'*) and
overdetermined PDE problems and to problems with nonexistent solutions'*. Then a new
method based on full global optimization techniques is developed for solution and control of
processes described by partial differential equations. The ideas are illustrated by

examples, and a case study is proesented in comparison with the quasireversibility
method™.

1 Introduction

For solution of ordinary differential equations, effective numerical methods(e. g., the
Runge-Kutta schemes, etc. ) are available, so that system of ODEs, for which a control
problem is formulated, is integrated independently and without the use of a global
optimization method. Unfortunately, this is not the case for PDEs where the solution,
even its existence is a problem in itself. That is why, in nontrivial cases, the problems of
solving and control of PDE should be approached together in one synthetic algorithm.

The very popular method of finite differences delivers an yequivalent (see below)
direct solution presented as a set of points on a finite grid. To determine an intermediate
point on such discrete representation of a surface, one has to interpolate or to refine the
grid and make another iteration. Due to the fixed structure of finite difference schemes,
they are generally not appropriate for solution of optimal control problems for distributed
parameter systems (PDE), except for problems that admit (or can be perturbed to admit)
reverse-time integration; see [ 4] for details.

The finite element methods, sees e. g.,[ 7,8 ] and some recent results in [9,10], are

applied usually under the assumption of global Lipschitz condition* ', The basis
functions ¢ (x) are fixed and the solution is represented in the form: w= 2;1 g

(2); the time coordinate is usually singled out, and simply ¢/ =¢"” (t), cf. [9, p. 60,

Formula (2. 13)]. This usually leads to more iterations in comparison with a scheme

% In collaboration with Efim A. Galperin. Reprinted from Computer Math. Applic.. 1993,25(10):103—118.
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where basis functions are not fixed. Of course, this method also finds an 7 solution (as
probably any iterative method, excepting special cases where an exact solution might be
found in a finite number of iterations).

In the framework of global optimization, any method involving undetermined
parameters can be used for solution and control of PDE systems. Here we outline a
possible procedure for a recent very promising grid free scheme, with floating hyperbolic
interpolants as basis functions. The method, initially developed to represent topographic

<L11]

profilest'', has been tested and proved to be an efficient tool for accurate spatial

approximations and partial derivative estimates in R”; see [11,12] and bibliography
therein,

th

Consider an " order system of m partial differential equations in ¢ unknown real-

valued C"-functions w; ,***,w,, defined on an open set XC R*,n=>1.

F,(x,DPw; (x))=0, i=1,,m; 1<j<q; x€XCR" (1. D
Here, Df runs over all local differential operators on C"-functions and has the form:
aﬁ
}3: . — eoe < . .
D ar s P ey (1.2

where we set x,=t, the time variable. The numbers m, g, r are unrelated, and we use x,
instead of ¢ for symmetry where appropriate, so that x=(x;,**,2,—1.0)=(x1,**,2,) €EX
CR". We assume that F;,i=1,+,m, are continuous functions of their arguments and we
use vector notations F=(F;,---,F,) ,w=(wy,***,w,) , to write (1. 1) in a shorter form:
F(z,D’w(x))=0, x€EXCR", FER", w&R-" (1. 3)

2 Exact and -Equivalent Solutions of PDE

Let w(x)€C", then we have from (1. 1), (1.3):

F:(x,Dfw; X)=f(x), i=1,,m or (2. D

F(x, D’w(x)=f(x), xEXCR" (2.2)

where f(x)={f1(x),*+, f,,(X)} is a continuous vector-function corresponding to F and w.
If w(x) is a solution of (1. 3), then f(x)=0, otherwise f(x)ZZ0 in (2. 2).

Assume that X is bounded, then the closure X= ¢l X CR” is compact, thus, from
any cover of X by open sets ), one can extract a finite cover {Q,}, XCUQ,. Consider all
possible finite covers {Q,} and assume that the equations (1. 1), (1. 3) and w€& C" are
defined over the union U Q..

Lemma 2.1 A C'-function w(x) is a solution of (1.1) if and only if for any finite
cover {£,}, we have
| F.uDworde= | f1Gode=0 i=1wms YQY{Q),UQDX. (2.3
Q, Q,
Proof. Necessity is obvious since if w(x) is a solution of (1. 1), then f;(x)=0, i=1,-+,m.

Suf ficiency. Suppose, on the contrary, that (2. 3) holds but w(x) is not a solution
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of (1. 1). Then there is an index #,, 1<<;<<m, and a point x, € X such that f; (x,)70,
say, fi, (X,)<C0. By continuity of f; . there is a neighborhood Nj; (x,) C X such that
fi, (x)<<0 for all x& N;(x,). Since the measure (N, (x,))>>0, so we get

fi, (x)dx<<0,
A‘VS(XO)
contradicting (2. 3) if we take N3(X,) as one of Q, in a finite {Q,}.

Lemma 2.2 A C™-function w(x) is a solution of (1.3) if and only i f

j | F(x, DPw(x) | deJ | £ || dx=0. 2.1
X X

Here |
Proof. Necessity. If w(x) is a solution of (1. 3), then f(x)=0 and (2. 4) follows.
Suf ficiency. Suppose, on the contrary, that (2.4) holds but w(x) is not a solution
of (1.3). Then there is an index 7, 1<{i{;<{m, and a point x, € X such that fi, (x0) 70,
hence, | f(x,) || >0. By continuity of | f(x) || , there is a neighborhood N, (x,) CX
such that || f(x) || =0 for all x€ N;(x,), contradicting (2. 4) since p(N;(x,))>>0.
Definition 2. 1 For a function w& C" and an equation F;=0,1<i<m, of (1. 1) wedifine
the divergence A; as follows:
A=NAF;, w(e )):max[iggf,-(x) , |xil€1)f<f,-(x) | ]>=0. (2.5)

| is a norm in R”.

If F;, w(x) are defined over the union JQ, DX, then in the bracket one can replace X by
the closure X and sup, inf by max, min, which do exist since f;(x) is continuous over a
compact )?

Definition of a devergence for the whole system (1. 1), cf. (1. 3) with a vector-
function F (obvious possibilities: A=maxA; or A= Z A,;), depends on a physical sense

of the problem and may involve multi-objective global optimization, see [ 13, Chapter 8].
We do not consider this question here.
Clearly, w(x) is a solution of (1. 1), (1. 3) if and only if all A;,=0,i=1,+,m.

Otherwise, a A; >0 signals either a large discrepancy of a candidate w(x) (which, thus,

0
has to be discarded) or an imprecision that could be attributed to inaccuracy of the model
(1. 1). In the latter case, w(x) is acceptable as a description of the process (not as an
exact mathematical solution of the system (1. 1), (1. 3)). This justifies the following
definition.

Definition 2. 2 Given >0, a function w, (x) € C" is called an 7 equivalent solution
(y solution) of (1. 1) iff

A=A, w,(+ )<y, i=1,,m. (2.6)

0

The 7 equivalent solutions form a class F,CC" of functions that are “equally good”
(i. e., proesent the same goodness of fit quality) with respect to equations (1. 1), (1. 3).
This concept can be naturally extended onto problems with initial and boundary

conditions, i.e., requirement (2.6) can be extended to include boundary, initial,
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intermediate and other conditions, see Section 3 below. Obviously, two 7 solutions do not
have to be close themselves (in any sense, see Examples 3.1, 3. 2 in Section 3). They are
“close” with respect to the conditions that are included in a particular concept of 7
equivalence similar to Definition 2. 2.

The class 3,CC" of Vequivalent solutions contains all exact solutions; a particular s
solution may approximate one, several or none of exact solutions. Moreover, 7 equivalent
solutions may exist when no exact solution exists, see Section 4 below. To emphasize the
difference between an gy solution (i. e., yequivalent solution) and an approximation of a
solution (i. e., “approximate” solution, an ambiguous term we try to avoid), the following
definition is introduced.

Definition 2.3 Given Y>>0 and a solution w(x) € C"(no matter, exact or yequivalent) , a
function w(x) defined on X is said to be a yapproximation to w(x) iff

[ wx)—w(x) | <y forall x&X. 2.7
Here || « || is a norm in RY.

It is clear, that w(x) may not satisfy any of the equations in a PDE problem; w(x)
may be non-differentiable and even discontinuous. At first glance, the consideration of
such w(x) may seem irrelevant to PDE problems; however, pointwise surfaces delivered
by the finite difference method, see, e. g., [ 5,6], represent a discrete y-approximation
w(x) to an exact w(X) or yequivalent w, (x) solutions, which approximation tends to w(x)
or w,(x) with infinite refinement of the grid. This convergence follows from (2. 7) as y—
0, and it will be convergent to the exact solution, if a finite difference scheme starts from

an exact initial or boundary condition.
3 IlI-Posed Problems Revisited

To provide further motivation for the consideration of 7 equivalent solutions and to extend
this consideration onto boundary and initial conditions, let us examine two examples.
Example 3.1 (J. Hadamard, [1]). Consider the initial value problem

dw  Fw_

o’ oy 0 (3. D
w(x,0)=0, wy(:c‘,O):%sin nx. 3.2

Here wy:%'. The exact solution is
w(x,y):%sin nx sinh n y. 3.3

The Cauchy data (3. 2) tend to zero uniformly as n—>co whereas the solution (3. 3), if y7=
0, oscillates between increasing limits and is unbounded as n—>co, Since w(w,y)=0 is the
solution of (3. 1) with zero data w(x,0) =w,(x,0) =0, we see that for large n in (3. 2) a

small change in the data, cf. (3.2), produces a large change in the solution, cf. (3. 3),
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for y740 and large n. Thus, the dependence of the solution on the data is not continuous.
Such problems are called ill-posed. In contrast, problems for which small perturbations in
the data result in correspondingly small perturbations in the solution are called well-
posed.

Now, consider the family of 7 equivalent solutions

%sin nax sinhny, ngl,
w, (x,y) =/ 717 Q3.4
lO, n>—.
7
Here, we see that (3. 4) satisfies (3. 1), the condition w,(x,0)=0 holds, and
‘% ow 1 %1nnx<7], at the point (x,0), Vn (3.5

so that (3. 4) is yequivalent to (3. 3) and to the solution w(x, y)=0 in the sense of
Definition 2. 2, with possible non zero divergence only in the condition on w, (x,0). We
see also that with a small change in data (3.2), as n>>1/%, one can simply take w,=0 as
universal 7 equivalent solution which remains the same for any such small changes in (3. 2).
Hence, the problem is not ill-posed if we agree to accept w,=0 as 7 equivalent solution.

Example 3.2 (E. T. Copson, [ 2, p. 53]). Consider the same equation (3. 1) and two

Cauchy initial value problems:

(2) w (2,0)=a?, 220 (3.6)
oy
(D) ws (220 =2 %;“O):%sm nz. 3.7
The solutions are
(a) w=a2—y", (3.8)
(b wZZIZ*yzﬁ—nlzsinnx sinh 7 y. (3.9

Although the data for w, tend to the data for w, as n—=>co, the solution w; does dot tend to

w;. Thus, there is no continuity with respect to initial data and the problems are ill-

posed.
However, if we consider yequivalent solutions and take
JU& ’ ngl ’
w,= 17 (3.10)
lwl , n>—,
7

then we see that it solves both problems (a) and (b) in the sense of Definition 2. 2, since

‘ ow,

iln n x<y, at the point (z,0), Vn,(G=1,2).

Moreover, if n—>co, then (3.7) tend to (3. 6) and w,>w, , which means continuity with
respect to initial data.

Remark 3.1 It should be noted that the term continuity is improper with respect to 7
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solutions meant as a class of 7equivalent solutions; however, a particular 7 solution may
include exact solutions like (3. 4), (3. 10) with respect to which the limit operation and
the term continuity can be applied.

We see that the notion of well-posedness [ 2, pp. 51 —53; pp. 108, 109, 450 — 455 ]
concerns only exact solutions. It is dissolved when applied to 7 equivalent solutions.
However, yequivalent solutions are natural due to the imprecision of model equations and
to impurity of environment in which physical problems are considered. Moreover, it is 3
equivalent solutions (or their yapproximation w(x), see Definition 2. 3) that are obtained
in computations. We have, therefore, to consider sets (classes) of 7 equivalent solutions
pertaining to particular problems. Here, the notion of well-posedness reappears again in
the global structure of the set of 7equivalent solutions and not in the behavior of

equivalent solutions in the neighborhood of the initial data.
4 Overdetermined PDE and Problems with Nonexistent Exact Solution

If m<<qg in (1. 1), then system (1. 1) is said to be under-determined; such systems are
studied, e. g., in [ 14 ] via the convex integration method introduced in [15]. If m>>q, then
system (1, 1) is overdetermined and, in general, does not have a solution (exact)
especially with initial and/or boundary conditions added. If m =¢q, then such a system
normally has a solution which is unique under certain initial and/or boundary conditions;
though, even in this case, there are examples to the contrary.

Systems or equations with nonexistent solutions are usually discarded as badly
formulated. However, such systems can be viewed as approximate physical models with
appended supplementary conditions intended to provide certain desirable features to the
process. In this respect, one could mention overdetermined or degenerate linear algebraic
systems Ax=b with rank (A,b) >rank A which do not have a solution in the usual sense
but do have many least-squares solutions that deliver min || Ax—b | and represent, in
fact, 7equivalent solutions to the system. One of those 7 solutions is the Penrose [ 16,17 ]
solution which renders min || x || and, thus, provides accommodation of conflicting
requirements in Ax=b with the minimum resource alloction. This solution is given by the
so-called Moore-Penrose pseudo-inverse matrix, x=A%b, which in the usual case coincides
with the inverse matrix, A¥ =A"' if det A70; for an extensive account on overdetermined
linear systems and corresponding generalized inverses, see [ 18].

It is clear that overdetermined PDEs and problems with nonexistent solution may have
7equivalent solutions, and in this case may represent a physical reality despite
mathematical nonexistence of an exact solution. Let us see that a problem may have
equivalent solutions for any >0 but not for »=0.

Example 4.1 (P. R. Garabedian, [ 3, p. 451]). Consider the Cauchy initial value problem

of determining a solution w=w(x,y) of the Laplace equation
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w.z:x-JFww:O’ x€(0,e), ye(_s,s), 4. D

which fulfills initial conditions of the form

w(0,y)=0, w0, y=f(y, y&E(—e,e), 4,2)
where w :a—w,w..:az—w w, _ow
Toox T oY oyt
It is shown [ 3, pp.451—452] that, if f(y) is not analytic at y=0, for example, if
SGo=lyl, (4.3

then no solution of (4. 1) — (4. 2) can exist in the neighborhood indicated.

However, the function (4. 3) can be uniformly approximated up to any precision 7=>0
by polynomials (which are analytic functions) and by the Cauchy-Kowalewski theorem,
there is a unique analytical solution of (4. 1) — (4. 2) for each of those approximations of
f(y). Hence. there are 7 equivalent solutions of (4. 1) — (4. 3) for any >0, but not for »
=0 (the exact solution). In a physical reality, one cannot expect that conditions (4. 1) —
(4. 3) can be realized exactly, thus, it is the ysolutions that really count. In this sense,
the problem (4, 1) — (4. 3) is correct and perfectly solvable and the series method with the
Cauchy-Kowalewski theorem presents a powerful tool for solution of problems that admit
analytic approximations.

We see that, if one considers yequivalent solutions, the situation with ill-posed and
well-posed problems and problems with nonexistent (exact) solutions is quite different.
Here we have to study the sez of yrequivalent solutions and the structure of this set may
provide an insight into the question of which problem is correct and well-posed and which
is not,

We see also that with the notion of y-equivalent solutions overdetermined PDEs and
problems with nonexistent exact solution can be considered and solved (in a new sense).
Moreover, the solution of those problems can be obtained through an iterative method in
the same way as the solution of a “normal” problem with an existing exact well-posed
solution.

To devise such a method, we use full global optimization techniques [ 13,19,20] with

the special multiquadric [11,12] representation for an 7 equivalent solution.

5 Solution and Control of PDEs Preliminary Lemmas

For most partial differential equations currently used, the functions F; in (1. 1) are
Lipschitz continuous. If we consider C-functions w; (x) that have piecewise continuous
(r+1)" derivatives in X or in UQ,D X, then w; (x) and the functions f;(x) in (2. 1) will
be Lipschitzian over X, that is,

o= fGOI<L [ x—xX"|, i=1,-m; x,X€X, (5.1
for some constants L, >0 that can be calculated if Lipschitzian constants for F, and

sup |w® |, k=1,+,r+1, are known. We assume, henceforth, that F,; and w; are such
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that (5. 1) holds and we call this case Lipschitzian PDE (Lip PDE) problem.
Given >0, there is a finite e net X, = {X; +***,Xn } € X for a compact XC R". Denote
by
Q.={x| [[x—x || <e.x€X}, s=1,-,N(o), (5.2)

where || ¢ || is the Euclidian norm in R", the compact subsets associated with this e net.

A family of such subsets, obviously, represents a compact e-cover for X and, in view of
(5.2), we have

. Neo _
X= g Q,. (5.3
Lemma 5.1 [If for a Lip PDE problem w(x) is such that
F,(x,D'w(x)) | =, =fi(x)=0, s=1,-+,N(e), i=1,.m, (5.4
then
A<Lge i=1,",m. (5.5

Proof. Let x/ be the arguments (different for different i) at which the values of A; in
(2.5) with X, max, min instead of X, sup, inf are achieved, i. e, A;=| f; (x/ ) |. For
every fixed 7, there is a subset 55[ of (5. 2) such that x 6?),,,[ , 1<{5;,<{N(¢). Taking X, €
(_25’ , we obtain from (5. 1), (5.2), (5.4):

A= =) —filx ) [<L; || x7 —x, || <Le.

Remark 5.1 It is clear that condition (5. 4) in Lemma 5. 1 can be relaxed. In fact, we

need only f;(x,) =0 for those s; that indicate Q, to which 2 belong. This reduces the
number of required roots in (5. 4),
Lemma 5.2  Suppose there exist w;(x) € C"satisfying (5.4) and let wi(X) be a collection
of functions defined over Q,, s=1,++,N(e), and such that

1. w!(x) is Lipschitzian over Q.. with a constant L7 ;

2. there are points v’ € Q, such that w!(x}) =w;(x),s=1,-+,N(e).

Then within each 0, we have

|w; (x) —w! (x) | <2(L;+Le. (5.6)
Proof.
[w; (X) —w! (%) | = [w; (x) —w; (x)) +w! (%) —w! (%) |
< w; () —w,; () |+ [w! (x)—w! () |<L; | x—x || +L! || x—x! ||
=L, +L) || x—x,+x,—x | <L, +LOC[[ x—x, || + [ x,—x || )

<2(L;+Le,
where L; is the Lipschitzian constant for w; (x) existing since w; (x) are C" and defined over
Uua.=X.
This almost obvious Lemma is important since w! (x) may be nondifferentiable over
Q.. Of course, w! (x) do nor satisfy a given PDE (1. 1) and do not represent an s
equivalent solution for (1. 1). The functions w! (x) are y-approximations, cf. (5. 6) and

(2. 7), with y=2¢ max(L; +L!), of an existing 7 equivalent solution w; (x) with 7]<e
Jss
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EE,E‘),E,L"’ see Lemma 5. 1; computationally, w! (x) can be used to calculate 2 (L; +1J)
e—p%ecise values of an unknown w; (x).

Of course, it is difficult to guess a candidate w(x) satisfying (5. 4) for an e net chosen
in advance. However, we can always take a convenient family of C"-functions w(w, q)
where & RV is a vector of undetermined parameters, fix basic points (nodes) x, & R",s=
1,-++sN* ,N*<CN, and make a convenient partition (or a covering) of X into {Q,}, XZ U
Q. without fixing e >0 as in (5. 2). Then, we substitute w(w,q) for w(x) in (5.4) and
solve the system for q:

f(x,q) =0, f=(fi,,f.), s=1,-,N", (5.7
which can be converted to a simple global optimization problem and solved, e. g., by the
cubic algorithm, see [ 13, Section 11.1].

Let q° be a solution of (5. 7). Then w’(x) =w(x,q") satisfies (5.4) and we are only
lacking e which corresponds to our partition (or covering).

Consider the closed sets Q, of our partition in place of X in (2. 5); this will define
partial divergencies §; which can be readily computed by (2. 5) with max, min instead of
sup, inf. Now, we have

A;= max 6y, 1=1,,m, (5.8)

1<s<N”™

which can be used as a quality test for w* (x). In this procedure we do not need e nor the
Lipschitz constants L; in (5. 5).
Vice versa, if we know all L; and can calculate

e= max max || x—x, | » (5.9
1<s<IN™ x€Q,

which is easy for convenient coverings by cubes or spheres, then we use the estimate (5. 5)

and we need not solve optimization problems (2. 5) for §;.

6 Iterative Method Based on MQ-Functions

Following R. L. Hardy [11, pp. 164 —166], consider a finite sum of straightline

segments in R?:
N

H= D) ale—a.|, x€[ab], . ER. (6. 1)

k=1
A plane Lipschitzian curve w(x) of finite support (i. e., defined over a finite interval) can

be represented by (6. 1) with any desired accuracy. This means that, given y>0, there
are N(9), xxs a; (some points x; may be fixed, then N=N(y,{x,})), such that

|H(x) —w(x) | <y, forall z€[a.b].
If w(x) is given by a differential equation and we want to approximate also its slopes, then
we have to provide for the existence of derivatives of H(x). This is done by considering
hyperbolas in (6. 1) instead of straightline segments. If we want to accommodate surfaces

in R*, then we have to convert hyperbolas to hyperboloids (circular for simplicity), this
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yielding the equation:

N
H(x,y)= 2 ar (x—2)?+(y—y) % i V2. (6.2)
k=1

Extension to R" is straightforward. Let x€ R*, x* € R", then we can write [12, p. 129]:
N

N n
Hoo= 3 al [ x—x |24+ 1= X a[ 2 <I,—I¢>2+c;~§]“, (6.3)
k=1 i=1

k=1
where x;, 2% are coordinates of x,x* € R". Of course, the construction (6. 3) can be

modified by introducing other interpolants or by adding certain terms (e, g., see [ 12, pp.
130, 133, 148, 150 ) according to particular problems, which may improve the
approximation or speed up the computations. Here we consider the original quadric surface
(6. 3) and describe how to use it in the general global optimization framework for solution
and control of partial differential equations.

Consider again equation (1. 1) or (1. 3) and assume for simplicity that m=qg=1.
Substituting H(x), (6. 3), for w(x) yields the relation

Fx,DPHX))=f(X,{ar} - {x*},{c,})=0, VYxeXCR". (6. 4)

Since H has the standard form (6. 3) and F is given, so f( ¢ ) can be easily computed as a
function (by a special subroutine) or as a number (for fixed X, az» X', ). H m>1,¢>1,
then f in (6.4) will be an m-vector f, and ax» x*, ¢; will carry second index j=1,+,q. In
the sequel, we include this case in the general framework and introduce simplified
notations as follows. All undetermined parameters are considered as components of a
vector q of variable dimension (not to be confused with ¢ in (1. 1) as a bound on index j),
whereby nodes x* € R" are sometimes removed from ¢ and considered separately. When
convenient, certain entries may be included or excluded in a function notation, for
example, f in (6.4) may be written as f(x,q), f(x,q,x*), f( + ) depending on the accent
on certain entries. Throughout this section, we use the Euclidian norm | « ||.
Procedure 6. 1

Consider the functional
J@= | [ 1) | dx, (6.5)
X

and apply a full global optimization technique [ 13, 19, 20 ], to find the global
minimum value

p’=minJ (q) =0 (6.6)
qe

and the set of all global minimizers
Q={qeQlJ(@=p"}. (6.7
Here, Q=FE X K where x* € EC R” (the sets X and E are unrelated) and K is a known
rectangular set (box) of parameters {akj Vs {ij ¥
If p° =0, then by virtue of Lemma 2. 2, exact solutions are provided by H(x,q),
(6.3), with q={as»> x¢s .} €Q". If p* >0, then we can either accept an 7 equivalent

solution, p=max A;, (2.6), corresponding to actually employed parameters from the set
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Q' of (6.7), or increase N in (6. 3) adding a number of new parameters and continue the
process. If the box K contains zero, then necessarily the new global minimum value p)<C
p" . and the process will be monotonic.
Procedure 6.2 Finite Cover Scheme for yequivalent Solutions
For a compact X=cl XC R", there is a finite cover {Q,}, XC U Q,. If we use Q,
instead of X in (6. 5), we obtain partial surfaces over Q,, s=1,++, v, that represent
respective exact, if p!=0, or gequivalent if p!>>0, solutions. It is clear that over small
sets (), one can take fewer terms in (6. 3) and get greater precisionl; y solutions over
separate (), are to be adjusted in order to represent a y-approximation (2. 7) of a physical
process w(x) € (for computational purposes there is no need to stick them together).
In both procedures points x* € EC R” can be fixed or free. For illustration, see
Section 7 below.
Procedure 6.3 Spherical Fixed Node Schemes for yequivalent Solutions
Take Y>>0 and make a 2y uniform grid within X (mesh size 2y). Then spheres of
radius ¥ +/n centered at grid points (nodes) X, render a spherical finite cover {Q,}. For
every X, € (), consider a function of q:
F(x, D’ H(x,q)) |\ =f(x,, Q). (6.8
Here q stands for the parameters a;» x%, ¢, in H(x) of (6. 3).
Apply a full global optimization method to find the global minimum value
p =min || f(x,.q) || =0 (6.9
4€Q,

and the set of all global minimizers
Q ={qeQ
If p; =0, then by Lemma 5. 1, we have A, <L,y Vn, i=1,++, m, for equations of

f(x,.q) || =p, }. (6.10)

(1.1), meaning that H (x) in (6. 8) represents a ¥ vn X max L,-equivalent solution
over ().
In another version of the procedure, we can set N=1, x' =x, in (6. 3) and find the

global minimum value;

p.= min | f(X.a1sc1) || =0. (6.1D)
TE€Q
(al,fl>6[_(1

24c)12 represents a 2y vn

X max L.-equivalent solution over (),. Here, the coefficient 2 appears because, in general,

If 7,=0, then by Lemma 5. 1 the surface H(x) =4} ( || x—Xx,

the point x° yielding £f(x°,a{,c?) =0 is not at the center of (.

If for every s=1,+*+, v in a finite cover {Q,} we have either p; =0 or ,=0, then we
have an 7 equivalent solution over the whole X U €, represented by a collection of v
partial surfaces (overlapping pieces of surfaces) that are to be adjusted in order to
represent a y-approsimation (2. 7) of a physical process w(x) € C"(no need of joining them

together).
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Remarks 6. 1

1. It is clear that initial and boundary conditions can be included in the above
considerations. They can be taken into account either separately and specifically as
restrictions on q, thus, on the set K, see Case Study, Section 7, or in combination with
the equations (1. 1), (1.3) by their inclusion in the norms in (6.5), (6.9), (6.11). The
latter pepresents a scalarization of a multi-objective (with respect to each equation of (1. 1)
and each boundary and initial condition) global optimization problem. Another alternative
is to consider initial and boundary conditions as successive criteria for optimization over the
set Q, (6.7), or those Q" , (6.10), for wich Q, has a nonempty intersection with the
boundary d X. If a PDE problem has an exact solution within the class of interpolants
employed, then the corresponding multicriteria problem is balanced (in the sense of [13,
Chapter 8]) and the solution can be obtained by successive optimization or by scalarization
of any kind. Otherwise, there exists a positive balance number [ 13, p. 139 ] which
corresponds to a set of y-equivalent solutions of the problem.

2. It is also clear that optimal control problems for PDE can be considered in the same
framework as above. This important and difficult topic needs much research. An example
of a direct way of solving an optimal control PDE problem is presented below.

3. Obviously, inclusion of the multiquadrics (MQ) into a full global optimization
scheme can only enhance the MQ method providing it with deterministic guarantee of
obtaining (in a monotonic global set-to-set descent process) the best (in the limit) or an
acceptable (in a finite number of iterations) q—equivalent solution within the class of MQ

interpolants employed.

7 Case Study

Consider an optimal control problem formulated for one-dimensional heat equation in
[4], see [4, Section 7.1, equstions (7.1)—(7.4), with a(2x)=1, () =x(1—x) as in
Section 8. 2.

Jw_ Pw_

a_t PP =0, €0, T, x€(,D), 7.1

W(Ovl‘):"CU(laf):Os [GI:O’T:Is (7.2)

w(w,0)=8&x), x€[0,1], (7.3)
"1 1/2

inf] & = || [wee. D) =y Fde) - <o (7. 4)

Here, w(x,t) is the temperature in a unit rod at position x at time z. The ends of the rod
are kept at zero temperature, see (7. 2). For a given §>>0 and a function y (x), it is
required to find the initial temperature in the rod w(x,0) =£&(x), (7. 3), such that the
final temperature distribution w(x,T) be as close as possible (in the L,-metric (7.4)) to

the function y(2), and at least ¢-close, see (7.4). By (7. 2) and by continuity of w(x,1),
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we should have £(0) =&(1) =03 in contrast, y(0)=y(1)=0 are not necessary in the L;-
metric (7. 4). This problem has been numerically solved in [ 4] by the quasi-reversibility
method for T=0. 1. We present here a solution by the global optimization method with
multiquadrics for the same y(2)=2(1—x) as in [4, Section 8.2.2].

1. Let us evaluate the magnitude of @ in (7. 4) for which a nontrivial solution would
arise. The function w(x,2)=0 is the solution of (7. 1) — (7. 3) for &(x)=0, and for this

solution we have
J0) = U;XZ(I)dx]l/z — U;ﬁ(l—xﬂdx]w — J%To =0.1826. (7.5

If we take another norm, sometimes simpler in computations, then we have

7°(0) :JI | () | dl-:jl | 2(1—2) | dxzjlxu—x)dx:i —0.17
0 X i ' 0 0 i ' 6 ' :

(7.6)
It means that for §2=0. 1826 in L,-metric and for 2=0. 17 in the metric (7. 6), the trivial

solution é(x)=0 and w(x,t)=0 is the solution of the problem. Hence, a case of interest
is when ¢<20. 17 in (7.5) or (7.6), for y(x)=x(1—2x).

2. Given 00 in (7. 4), let y(x) =00 for x€[0,6] and x(2)=0 for x€ (3, D).

Then in the metric (7. 4) we have
1/2

s
J0) = U Sl =0
for any € (0,1] including 6—0 for which y(x)—>co as € [0,4].
Similarly, for y(x)=0/8, x€[0,6] and y(2)=0, x€ (§,1], we have in the metric
(7.6):

gdl»:e, for any 6 € (0,1].

Of course, one can change the function y(x) on [0, ¢] keeping the same value of the

)
I =]

0
integrals.

It means that metrics (7.4), (7.6) are good only for =0 (exact concidence solution,
cf. [4, Section 1.2, Formula (1.5)], otherwise the metrics (7. 4), (7.6) are inadequate
providing same optimal solutions for a bunch of different functions, whatever small >0
may be. Vice versa, for a fixed y(x) the metrics in (7. 4), (7.6) allow quite different
initial functions £(x) to produce different exact solution w(x, ¢) that render the same

“proximity”

to y (x), causing rampant instability in the solution of the problem; this
instability can be seen in many graphs in [4].

The question of an adequate metric in (7. 4) or other devices which may be required to
stabilize the problem by exclusion of physically unreasonable y(x) (or, vice versa, wildly
oscillation £(x) and w(x,t) for a fixed y(2)) in the case when
O<ir51f] (&)<, V6>0 .7

is beyond the scope of this research.
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Remark 7.1 We note that deficiency of the metrics (7. 4), (7. 6) is most visible when a
solution for &(a) is sought within the entire functional space. If a direct method on a class
of functions is used, then the instability caused by the metrics (7.4), (7.6) is tempered;
for example, a direct method with the use of multiquadrics excludes automatically delta-
functions and functions with too steep slopes and high peaks. That is why we can use the
integral (6.5) in Procedures 6. 1,6. 2 to obtain tempered solutions if p°>0, p?>0. In
contrast, Procedure 6. 3 does not use integrals and is free of that flaw. In the case of
positive global minimum valuse, all three procedures deliver multiple solutions if Q" , Q.
are not singletons. This is natural for the problem and presents an advantage allowing us
to select a convenient solution among the available y-solutions (equi-optimal for an optimal
control PDE problem).

With the intention of illustrating the application of global optimization methods and
multiquadrics for direct control and solution of PDEs, we accept here the metrics (7. 4)
and (7. 6) for numerical solution of the problem (7.1)—(7.4) as a tutorial example.

3. In accordance with (6.2), (6.3) and considering ¢ as a special variable, we set
N

wz,t) = > e[ (x— x>+ ], z€[0,1], t€[0,0.1], (7.8

k=1
where a; (1), .+ ¢ are to be determined to yield an y-equivalent solution to the problem

(7.1)— (7. 4) in the sense of Definition 2. 2, With w(x,z) of (7. 8), we have, for the

derivatives in (7. 1), the following expressions:

N
. (’]LU . dak(t) . 2 277172
W=, ;\Z::lidf [(x—ax)?+ 2 ]V2,
e N ’
W, = (7;2“ = Dl (x—ax) + 17", (7.9)
E k=1

For the general term in (7. 9), we should have, due to (7. 1)

W, — W, = dagit) [(x—x)?+E ] = (DG (e—a)?+ 2 ] ¥ =0, (7.10)

whence, fixing x=x€[0,1], we get
da, () _ cide
(1) [(@—a) i ) 7

c;%z‘
L(@—a) +c [
yielding one parameter family of MQ-functions (7. 8) with a,(¢) of (7. 11) that satisfy the

() =r, exp . 720, (7.1

heat equation (7. 1) exactly at x = x. By varying *, one can choose a surface with
arbitrarily precise fit to (7. 1) in a particular neighborhood N;(%), uniformly with respect

to ris xpscp. This opens the way of constructing a cover based on a choice of {Z;} with
automatic precise fit to (7. 1), (7. 2). This approach needs further research. Here, we
construct an y-equivalent solution in the form of a one piece surface for the entire region

XX[0, T]. To satisfy (7. 2), it is reuired that
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N 2
w(0,8) = D r(af + )P exp — C}"tl — =0, (7.13)
k=1 [(x—l‘k)z +Ci]2

N

2
w(lo) = D r [ —x0)% 4 2 ]2 exp cit = 0. (7.12)
2 c [G—a)?+d7
Due to (7. 3), the function &(x) is given by the relation;
N
w(z,0) = D onl(x—x)? +d 1" = &), (7.14)
r=1

which is independent of the choice of ZE[0,1].

Now, to solve the problem (7.1)—(7.4), we have to determine r;» T» x;» ¢, yielding
the best fit to (7.1), (7.12) and (7. 13) and such that the integral (7. 4) be less than a

given 0>>0 for y(z)=x(1—x), some 7€[0,1] and

2
w(x, T) = w(x,0.1) = Zn[(x—zﬁ) +cF ]V %e . 0. 1k —
- [(1‘—xk)2+ci]2

Once J (£)<{0, the initial temperature distribution £&(x) is given by (7. 14) with known r,,

(7.15)

xps ¢, For 3N parameters, we have two identities (7. 12), (7. 13) and one minimization
(7.4). Since exponents e, i=1,2,++, are linearly independent if ¢,5¢; for ij, we see
that (7.12), (7.13) cannot be satisfied exactly unless we have pairwise equal exponents in
(7.12), (7.13) that cancel out if

Tp=Tpr1s CG=Cpr1s Tp="Tpr1s k=1,3,5," (7.16)
However, in this case we return to the trivial solution w(x,#)=0 by virtue of (7. 8),
(7.11), (7. 16). This means that the boundary conditions (7. 2) cannot be fulfilled
exactly within the class of functions (7. 8), (7. 11). Thus, if we are going to use
multiquadrics (7. 8), we have to accept n-equivalent solutions wvis-a-vis (7.1), (7. 2).
Remark 7.2 Equations (7. 1), (7. 2) can be satisfied exactly by some other functions.

For example, we can take
N p
wlx,t) = > %ef“zkz’sin nkx (7.17)
k=1

and try to meet (7, 4) by an appropriate choice of r,. The possibility of using a Fourier
series is mentioned in [ 4, Section 8. 2. 1] for the case when x(2) can be represented by a
Fourier sine series, with the indication that computations via the quasi-reversibility
method become unstable for T>>0. 2 (see [ 4, Section 9 ] about stability of numerical
integration of parabolic systems induced by quasi-reversibility method). Using a global
optimization method, we do not need Fourier coefficients for y (x); computations are
stable and we get J (&) <C0. 007 for N=1, r, = 2. 175, with £é(x) =0. 6920 sin =x.
However, such specific expansions (in one or two dimensions) can be used only for
specific PDE problems whereas the multiquadric expansions are more universal,
multidimensional and can serve many different PDE problems, if we accept y-equivalent

solutions.

171



Returning to our example, we shall demonstrate that an acceptable y-solution can be
obtained within the class of MQ-functions. We observe that (x—x,)?<1, if +&[0,1] and

,€[0,1]. Let N=1, =0, x;=0.5, ¢; =5, r,=0. 033, then the fit in (7. 10) is m<
0.000132 and in (7.12) — (7. 14) we have

ox 25t
P o5, 257

w(0,) =w(1,1)=0.033(0. 25+25)"* =0. 166e™"<C0. 167, for all 1€

[0,0.1];
w(x,0)=0, 033[(x—0.5)2+25"2=¢&(x), &(0)=£&(1)=0. 166,
and since (x—0. 5)2<1/4, so0 0. 165<w(x,0)<<0. 166 for all x€[0,1].
For t=T=0.1, we have

w(x,0.1)220. 03313[ (x—0. 5)2+25]"%, for all x€[0,1],
so that 0. 1656<w(x,0. 1)<C0. 1665, and with w(ax,0.1)==0. 17, we get

J(® = Ui[o. 17—1(1—1)]%11}” = 0.075,

which is more than two times better fit compared to (7.5), however, at the expense of 7-

equivalent solutions with 7, = 0. 167 regarding boundary conditions, and =, <Z0. 000132
regarding the equation (7. 1), for all x€ [0,1]. If §2=0. 075, this is a ¢optimal 7

equivalent solution of the problem.
Following [ 12, pp. 133,148 ], we can add to (7. 8) polynomial terms or other

interpolants. In our case, adding a constant to (7. 8) does not disturb the fit to PDE (7. 1)

and may improve the fit to the boundary conditions (7. 2). So, keeping N=1, x;,=0. 5,

we take ¢;=2. 5 and

it

[(3—0.5)2+c ]

w=(x,0) =ro+r [ (x—0.5)% 4+ " exp (7.18)

This yields the requirement (for x=0.5):
w0, ) =w(1l,)=r,+2.55re"'“=0, 1€[0, 0.1]. (7.19)
Since for tE€[0, 0.1] we have 1<Ce*'%“<1. 016, so we replace the exponent in (7. 19) by

its average value 1. 008 and get
ro+2.57=0, r,=—0.39,, same forall z€[0,1]. (7.20)
With these »,, r, we have from (7. 19) .
w(0, t)=w(1l, t)=r,(1—0.99¢e>'%),

—0. 006r,<w(0,t)=w(1,:)<C0.01r,, if r,>0, (7.21)
yielding a guaranteed estimate: [w(0,2) [ = |w(1,2) [<C0. 01| r,[. Now, to have an -
equivalent solution, that is, |w(0,)|=|w(1,t) |<770 , we require that

0.01|r \ém s d.ens |1 \<1OO770 » >0, (7.22)

For example, to have 5 =0. 06, as above, we require that | ro | <<6. 00. Substituting

(7.20) into (7.18), we have for t=0.1 and all x€[0,1]:
w=ry{1—0.396[ (x—0.5)2+6. 25]"*} =ryo(x). (7.23)
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It remains to solve one parameter minimization problem:

1 172
min J= min {J [roo(x) —x(1—2) JPdx < 4. (7.24)
0

PN PR

We calculate the optimal value r,=6. 00. Taking r,=6. 00, we obtain the value J (&)
=0. 05 in (7. 24), the actual value of 9 =0. 01|, | =0. 06, and the required initial
temperature distribution

&) =wlx, 0)=6{1—0.39[(x—0.5)*+6.25]"}. (7.25)
The boundary conditions fit (7. 21):—0. 04<{w(0,7) =w(1,1)<0. 06. Howver, fit to the
equation (7. 1) is poorer: 5 =0.19, due to the smaller ¢, =2. 5.

It is clear that with N>>1 and without simplifying adjustments, the MQ-solution can
be improved, yielding smaller 7, 7 and 0 (at the expense of a larger volume of
computations).

According to Procedures 6. 1~6. 3 above, there may be several solution schemes,
equivalent in the limit if an exact solution can be obtained but different wisa-vis o
solutions and involving different amount of computations. A general scheme can be

described as follows. One takes an MQ-expansion (7. 8) and forms a functional
T

. . T
q€Q 7€Q ! (

: B
+8] e T =50 | ). a=(rxea) €Q. (7. 26)

where 3 =0, :1=0,1,2, -, are weighting coefficients for different components. In our
example, with ¢, =5, we have almost exact fit (7<C0. 0001) to PDE (7. 1) and the scheme
is simplified (8, =0). If one needs differentiability of integrands in (7. 26), then absolute
values in (7. 26) can be squared and the L,-norm (7. 4) applied instead. However, the
norms in (7. 26) are less sensitive around zero and simpler in computations with derivative-
free and variation-free full global optimization methods. The solution for q in (7. 26) is
generally not a singleton but a set Q” which corresponds to a set of 7 equivalent ¢-optimal
solutions; see Section 8.
It is quite possible that within the class of MQ-functions (7. 8) we may have
inf J(&)>0, (7.27)
sEMQ

despite the fact that over the entire functional space we have, under certain conditions, see
[4]:
inf J (&) =0. (7.28)
In practice, however, we do not ne;ed (7.28). For a given >0, we need only an
solution for which
Eier[}};] (&)< (7.29)
For many PDE problems this can be achieved within the class of multiquadrics. The use of
MQ-functions with a full global optimization method excludes delta-functions and provides
for stability of computations, otherwise not guaranteed under the metrics (7. 4), (7. 6)
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usually employed in functional spaces.

8 Further Numerical Investigation

To illustrate how to use functionals of the type (7. 26) and improve the solution
(7.25), we return to the representation (7. 18) and use a two parameter global
optimization procedure.

Take an MQ-function (7. 18) with ¢} =25. Consider the average value ¢**"==1, 002 on
[0,0.1], yielding in (7.18):

w(0, )=w(l, t)=r,+5.035r,. (8.1

Then the functional (7. 26) becomes (8, T=4; T:%ﬁ, Bs=1, f=0 due to 5 <<0. 0012 for
|79 <<0. 3; see Table 1)

"1
min ¢Cry 1) =BCr+5. 03572+ Jo[ro Frg) — 21— e, (8.2)

o1
where we squared the absolute values to allow for the use of gradient methods and
denoted, cf. (7.18), for ¢¢=25, t=0.1,
$(x)=1.004[ (x—0. 5)*+25]"7, (8.3)

Solving problem (8. 2) for different 8, we {ind the dependence of the solution on g and
see that a set of g solutions is not a singleton.

For =1, the results are summarized in the followong table (obtained with SHARP
EL-586 pocket calculator and five point trapezoidal integration on [0,1]) a;<<w(0, t)=w
(1, H<a,.

Table 1
B 0 ot J® a as ™
1 1. 591 —0. 298 0. 1035 0. 087 0. 094 0. 094

Note that determinant of the gradient equation V¢=0 for r, and r; is of the order
0.01 (for p=0, it is ~0. 000006) , so that the system of gradient equations is extremely
ill-conditioned. It is always the case if there is a set of optimal solutions. That is why we
have to refrain from using gradient equations and apply instead a set-to-set full global
optimization methods [ 13, 19, 20]. If a point-to-point limited global optimization method
is applied, then, due to the existence of a sez of ¢-optimal yequivalent solutions, the
answers may be different depending on the method employed, on its numerical realization
and on the precision of computations. Such deviations are normal for a point-to-point
global method applied to a problem with multiple solutions. Clearly, if a method is local,
it may fail altogether, indicating the absence of a solution for a problem that has a solution

obtainable by a global method.
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Automatic Design of Optical Thin-Film Systems-Merit
Function and Numerical Optimization Method "

Abstract: A combination of analytical synthesis methods and automatic numerical design is
currently used for the synthesis of optical thin-film systems. The validity of this
combination strongly depends not only on the optimization technique chosen but also on
the construction of the merit function used in the automatic design. The present paper
introduces a statistical testing method by which global extrema of a merit function can be
found with a certain probalility. Some examples of the construction of the merit function

based on analytical synthesis are gien.
1 Introduction

Optical interference coatings are widely used for optics, spectroscopy, laser optics,
solar energy, and space technology. For these various applications not only are different
transmittances and reflectances of optical thin-film systems specified but so too are the
spectral absorption, phase change, and state of polarization. Dielectric multilayer coatings
have been used frequently. However, in recent years much attention has been paid to the
design and manufacture of absorbing film systems. For an interference film system of
average complexity, a satisfactory design can be obtained with analytical synthesis
methods. "' However, for some cases in which a system with a specific spectral behavior is
required,?**) the analytical synthesis methods are too complicated or even impossible to
apply. For such cases, gradient, dampedleast-squares, or orthogonal methods, etc. for
automatic design of optical thin-film systems have been developed. However, these
traditional methods can reach only local extrema, which often are far from the desired goal
because any merit function in the design of optical thin-film systems is usually complicated
and multimodal. It is, therefore, most important to select a refinement method that can

escape from local minima and find the overall minimum. Dobrowolski'*

has done
excellent work on the subject. We have found that the global extrema can be approached

with a certain probability by using a statistical testing method.

% In collaboration with Tang J F. Reprinted from J. Ope. Soe. Am., 1982, 72(11):1522—1528.
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2 Method for Finding Global Extrema

2.1 Grid Method and Random Search Approach

The originl methods for finding global extrema are the grid method and random
searching. Let a merit function Y=F(x) be an n-dimensional function at domain D in n-
dimensional space. Domain D, an ndimensional rectangle, is defined as

D={xla;<x;<b;s i=1,2,++, n}.

The so-called grid method checks the variation ranges of all components in »7-dimensional
rectangular space, calculates the functional values at check points, and compares their
magnitude to determine the best points corresponding to the lowest values among all
points. Let range (a,, b;) be divided into r; equal parts,

e;=(b,—a)/ris i—1,2, .0,
where the components of the check points are

xi=a;itjee, j=0,1,2,, riy i=1,2,, n.
The global extrema at domain D can be found by using the grid method to a certain
precision that depends on how finely domain D is divided. Let the #dimensional volume of
the rectangular domain D be unity and the volume of each divided element be e. Then the
total amount of calculation of the functional value at each check point is
N=1/e.

Random searching for global extrema has also been suggested. lLet the volume of D be
unity again. The probability that at least one point falls into a small domain of volume e by
random and uniform sampling over D is P=1—(1—¢)"~. To find an optimization domain
of volume ¢ in a unit volume of »dimensional rectangular space, the total amount of sampling is

N=[In(1—p)In(1—e) ]=¢, /e,
where ¢, =In [1/(1—p)]. To have a probability of 0. 9, then ¢, =2. 3.

The main difficulty in using the grid method and random search approach is the large
number of calculations needed. For instance, if the variables are ten-dimensional, then
even though only four different values are taken for each component, the total number of
calculations of the function value is so great (N=24'") that it is not practical.

2.2 Model of a Method for Finding Global Extrema

The total amount of sampling will be manageable if ¢ is not too small. However, if
only the lowest points are accepted after a large amount of sampling, other useful information
provided by the sampling will be lost. Therefore it would be advantageous to reduce the search
region by selecting useful information provided after a limited amount of sampling, Also, the
process of reducing the search volume can be continued to from an iterative procedure. According
to this idea, we suggested a method for finding global extrems'®.

Let F(x) be a continuous function at domain D in »#dimensional space R”. Cutting

the function Y=F(x) with Y=¢,, a level set H, is obtained:
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H,={x|F(x)<c,,» x€Dj. (2. D
The term H, contains points whose function values are not greater than ¢, (see Fig. 1). If
¢o is so small that it is below the global extrema, then H, will be empty. Therefore we
assume that H, is not empty. Then the mean value ¢, of F(x) is calculated in H,. The
mean value ¢; must be less than ¢y, 1. e., ¢,<Cc;. In a new level set obtained by cutting the

function Y=F(x) with Y=¢,, we have

[Nl

1! "

Ll 1N m
\No/

Fig. 1 Series of level sets and mean values

H,={x|F(x)<c¢1, xeD}. (2.2)
Similarly, the mean value ¢, of F(x) in H, can be found, and ¢, =¢,, and so on.
Eventually we get a series of mean values, ¢y =c¢; =>cy, =+ =>¢,=>+*+, and a series of

monotonically descending level sets, Hys H;,++*s H; s+, Let limc,=c¢* and limH,=H*.
ja.

b>co

Then it can be proved that ¢* is just the global extremum of F(x) in D, and H* =[z|F
() =c¢", x € D] is the assembly of such variables x, at which F(x) is the overall
minimum in D. In the above procedure, ¢, will not be the mean value exactly because of
computational errors and for other reasons. If we have a series of arbitrary monotonically
descending sets c¢y—>c|=>cy=>++*c,=>***, then }Lm c.=c. Let

H,={x|F(x)<c, x€D}; (2.3)
then the sufficient and necessary condition for ¢ being the global extrema in D is ¢, and m,
—0(k—>c0), where m, is the mean value of F(x) at H, ,. In addition, if % is the
variance of the function F(x) at H, 1, 1. e., if 5,° is the mean value of [ F(x) —C,—; |* at
H,_,, then the sufficient and necessary condition can also be expressed as

0. >0  (k—>0c0), (2. 4)
In both cases, }!im H,=H, is just the assembly of variables x, at which F(x)=c is the

00

global extremum at D.
2.3 Statistical Testing

It can be seen that the above algorithm model is reduced to finding a series of mean
values {¢;} and a series of level sets { H,}. However, a series of mean values is equivalent to
computing a series of 7-dimensional integrals, and it is even more complicated to find the level
sets. But the algorithm model can be realized by using a statistical testing approach.

Consider a continuous function F () in 7dimensional rectangular space

D:{‘T‘ai<1’j<bi, i:1927'°°,77}’ (2.5)
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which is an initial domain. The aim is to find the global minimum and the corresponding
variable set. Let two integral numbers m and ¢ be chosen, where m is the number of first-
round sampling points and ¢ is the statistical index. Then the following five-step iteration
procedure is performed.

Step 1: Producing H, and C,.

Let £=(&,8,+,&,) be n independent computer-generated random numbers. [& is a
random number, i=1,2,+++, n, which is uniformly distributed in (0,1) and is available in
the form of a standard computer function. ]

Setting x; =a; +(b;—a; )&, i=1,2,+*,n to get random sampling z* , k=1,2,+**,m,
calcuate the value of F[ X* ], #=1,2,-,m. Compare their function values after sampling
and accept the lowest function values F;, i=1,2,++,¢, which are arranged in descending
order of magnitude, i.e., F;=>F,>F;-+>=F,. At the same time a set W is obtined that
contains ¢ sampling points of x corresponding to the accepted ¢ values of F. With
increasing sampling, ¢ functional values in F' are to be continuously replaced by smaller
ones, and ¢ corresponding points of x in W, too.

The set W is considered to be an approximate H,, and the largest functional value F,
in F is taken as C,. As for all the points in W, F(x)<CC,. Besides, the mean value in F,
(1/t)(F,+F;++++F,), can be taken as an approximate mean value C,; at H,.

Step 2:  Creating a New Search Region.

To keep computation continuous and to form an iterative procedure, we create a new

n-dimensional rectangular space D, containing W by using statistical methods in the set W,

Let #, and & be the minimum and maximum of the 7 th component in set W, respectively,

ﬁi:min{-ri(l)a 2P, ey 2, P), (2.6)
&=max{x;V, ;P o, 2,0}, i=1,2,,n. 2.7
Then the expressions
an=np—(&—7)/G—1D, (2.8)
1)1i:Si+(§i—77;)/(t—1), 1=1,2,,n (2.9
can form a new search region
Dy =(x|a,<x:<bi;s i=1,2,%,0). (2.10)
Since we know that
WCD,
then
D, CD.

Step 3:  Continuing the Iterative Procedure.
Make random sampling at D; such that
xi=a;+(bp—ay) * &, i=1,2,, n. (2.1D
Calculating the function values F', obtain a new set W containing ¢ points and a new set F
of functional values arranged in descending order of magnitude, just as in Step 1. With

increasing sampling, ¢ functional values in F and points in W are continuously to be
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renewed, until the largest one in present F is less than C;, i.e., F;<<C;. W will be
considered to be an approximate H; and the mean value in F an approximate C,. An -
dimensional rectangular D, containing W can be obtained from the present set W,
Repeating the procedure, we will have a series of monotonically reducing mean values {C, }
and an n-dimensional rectangular set {D,}.
Step 4:  Iteration Solution.
The least function F, at the end of each iteration can be taken as an approximate solution to
judge how well the performance fits the desired goal.
Step 5:  Criterion of Convergence.
Variance
D/_$2<Fiﬁ)2,ﬁ_(1>§’)1vj (2.12)
i—1 i—1

or the volume (or length) of search region can be used as a criterion to judge whether to
stop the computation at the present iteration. Figure 2 is a block diagram of the algorithm.

In the final part of this section, we demonstrate the use of the statistical testing

INPUT

0 =>k

0=>¢C
o=>Fi i=t-L+lst

A
RANDOM SAMPL ING

VR
CALCULATING F(X)

COMPARING F(X) WITH THAT IN F
ACCEPTING t LOWEST POINTS
TO FORM A NEW F AND W

0= -k kkmg OR Fy-C7
YES
PRODUCING A NEW CALCULATING MEAN VALUE C
SEARCH REGION AND VARIANCE Df
FROM W

! w

PRINTING DFce?
| TERATION SOLUTION vES

Fig. 2 Block diagram of the algorithm

Input: (1) Statistical index ¢z, (2) minimum and maximum sampling number &, s £,z »

(3) original search region A, B, (4) remaining number L, (5) precision ¢ .

180



technique in the design of several different thin-film coatings. To facilitate easy
comparison of the results with those of other well-known techniques, these design

problems are taken from the survey by Bloom'™. There are three different problems:
Table 1 High Reflector Using Gradient Method and Statistical Testing*

Gradient Statistical Testing
Layer  Owarting Steps Initial Steps
Design 10 20 Search Region 10 18 46
1H 0. 6000 1. 0207 1. 0000 0. 0—2. 000 0.9743 1. 0010 1. 0005
2L 0. 4000 0. 9653 1. 0000 0. 0—2. 000 1.0174 1. 0032 1. 0005
3H 0. 6000 0. 9803 1. 0000 0. 0—2. 000 0. 9845 0.9971 1. 0005
4L 1. 2000 0. 9932 1. 0001 0. 0—2. 000 1. 0182 1. 0066 1. 0005
5SH 0. 8000 1. 0319 1. 0000 0. 0—2. 000 0.9331 0. 9905 1. 0005
6L 1. 6000 1. 0380 1. 0000 0. 0—2. 000 1. 0490 1. 0096 1. 0005
7TH 1. 6000 1. 0445 1. 0000 0. 0—2. 000 1. 0207 1. 0091 1. 0005

“Target: R=1. 0; one point only at A=1um. The refractive indices are n(H)=2. 3, n(L)=1.45, n(S)=
1. 52, air medium. Thicknesses are in units of quarter-waves centered at 1 pm.
Table 2 Same Optimization Problem as in Table 1 Except that the Target is
R=0.93, 11 Equally Spaced Points from A=0. 9—1. 1ym

Gradient Statistical Testing
L. Starting Steps Initial Steps
_ayer )
Design 10 20 Search Region 10 18
1H 0. 6000 0. 7859 0. 9696 0. 0—2. 000 0. 9688 0. 9915
2L 0. 4000 1. 1024 0. 9920 0. 0—2. 000 0. 9668 0. 9869
3H 0. 6000 1. 2543 0. 9941 0. 0—2. 000 1. 0035 0.9931
41 1. 2000 0.9142 0.9918 0. 0—2. 000 0. 9995 0.9927
SH 0. 8000 0.9162 1. 0014 0. 0—2. 000 1. 0046 0. 9854
6L 1. 6000 0.9523 0. 9865 0. 0—2. 000 0. 9754 0.9919
TH 1. 6000 0. 8642 0. 9828 0. 0—2. 000 1. 0014 0. 9885
Q M. S X10°= 9. 0785 — 4.1953 4. 1150
Table 3 Broadband Antireflection Coatings for the Visible
2
Damped 4?
Least 3 From Initial
1 Squares Grad. Q W.S. Search Statistical Testing Steps
Design Original (20 steps) (20 steps) (95 steps) Region 20 32¢
1L 0. 1960 0. 1960 0. 1960 0. 7008 0. 0—1. 000 0. 8468 0. 8312
2H 0. 0980 0. 1291 0. 1408 0. 0905 0. 0—1. 000 0. 1055 0. 0989
3L 0. 2695 0. 2652 0. 2248 0. 2646 0. 0—1. 000 0. 1904 0. 1964
4H 0. 3330 0. 4064 0. 4856 0. 4001 0. 0—1. 000 0. 6077 0.5953
5L 0. 1470 0.1230 0. 0707 0.0993 0. 0—1. 000 0. 0299 0.0128
6H 0. 3350 0. 3686 0. 4077 0. 3900 0.0—1. 000 0. 3428 0. 4041
7L 0.5735 0. 5730 0. 5480 0. 5535 0.0—1. 000 0. 5200 0.5103
QM.S X10°— (Q. M. S. consists of 31 equally)

spaced points at A=400—700nm)

2. 48 1.73 1.32 1. 30 2.073 0. 1103
“ Thicknesses are in units of quarter-waves centered at 1 pm. n(S)=1.52, n(L)=1. 45, n(H)=dispersive
about 2. 4 or fixed at 2. 4.
* The reflectance of this desingn is<C0. 2% over the range A=420—620nm and is 0. 25% at A=660nm.
“The reflectance is <<0. 2% over the range A=410—675nm.
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(1) Designing a high reflector consisting of seven alternate high-and low-index layers
whose indices are {ixed at n(H)=2.3, n(L)=1.45. The thicknesses are the only desing
parameters. Target: R=1. 0, one point only at A=1,m.

(2) Same optimization poroblem as in (2. 1) except that the target is R=0. 93 at 11
equally spaced points from A=0.9 to A=1. 1um.

(3) Broadband antireflection coatings in the visible using only two materials.

The results are summarized in Tables 1—4. The results from the gradient and damped
least-squares methods are quoted from Ref. 7. In problem (2. 1), for the statistical testing
method, the quadratic merit function consists of two points at A=1.000um and A =
1. 001pm rather than one single point because of the easy arrangement of the program.
The initial search region for each layer thickness is from 0 to 2 quarter-waves centered at A
=1ym. In this case the optimum solution should be a quarter-wave stack centered at A=
1. 005um. After 46 steps of iteration, this exact solution was reached (see Table 1). The
theoretical solution of the second problem is a quarter-wave stack at A=0. 99m rather
than at A = 1ym. Table 2 shows that, after 20 steps, the statistical testing technique
approached a desing that is closer to the expected solution. Table 3 shows some results in
the design of a broadband antireflection coating for the entine visible spectrum using only
two materials—SiO, and TiO,. Column 1 of Table 3, as an original desingn, was obtained
initially by using Herpin equivalent indices and a great deal of trial and error on the
computer. Columns 2 and 3 of Table 3 show the solutions obtained by the damped-least-
squares and gradient methods. Column 4 of Talbe 4 shows the conversion by the gradient
method of a quarter-wave stack, which is a highreflection coating, to an almost perfect
antireflection coating on the 95th iteration. In these processes, the refractive index of
TiO; is taken from a disperson table centered about n=2. 4. Instead of using a starting
design, we take an original search region from zero to a quarter-wave at A=1um for each
layer thickness. The solutions on the 20th and 32nd iterations are shown in Table 3. In
these designs the TiO, films have a fixed index of 2. 4, and no dispersion is taken into
account. Their performance is shown in Fig. 3. Finally, we tried to desing a beam splitter
that would give a reflectance of around 0. 5 at normal incidence between A=0. 9 and A=
1. 1ym. This is the optimization problem in which the gradient method failed to get any
solution by starting from a design G, HLH, A centered at 0. 1ym. The result obtained by

the statistical testing method is shown in Table 4.
Table 4 Beam Splitter for 0. 9—1. 1pm*

Layer Initial Search Region Steps (11)
1H 0.0—1. 000 0. 5076
2L 0.0—1. 000 0.9127
3H 0.0—1. 000 1. 1930

“Thicknesses are in units of quarter-waves centered at 1 pm designed by the statistical testing program.
n(s)=1.52, n(H)=2.3, n(L)=1. 45, air medium. Q M. S. =6. 734X 10 *, reflectances=0. 47—0. 53
in wavelengths 0. 9—1. 1pm.
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Fig. 3 Broadband antireflection coating designed by the statistical testing program as shown in Table 3

3 Some Examples of the Constructilon of Merit Fungtions

A critical step in using automatic programs for the design of thin-film systems is the
construction of an appropriate merit function and the selection of the parameters that are
involved in the merit function. This is even more important in the design of some special
thin-film systems. Consider, for example, the design of a nonpolarizing beam splitter with
zero R and T polarization at a designated wavelength and having a specified R/T ration at
oblique incidence. We have tried to define the merit function directly in terms of the
reflectances Rp and Rs for p-and s-polarized radiation,

M
F(x) = D)(| Ry, —RP |” +| R, — R |"). (3.1)

i=1

No satisfactory solution can be obtained, even after long computations, because no
suitable initial desing is known, nor can any be found by examinimg a range of designs.
But we know from optical thin-film theory that, for a quarter-wave stack,

nS|712k<1’ Mok **s N3y M2 N ‘no’

the reduced admittance N at the center wavelength is given by

N= M (3.2)
770 Bt sno )

The reflectance and the transmittance of the system are given, respectively, by

~ ,1—N\*?
R_<71—|—N) (3.3)
and
_ . _p__ AN
T=1—R RESYE (3.4

In the ablve expressions 7, , 7t a1 and 7, are the modified admittances of the incident

medium, of each layer of thin films, and of the substrate, respectively. Y is the assemble

admittance. Obviously, to eliminate polarization, the reduced admittances for both p and s

polarizations must equal each other and the polarization separation AN must equal
unity, 1. e.,

N
AN—M_l' (3.5
To achieve this in practice, quarter-wave stacks composed of three materials were

devised by Thelen. ') Various combinations of three materials are possible. Let
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Ny =M =5 =" =N s N =15 =g =" =gy, »
and
N3 =17 —N11 — " Napt1»

where k£ is and odd number. Because the reduced admittance at the center wavelength is:
(D D)

N:gzllc—,;],—”’ (3.6)
2 0 s

the following two equations must hold if the polarization effect is to be eliminated and the
required T/R raton satisfied:

AN:NN—P:L (3.7
S
AN

A direct solution of the above transcendental equations is impossible. A trial-and-
error approach was adopted by Thelen'®. We chose his physical model to construct a merit
function and used the method mentioned above for finding global extrems to solve the
equations. A satisfactory result was obtained in this way. The merit function was

Fm:Wl(1—AN>2+WZ[TD——(11%)Z}, (3.9)
where W, and W, are the weight factors assigned to the polarization effect and to the
desired values of (T/R), respectively. The desired values of the polarization separation
and of the transmittance are 1 and T", respectively. Thus we used the polarization
separation and the transmission to construct the merit function and used the statistical
testing approach to obtain a satisfactory result. For a nonpolarizing beam splitter, it took
only 1 min on the minicomputer TW-16 to get a good solution"”. For nonpolarizing beam
splitters composed of a metal layer and dielectric layers, it is doubtful whether one can find
a setisfactory solution by using either a square sum or any other version of the merit
function, if it is defined in terms of T and R only. According to the potential transmittance
concept of absorbing thin-films systems, the absorption of a metal film not only is
determined by its optical constants but also is closely dependent on the admittances of the
neighboring media. As long as the admittance of the multilayer on the exit side is correctly
matched, the potential transmittance of the system will be a maximum. However, there
are many structures of the multilayer stack that give a matched admittance. Therefore
there are other factors that will affect the choice of one structure, such as simplicity of
design and ease of manufacture. In our particular design, equal potential transmittances
for p and s polarizations are required instead of simplicity of desing or ease of manufacture.
Now, if the thin-film structure on the incident side is also designed in such a way that it
satisfies R,=R, and yields the desired T/R ratio, then the requirements for the design of a
nonpolarizing beam splitter will be fulfilled.

According to this analysis, one can independently design the multilayer for the
incident and exit sides of the metal film. The merit function for the multilayer on the exit
side is

M
F(a) = D30 — g7 + (g — ¢ ], (3.10)
where ¢, and ¢, are the potentiallt;ansmittances for p and s polarizations, respectively,
and ¢" is the desired value.
The merit function for the multilayer on the incident side is
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M
() = D[R, —R")? + (R, —R")*]. (3.1D
i=1

In the desing of the nonpolarizing beam splitter, a merit function based on the above
physical model led successfully to the refinement to the lowest minimum in the given

(0] Tt is possible that there are other more-complicated absorbing

search region
multilayer systems in which a merit function of this type may not give rise to a satisfactory
solution.

We could use ellipsometry of thin films as an example in the identification of a thin
film. It is well known that an elliptical function

p:%:%exp[i(ﬁp*&)] (3.12)
is a function of the parameters (n, d) of a dielectric film, where r, and r, are complex
amplitude reflectances and @, and @, are phase changes on reflection for p and s

polarizations, respectively. It can also be expressed as

p=tan ¢ exp (iA), (3.13)
where
tan ¢:—;L‘ (3.14)
and
A=0,—0,. (3.15)

The terms A and ¢, called the elliptical parameters, are usually those that are obtained in
ellipsometery and definitely correspond to the unknown parameters of a thin film. In this
case the following from of merit function can be constructed:

F(x)=A—A")"+(@p—¢")?, (3.16)
where A and ¢ are currently computed values and A” and ¢/" are actual measured ones. The
desired parameters that give the lowest functional value that is close to zero can be
obtained simply by using the statistical testing approach. As for an absorbing thin film,
there are three parameters (n,k,d) to be determined. Obviously, two equations are not
enough for finding three parameters. It is desirable to measure the elliptical parameters
twice light incident upon each side of a sample so that two sets of elliptical parameters are
obtained. Then the merit function can be

2
F(x) = D [A — AP+ (¢ — g7 ] (3.1D
=1

A technique that involes surface plasma waves on a metal film excited by attenuated

0 In

total reflection in likely to be useful for measuring optical constants of thin films
one arrangement, a thin metal layer of the correct thickness on the base of a prism is
illuminated in p-polarized light from within the prism beyond the critical angle. The
coupling of the incident light to a surface plasmon on the outer surface of the metal layer is
marked by a sharp rise in absorption in the metal film and by a sharp drop in internal
reflectance. The reflectance resonance with angles of incidence is a sensitive function of the
optical constants of the metal film and the conditions at the outer surface, so the
reflectance resonance can be used to construct a merit function. To simplify the measuring
procedure and to reduce computation time, we take only three reflectances in the merit
function. These are the minimum reflectance at the coupling angle and two other
reflectances at around the half-width. Some computation results are shown in Tables 5 and
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6. Table 5 is for a metal film with a thickness of 75nm. Table 6 is for the same kind of
metal layer covered with a dielectric layer, which leads to a displacement of the reflectance

resonance.

Table 5 Determination of Optical Constants of a Metal Layer

Example 1 Example 2

Expected paramters

n 0. 033 0. 033

k 3.35 3. 35
Assumed reflectance readings

Rog,» 0.0126 0.0126

Ria) 0. 5659 0. 5659

Ra,» 0. 3969 0. 3969
Search region

n 0—0.1 0—0.3

k 3.0—4.0 2.0—5.0
Final solution

n 0.033 0.033

k 3.35 3. 35
Computed reflectances

Roay 0.0124 0.0127

R 0. 5637 0. 5664

Roa,) 0. 3978 0. 3968

Table 6 Determination of Optical Constants of a Dielectric Layer

Expected parameters
n
d
Assumed reflectance readings
Roa,>
Ria)
Ry,
Search region
n
d
Final solution
n
d
Computed reflectances
Ro,>
Riwp
Ry,

2.0
10.0

0. 0037
0. 4757
0.3791

1.7—2.3
5.0—15.0

1.977
10. 157

0. 0037
0.4762
0. 3816
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4 Conclusions

In this paper we have discussed a method for finding global extrema realized by the
statistical testing approach and the construction of some of the merit functions used in the
design of optical thin-film systems. The purpose of using a merit function in automatic
numerical design is to guide the refinement procedure to a minimum of the function.
Therefore the property and structure of the merit function will affect the efficiency of the
refinement. In selecting the refinement method, the shape and the property of the merit
function in the parameter space should be considered. Furthermore, the merit function
must have a significant physical meaning in order to reflect the desired requirements. We
can now see that, to succeed in automatic thin-film design, one must not only find the best
mathematical method but also construct a proper merit function based on the relevant
conditions.

We begin to understand the relation between automatic numerical synthesis and
analytical synthesis. The analytical synthesis method is based on the optical theory of thin
films, and it still cannot be replaced or ignored, despite the widespread use of computer
technology and refinement methods. It has many advantages. It is highly appropriate for
the solution of some problems, and the calculations are easy. Multilayer systems obtained
by this method have an unambigious physical significance, and the effect of the layer
parameters on the performance of the whole layer system are readily understood. For most
systems the layer thicknesses are regular, and the refractive indices are available, which
facilitates their manufacture. Up to now, most of the available optical interference
multilayer systems have been designed by analytical methods. Of course, as we mentioned
at the beginning of this paper, analytical methods have their limitations. This is exactly
the problem that automatic numerical methods have been designed to overcome. Hence
these two types of methods complement each other. The development of thin-film
automatic numerical desing methods does not negate the validity and usefulness of the
optical theory of thin films or of analytical methods.

Furthermore, on developing thin-film automatic numerical desing methods one should
make full use of analytical synthesis methods. We feel strongly that it is not necessary to
separate and contrast analytical and automatic design methods. The proper concept in thin-
film desing is to combine them intimately. The two methods have been combined in
various examples presented in this paper for the construction of merit functions and for the
selection of the thin-film performances that should enter into the merit function. It should
be pointed out that, in a way, the combination of the two approaches is also determined by
the choice of the initial design used for the automatic design. The normal refinement
method can converge only to the closest minimum of the starting point. The initial design

will therefore have a significant influence on the behavior of the final system. Usually it is
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difficult to select an initial design that is close to the best solution. In this connection, for
example, the equivalent index concept for a symmetrical system, the effective interfaces
concept, or the expansion in terms of a series are significant in setting up an initial design.
A beginning in this new direction has been made'®, and there is a bright future in this

field for the cooperation of thin-film workers and mathematicians.
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Vector Minimization of Upper Robust Mappings ~

Abstract: In this research, we study upper robust mappings from a topological space to
R"Y and vector minimization of those mapping. Under some general assumptions,
optimality conditons are established for several scalarization techniques. These optimality
conditions are applied to desing integral algorithms for finding the solution set of a vector

optimization problem.
1 Introduction

Let X be a topological space and f=(f*, f*,+-+): X—>R"Y a mapping. In this paper,
we consider the vector optimization problems with respect to the partical ordering induced
by the nonnegative orthant of the probuct space RY. A point x € X is said to be a
ef ficient solution or nondominated solution of a vector minimization problem

min f(x), x€X (1. D
if there exists no other + € X such that f' (x)< ' (x) for all i=1,2, -+, with strict
inequality for at least one i. Vector optimization problems originated from decision-making
problems appearing in economics, management sciences and other scientific disciplines
where it is often required that decision making be based on optimizaing several criteria. A
vector optimization problem is therefore to find all efficient points, i. e. best points in a set
with respect to some partial order.

Most traditional gradient based scalar optimization techniques usually cannot locate
global minimizers but only local minimizers. This shortcoming causes severer difficulties in
numerical vector optimization: when a vector optimization problem is scalarized, the local
minimizers of scalarized problem may not lead to efficient solutions of the original vector
optimization problem. For instance, an optimal desing problem (two objectives) of a
sandwich bean was studied in [ 2] and [ 3]([ 3], Example 3. 2). The authors use tunneling
technique ([ 3], section 2. 2) and obtain minimal elements ([ 3], Table 4). Thanks to
Professor Jahn who provides the source file of the objective functions, we use integral
global optimization method and obtain the minimal elements which are different from those
by tunneling technique. The deviations are significant. Thus, a powerful global

optimization theory and method are essential for vector minimization.

% In collaboration with Shi Shuzhong. Reprinted from Operations Research Transactions, 1997, 1(2). 20—33.
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In this research, we apply the integral global optimization theory and algorithms to
vector optimization of upper robust mappings generalizing the results in [5]. A brief
description of concepts of robust sets and functions are presented in Section 2 for the
convenience of the reader. Some results on upper robust mappings and their properties are
developed in Section 3. These results are directly related to vector optimization.
Optimality conditions for some scalarization techniques are established in Section 4. These
optimality conditions are applied to design integral algorithm for approximating the

solution set,

2 Robust Sets and Functions

The concept of robustness is an essential component of theory and methodology of
integral global minimization. We highlight some fundamentals here. The reader is referred
to[1, 10,11] for details.

Lex X be a topological space. A set D in X is said to be robust if

cl D=cl int D, 2. D
where cl D denotes the closure of the set D and int D the interior of D.

A robust set consists of robust points of the set. A point x&cl D is said to be robust
to D (or a robust point of D if x& D), if for each neighborhood N(x) of 2, N(x) () int D
# . A set D is robust if and only if each point of D is a robust point of D. If x is a
robust point of a set D, then D is called a semineighborhood of x. A point x is robust to D
if and only if there exists a net {x;}C int D such that x;—>z.

Every open set G is robust since G=int G. The empty set is a trivial robust set. A
closed set may or may not be robust. A union of robust sets is robust. An intersection of
two robust sets may not be robust; but the intersection of an open set and a robust set is
robust. If A is robust in X and B is robust in Y, then AXB is robust in X XY with the
product topology. A convex set D in a topological vector space is robust if and only if the
interior of D is nonempty. An important property of a nonempty robust set is that its
interior is not empty. A robust set or its complement can be represented by the union of an
open set and a nowhere dense set.

A function f:X—>R' is said to be upper robust if the set

F.={x: f(x)<c} (2.2)
is robust for each real number c.

An upper semicontinuous (u.s.c.) function f is upper robust since in this case (2. 2) is
open for each ¢. A sum of two upper robust functions may not be upper robust; but the
sum of an upper robust function and an u.s.c. function is upper robust.

A function f is upper robust if and only if it is upper robust at each point; f is upper
robust at a point x if x & F. implies that x is a robust point of F,. An example of a non

upper robust function on R! is
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Far= 0, x=0,
L 220,

where f is not upper robust at x=0.

3 Upper Robust and Upper Approximatable Mappings

For the purpose of studying vector optimization problems (1. 1), we investigate the

properties of upper robust mappings from a topological space X to RY. Recall that N is

the set of all natural numbers and the space R” is the product space 1Y with product
i=1

topology, where Y/= R !—the one-dimensional Euclidean space (real line). The space has
a countable base and is then separable. It is a locally convex, complete and metrizable

space (Fréchet space). Convergence in RY is equivalent to coordinate convergence. The

k k

metric between two vector y=(y', =+ y*, +=+) and z=(z', -, 2*, +++) is defined as

o k k
d(y, 2) = I 1 3. 1)
Y E ;aﬁlﬂ V==t

where o, k=1, 2, *++, are positive and > ap<co, The product space has as basis all sets
k=1
of the form [IU,, where U, is open in Y* for each « and U, equals to Y* except for finitely

many a.
3.1 Upper Robust Mappings

Let 6CN be a finite index set. We denote RU:feHgYi , where YY=R".

Definition 3.1 A mapping f: X—R?" is said to be upper robust at x if for each finite index
set g=1{71, ***» 1,,; and each “E R°,

reF  ={xeX.: f ()<, i€s} (3.2)
implies that x is a robust point of Fs. A mapping f is upper robust if it is upper robust at
each point € X, or for any finite index set ¢ and ¢® & R?, the set F is robust in X.

It is clear that by definition, if f: X—R" is upper robust, then for each i, the +th
component of f, f*, is an upper robust function. However, the converse statement is
incorrect.

The following proposition describes a convenient way to verify the upper robustness
of a mapping.

Proposition 3.1 Let x be a topological space and f:X—>RY be a mapping. Then f is
upper robust at a point x € X if and only if for any given finite index set ¢ and ¢ >0
there is a semineighborhood U(Z) of T such that
VaeU@), [fi(o)<f(T)t+e, i€o. (3.3
Proof. Suppose that f is upper robust at . For a given finite index set ¢ and e=>0, letting
¢=f(x)+e, i€Es, we have
TCEFo={a: f[(2)<[f(ZT)+e). (3.4
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This implies, by Definition 3. 1, that T is a robust point of Fs, so U(Z) =Fs is a
semineighborhood of . Now for each x&€U (), by (3.4), we have that
S(O<[f(X)+te, i€o.
Conversely, suppose that for any given finite index set ¢, (3. 3) holds and @ = (c",
oo, ¢'n) & R7 is given such that
re€F.={xeX.: f[ ()<, i€o).
Let e:r{g?[ci*f" () ]>>0. Then there exists a semineighborhood U(Z) of Z such that for

each point x&€U(x), we have
FH)<fi(T) e, i€o.
It follows that
zeU@ CFes.
Hence, 7 is a robust point of Fs and f is upper robust at .

The sum of two upper robust mapping may be non upper robust. However, the sum
of an upper robust mapping and an upper semicontinuous mapping is upper robust. The
reader can easily prove this statement by applying Proposition 1.

Proposition 3.2 Ler X be a topological space, f,:X—>RY, m=1,2, =+, bea sequence of
mappings such that each mapping f., is upper robust at x € X. If f: X—R" is a
mapping with the property that

V.€X, liminf £, () =F(2) (3.5)

uni formly and
lilfnfm(i):f(i), (3.6)
then [ is also upper robust at x.
Proof. For a given e >0 and a given finite index set ¢ we have, for sulliciently large m>M
VxeX, filo)<fi(x)+te/3, i€o, (3.7
and
S @[S (T)+e/3, i€o, (3.8)
according to (3.5) and (3. 6). Since f,, is upper robust at &, there is a semineighborhood
U(@) of = such that
VeeU@, [fl.()<f,(Z)Fe/3, i€o.. (3.9
It follows that for each x€U (),
S)<Si,(x2)+e/3<fi,(Z)+2/3<f () +e, iCo.
Therefore, by Proposition 3. 1, f is upper robust at .
3.2 Robustness of Epigraphs
A useful way to study a nonlinear function is to study its epigraph. Here, we use a
generalized concept of epigraph to characterize an upper robust mapping geometrically. Let
f:X—R" be a mapping. For a given finite index set 6N we define an epigraph of 7, a
subset of the product space X XR’, as follows:
Epi (f)={x,} EXXR?: f ()<, iEo). (3.10)
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Proposition 3.3 Let X be a topological space. Amapping f: X—RN is upper robust at a
point T if and only if for any finite index set 6N, each point (x, ¢*) € Epi(f°) isits
robust point with the product topology on X X R°.
Proof. Suppose f is upper robust at . Then for any finite gCN and ¢§>¢"=f*(Z), T is
a robust point of Fg ={z: f (x)<<ci.i€s}. Thus,

(T ) € Fo X || [elsoo] C Epi(f).

i€o
It implies that

(@ ) € clint Fr X [] clint [¢l,e0] =clint [Fs X [] [clso0) ] C el int Epi (f),

i€o i€o

i.e., (T, ¢f) is a robust point of Epi (%), sois (x, ¢’) such that f*(Z)<l¢.

Conversely, suppose that (z, ¢°) €Epi (f°) implies that (z, ¢?) is its robust point.
Suppose that f°(x)< ¢, we will prove that T is a robust point of Fs, i. e.,

z€ clint F» or U@ int Fs%J
where U(Z) is any given neighborhood of . Let = f*(z). Since (x, ) €EEpi (), we
have that
G=[U@) XV () ]Nint Epi (f*),

is a nonempty open set, where V(¢’) is a neighborhood of ¢ in the space R°. Take a point
(x1, ¢®)EG. There are neighborhoods U, (z;) and V' (¢$) such that U, (z;) XV, (5)CG.
We now prove U, (x;)CFys. Indeed, let (x, d°) €U, (x;) XV, (§)CEpi (f°). We have
F()<d’<<¢". Now we have U, (x;)Cint Fs and U, (a;)CU(Z), hence U(x) int Fr %=,

We now have the following theorem.
Theorem 3.1 Let X be a topological space. Amapping f:X—RNis upper robust i f and
only if for each finite index set ¢ C N, the epigraph Epi (f°) is a robust set of the
product space X X Re.
3.3 Approximatable Mappings

We now generalize the concept of approximatability of robust mappings™ and study
the “approximatability” of upper robust mappings.
Definition 3. 2 Let X be a metric space. A mapping f: X— R" is said to be upper
approximatable if and only if

1. The set of points of continuity C of f is dense in X;

2. For each point x& X, there is a sequence {x; }CC such that

x—>x and lir?*sxup flx)<<f'(x); iEN.
Obviously, by using the diagonal method, 2. may be replace by
2'. For each point x€ X, there is a sequence {x,}CC such that
x—~>x and lim ff(x)<f"(2); iEN.

koo
We first consider the sets of points of continuity and of discontinuity for an upper

robust mapping.
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Proposition 3.4  Suppose the X is a complete metric space, f:X—>RNis an upper robust
mapping. Thenthe set D of points of discontinuity is of first category and the set C of
points of continuity is of second category.

Proof. The set of points discontinuity D can be represented as (see [ 6, Chapter I, Section
13]):

D:(,;LéJs(fﬂ (M\int f1(G)), (3.1D)
where S is a subbase of RV, Let Q be the set of all rational numbers of R'. We can take
[ o) X H(—oo, ©); )
as the subbase of RY, where a'<(6' and a’ﬂflbi € Q. The subbase is countable. Thus, to

prove D is of first category, it suffices to show that for any a’, /' €Q,
Dy = f7 (@' ) X 1;[<—oo, o), ) \int £ (Ca's 0 X ];[<—oo, ;)

is of first category. It is easy] t(l) see that the following set equalit;/ }llolds:

(@', b)) X ] (—eo, 00); = (—oo, ) X || (—e0, o), N

= i
{Ql (& +i, o) X 1;[,.(_00’ oo),}. (3.12)
For an upper robust mapping f, |
V=1 (=0, b)) X ]_;[<—oo, ©9);)

is a robust set and -

= ([a’Jr%, XL Ceos 000, ) =X\ f (oo, ato) X (—eo, =),
=Q.UT,

is the complement of a robust set; it is an union of an open set and a nowhere dense set.
Thus,

oo

FH@ s X ] oo ey =V N { U (00 U Tx [ (meoneo)y)

i m=1 A

VN { GIG,” U T}

where
Gn'x:anX]:;[_(ioO9 OO)J‘ and T,”:T,i"x];ﬁl’.(*w, OO)]».
J7t JF1
It is easy to see that G,, is open and T,, is nowhere dense m=1, 2 :--. Hence, we have
fﬂmumxﬂkwmwm:{QWmanuwmnw:Upauﬂm
j¢l‘ m— m—
(3.13)
where V,, is a robust set (an intersection of a robust set and an open set) and T, is a
nowhere dense set, m=1,2,++; and
S b X ] (oo, OO)j)\int ORI | EC=NEO
i i

CU VAt V,) U T, (3.14)

m=
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The right hand side of the inclusion (3. 14) is obviously of first category, and so is the left
hand side. Thus, the set C of points of continuity is of second category, because it is the
complement of D in the complete metric space X.
Corollary 3.1  Suppose that X is a complete metric space and f:X—>RY is an upper
robust mapping. Then the set C of points of continuity of f is dense in X.
Theorem 3.1 Suppose that X is a complete metric space, f:X—>RNisa mapping and C
is the set of points of continuity. Then [ is upper robust if and only if [ is upper
approximatable, i.e., Cis dense in X and for each point x € X\C, there exists a sequence
{x, } ZC such that

x,—>x and l1r?sup S a)<f" (), iEN. (3.15)
Proof. Suppose that f is upper robust, and & X\C is a point of discontinuity. For each
given £ and the index set g,={1,***,k}, the set

R.={xeX. f[()<f()+1/k, i€0q )
is a nonempty robust set; x is a robust point of this set. Thus, by Proposition 3. 4
CNU,®@ Nint Ry#=J s k=1, 2, +-, (3.16)
where
Uy, (@ ={x€X:d (x,2)<1/k}

is a neighborhood of = and d is the metrioc on X. Taking a point x;, for each £, from the

set (3.16), we obtain a sequence {x,}CC. We then have

,€C, dlx,, ©D<1/k, and fi(x)<f'(Z)+1/k, iEq. (3.17)
It implies that for a fixed 7,
x.€C, 2,—~>x, and lir? sup fla)<f (. (3.18)

Conversely, suppose that for a given point 7€ X and a finite index setg, € R, TE
F+ such that (3. 15) holds for all i€, Since 7€ Fs, we have £ (Z2)<c', i€g. Lete=
rlréian[c"*f’ () ]. Then by (3.15) there is an integer K such that x, € C and
V=K, [fi(a)<[f'(Z)+e/2<, i€o.
Now, 2, €C(Fs. Hence, we have also that for all A=K, x, €int Fs. It follows that
x€int F» and x,—x.
This proves that T is a robust point of f* for any given finite index set ¢, and thus the

mapping is upper robust.
4 Scalarizations and Optimality Conditions

4.1 Scalarization of an Upper Robust Mapping

The most common strategy to characterize the efficient solutions of a vector
optimization problem is to find a real-valued function representing the decision maker’s
preference. Once such a function is found, the vector optimization problem is then reduced

to a more usual scalar optimization problem. This approach is often referred as
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scalarization in vector optimization literature.
Definition 4.1 Let E:RY—>R' and y, *€ R". E is said to be monotonic if
V.EN, y<z and y#z=>E(y)<E(2). 4. D

The following proposition is obvious.

Proposition 4.1  Suppose [ : X—>R" is a mapping defined on a topological space X and
E:RY—>R! is a monotonic real-valued function. If

Va€X, E(f(x"N)H<E(f(x)), (4.2)
then x* is an efficient solution of (1. 1)

The composite function E( f(x)) in Proposition 4. 1 may be not upper robust even for
a well behaved mapping f.

Proposition 4. 2  Let X be a complete metric space and f: X— RN be an upper robust
mapping on X. Suppose E:RY—>R"' is a real-valued function satisfying the following
conditions :

1. ECy'yeee,y",+) isan increasing function with respect to each variable;

2. Eis continuous.

Then the composite real-valued function E(f(x)) is an upper robust function on X.
Proof. From Proposition 3. 2 the set C of points of continuity of f is dense in X. The
composite function E( f(x)) is also continuous on C. Furthermore, let D be the set of
points of discontinuity of the composite function E(f) and & D be any given points, we
now prove that it is upper approximatable by points in C. Let {x,}CC be a sequence such
that ;== and lim... £ (x)<<f'(Z), for any i€ N. We have, by continuity of E, that

lim ECF G f1 G sy =Edlim £ oo seessfim G oo,
By monotonicity of E with respect to each variable and }Lm [ a)<f'(x), i€EN, we have
that
x>z and }Lm E(f () <E(f(@).

It implies that E(f) is upper approximatable at each point of X. Hence, E(f(x)) is an
upper robust function.
4.2 Weighting Problems

The weighting problem is one of the most commonly used technique of scalarization
for solving convex vector optimization problems. ILet d'(y') be an increasing and

continuous function of variable y', i=1, 2, +, and the sum > d'(y") is uniformly

i=1
convergent. Let
E(y eyt see) = D0 di(y). (4.3)
i=1

The function E defined by (4.3) is continuous and increasing with respect to each

variable. Thus, this function satisfies conditions of Proposition 4. 2. Especially, let d'(y")
=w'y', i =1, -, with given nonnegative weights w', *+, w", **+, such that 2 w' <<
i=1
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oo, we have

E(yly ceey yry o) = 2 w'yt, (4. 4)
=1
With function (4. 4), we have the weighting problem
mini w' fi(x). (4.5)
xeXi=1

By Proposition 4. 2, we have the following corollary:

Corollary 4. 1 Suppose X is a complete metric space, f: X—> RN is an upper robust

mapping and w', Wy, with w' =0, i=1, 2, **+, are weights such that Z; w' < oo,
Then
g()=w' 1 (x) - Fwfr(a)+-- (4.6)

is an upper robust function on X.
4.3 Reference Point Method

Nonconvex vector optimization problems arise in broad range of appliction. The
weighting scalarization technique is not suitable for nonconvex problems. Moreover, it is
not uncommon in practive that verifying the convexity of an optimization problem is a
nontrivial task. Therefore, the reference point technique [ 3, 8, 9] is often adopted in
practice.
Definition 4.2 Let f: X—>R"Y be a mapping. A point y=(3', ++, 3", =) € RV is called
a reference point of f if for any x€ X, y<fi(x), i=1,2,--

Suppose that the function f is bounded below. Let

yAi:li‘g}f(f"(x)*e, i=1,2,0,

where e>0 and y =(y', *+, y", ==+), then y is a reference point.

With a reference point y , let
gl =2 wd' (3's f'(2), (1.7
where w'>=0, i=1, -+, n, are weights and d'(+,+), i=1,2,+++, are positive continuous
functions with d'(y', y')=0, i=1,2,--
It is often convenient to take a weighted metric as weighted norm in R”™. The

weighted Eucliden norm or the weighted Chebyshev norm are defined as follows.

g(r) = [>T w (fi(x)—3y). (4.8)
=1
g(x)=max{w, | f[(x)—y'|}. 4.9
Definition 4.3 A solution = of the minimization problem
rgi)rgg(x) (4.10)

is called a re ference-point solution of (1. 1) corresponding to a reference point y, metrics
d',++, d", -+ and the set of weights w', =+, w", **
Proposition 4.3 Let X be a complete metric space, f:X—>R?" an upper robust mapping.,

w =0, i=1, 2, -+ be given weights and y a given reference point. Suppose that for each
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i, d'(y', +) is a nonnegative increasing continuous function of y'>=y', i=1, --. Then the
function (4. 7) (including (4. 8) and (4. 9)) is upper robust.
4.4 Integral Optimality Conditions

We are now ready to use integral optimization theory and methods to the scalarization
of a vector minimization problem. The optimal solutions can be characterized by the
integral optimality conditions as follows;
Theorem 4. 1  Sup pose that (1) the solution set of the vector minimization is nonempty ,
(2) thereis a Qmeasure space (X, Q,p) and (3) the scalarization g is upper robust and
measuralb, then the following statements are equivalent ;

(1) A point € X is a solution of (4.10) with ¢* =g(x) as the corresponding value ;

(i) Mg, ¢" 3 X)=c" (the mean value condition) ;

(i) Vi(g, ¢ 3 X)=0 (the modified variance condition).

We omit the definitions of Q- measure space, mean value and modified variance here.
For more about integral global minimization and related theory and methods, see [1],

[10] and [11].
5 An Integral Algorithm for Finding Solution Set

The integral global minimization algorithm delivers global minimizers for single
objective minimization problems. This feature is extremely valuable in solving vector
optimization problems. In this section, the optimality conditions established in the
previous section are applied to desing integral minimization algorithms to approximate the
efficient solution set of a vector minimization problem. We first consider approximating
the solution set with its finite-dimensional counterpart. We then propose an algorithm for
finding this finite-dimensional approximation.

5.1 Finite-Dimensional Approximation of Solution Set

Let f:X— R" be a mapping and S* C X be the solution set of (1. 1). We now
consider a problem of finding a set SCC X approximating S*. Suppose ¢ is a finite index
set: 0= 1{i1, iys ***s 1,,} and f7 is a mapping f’: X— R’ such that f% if the {,-th component
of f. Let S’ be the solution set of the mapping f°. Each point x& S* should also be in $°
by the definition of optimal solution. Thus we have

S*CS and S*:OS”. (5.1

Definition 5.1 Let f: X—>R". A set SC X is said to be an eapproximation to the
solution set of (1. 1) S* CX if and only if for each x& S, there is a pont x* €S* such that
d(f(x™), f(2))<e. (5.2)

Since the solution set S* is smaller than its finite-dimensional approximation, we
intend obtain a set S that for each point in S, there is an associated point in S* with small
deviation in the above sense.

When we consider multicriterion problem, we can rearrange the criteria in a way such
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that the important ones put in the first. For a given >0, there is an integer m such that

2 ar <e.

k=mt-1
Let 6={1, 2, -+, m} and R°=R". Suppose the solution set of the mapping f7: X—>R’ is

S°. Then $° is an e-approximation to the solution set S.
5.2 An Algorithm

For simplicity, we describe an algorithm using a reference point method under the
assumption that the objective function of problem (5. 3) is bounded below and the set of
efficient solutions of the problem is nonempty. The algorithms based on other scalarization

methods can also be designed.

Step 1:  Find a reference point. Let
ai::%igf‘(x), i=1, -, m. (5.3)
Take a point (y', +++, y”) as a reference point such that
yi<al, i=1, =, m. (5.4)

Step 2:  Take L sets of positive weights (w, **+» wj'), =1, *=+, L, and minimize the

fowwlwing L scalar problems by the integral global minimization algorithm:

I}éi)l}gk(x), k=1, -, L, (5.5)
where we may take g, as Chebyshev norm
gk(x):i:rlr}.i.gm{w;z(f"(x)*f/")}. (5.6)
We obtain a sequence of solutions;
x1s s xp and  f(xp), o0y f(ap). (5.7
Step 3:  Use simplexes produced by these points as an approximation of the solution set.

5.3 Solution Set of a Vector Minimization Problem

The algorithm proposed above can be used to find the solution set of a vector
minimization problem. Indeed, we have known that each minimizer of g(x) is a solution to
the vector minimization problem. Conversely, for each solution T to the vector
minimization problem, there are weights such that x is a minimizer of g(x). Thus, we can
find each solution to a vector minimization problem by selecting weights.
Proposition 5.1 A point T is a solution to the vector minimization problem (1.1) if and
only if there is a weight vector w such that x is a minimizer of the corresponding
scalarization g (x).
Proof. We need only prove the “only if 7 part. Indeed, we can take

1

w :m>0, ZZI, e
as the weights, and then g(Z) :mei;(lg(x) (g()=1). Suppose, on the contrary, there is
an € X such that g(x)<g(Z), then we have
(D —H
i:rIll.(r':l").(m f’(})_§l <1.
It implies that
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Fi()—y <fim)—y" or fi(DO<fi(T),i=1, ", m
and T is not a solution to the vector minimization problem.
5.4 A Remark
The scalar minimization problems (5. 5), as well as (5. 3), are unconstrained
optimization problems. We can use the discontinuous penalty function technique to reduce
a constrained minimization problem to an unconstrained ones. For a constrained

minimization problem
min g (x), (5.8)

€5
where SCX, let
St+qla), €S,
p()= 0, €S, (5.9
where §>>0 is a constant, and q(x) is penalty-like function defined on S. The penalized
problem is of the following form;
min [ g(x) +tap(a) ], (5.10)
where « > 0 is the penalty parameter. The most important advantage of using
discontinuous penalty function (5. 9) is that such a penalized problem is exact without any
constraint qualification requirement. See [ 127] for more details.
The algorithm has been implemented by proper designed Monte Carlo techniue. For a

given reference point and a set of weights, the algorithm converges to an efficient solution

with pre-specified accuracy, see [4] and [5].
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Optimality Conditions for Global Optimization (I)*

Abstract: With the help of the theory of measure and integration several global optimality
conditions, which are sufficient and necessary, are given for minimizing a continuous

function over a topological space.
1 Introduction

Let X be a Hausdorff topological space, f: X—> R a real-valued function and S a
closed subset of X. The problem considered here is to find the infimum of f over S
?:jrel‘l;f(:r) ) (1. D
and the set of global minima
H={x| f(x)=¢.2€ S} (1.2)
if the solution set of (1. 1) is nonempty.
In what follows we assume that
(A} f:X—>R is continuous;
(A;) There is a real ¢ such that the level set

H.={x| f(x)<c} (1.3
is compact, and S(\H,#=J.
Thus we have
?:l‘enll{%’rrl}sf(x) , (1. D

and the set of global minima H is nonempty and compact.

In this paper we will discuss the global optimality conditions.

The study of optimality conditions, conditions by which one can determine if a point x
is in the set of minima or its candidate, forms one of the vital topics in the theory of
optimization. Many optimality conditions have been obtained by various researchers in
optimization theory. Nevertheless, most of these conditions (if not all) are local in nature
and even then require several of differentiability (cf. , e. g. [1]—[3]). Therefore, to find
global optimality criteria for nonconvex problem is an intriguing area of research.

Here we will take an approach to study the problem of global optimality conditions,

which is different form the traditional ones. Our method is based upon the theory of

% Reprinted from Acta Mathematicae Applicate Sinica, 1985 2(1):66—78.
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measure and integration.

In Section 2 we will discuss the measure space. Afterwards, in Sections 3—5 the
concepts and conditions of mean value, variance and higher moments will be introduced.
The penalty method is mentioned in Section 6. All of these are sufficient and necessary
conditions. They remain valid in the (more restrictive) convex or differentiable cases and
reduce to the optimality conditions which are well known. As can be seen in Section 7, a

specific measure space corresponds to a specific optimality condition.

2 An Appropriate Concept of Measure

Let X be a Hausdorff topological space, 2 a o-field of subset of X and ;2 a measure on
Q. The triple (X, Q, p) is called a measure space. We require a set of further
requirements which are compatible with the topological properties of X.

(i) 2 is a Boral field, i. e., each open set of X is in (.

(ii) Any nonempty open set has positive measure.

(iii) The measure of a compact set in X is bounded.

A measure space which has all thess properties (properties (i) and (ii) is said to be a
Q measure space (Q-measure space). A measure space (X, Q, p) is said to be a Q-

measure space if g =1lim p, and {(X, Q, px,)} is a sequence of Q measures.

Example 2.1 The Lebesque measure space in the Euclidean space of dimension n, (R”,
Bs 1) s 1s a Qmeasure space.

Example 2.2 The Lebesque measure space on a manifold L of dimension m in R", (L,
Py s p) s is a Q- measure space too.

Example 2.3 The Gaussian measure on a separable Hilbert space H, (H, 2, u), is also

a Q-measure space.

Example 2.4 (X, Q. ), where p(A)=1if 2y €A or 0 if 2, EA, is. not a Q@ measure
space but a Q,-measure space for X=R".

In our framework, we will deal with a variety of Q-measure space tailored to the
specific contexts of the optimization problems. How can we establish the connection
between measure theory and global optimization? The following lemma yield a sufficient
global optimality condition which plays an important role in the subsequent development.
Definition 2.1 A subset G of a topological space X is said to be robust if cl (int G)=cl G.
Lemma 2.1 Let (X, Q, p) be a Qi-measure space and G be a robust subset of X.
Suppose the intersection of level set H = {x| f(x)<c} and G is nonempty. If ;n(H,NG)
=0, then c is the global minimum value of f over G and H.[\G is the set of global
minima.

Proof. let us first establish the following intermediate result. Suppose E is an open set and G is

a robust set. If E(NG%J, then there exists an open set B contained in ENG. Let z€ ENG.
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Since E is an open set; there is an open set B; such that x& B, CE. On the other hand x&GC
cl G=cl int G. Therefore, B, (int GZ&J. So there is an open set BCB(\int G, BCENG.

Suppose ¢ is not the global minimum value of f over G whereas ¢ is. Then

c—é=29>0.
Let E={x| f(2)<<c—x} which is nonempty and open since f is continuous and ¢—5>>¢.
We have
ENGCH.NG.
Therefore, there is an open set B such that
J#BCENGCH.NG.
However,
0<<pu(B)<u(H.NG),

because y is a Q -measure. We have a contradiction with respect to the condition x(H, )
G)=0.

Note that the condition p(H, (1 G) =0 is not necessary (see the following counter
example).
Example 2.5 Let f(2)=0 for 0<C2<{1. Here X=R' and the Lebesque measure space on
R! is used as a Q@ measure space. G=[0, 1]JCR" and ¢=0 is the global minimum value of
f over G. But u(H.NG)=1#4.

In the following discussion we always assume that the measure space(X, Q, p) isa Q
measure space.

We restate Lemma 2. 1 below in the opposite way.
Lemma 2.2 Let (X, Q, p) be a Qmeasure space and G a robust set. If ¢=>c¢(cis the
global minimum value of f over G). Then

w(H.NG)>0.
3 Mean Value Conditions

In this section, the concept of mean value of a function over its level sets will be
introduced. This concept is useful to consider the global optimality conditions and global
algorithm. In section 3. 3, we prove the mean value condition theory, which gives us two
sufficient and necessary conditions for global optimality.

3.1 Mean Value Over Level Sets

Let X be a Hausdorff topplogical space, f be a real-valued function on X and (X, Q,
1) be a Qmeasure space. Suppose assumptions (A;) and (A,) in Section 1 hold.
Definition 3.1 Suppose c>c=min f(x). We define

MCf\ o —/TH[)JHLf(x)d# 3.1

to be the mean value of the function f over its level set
H.={x| f(x)<c}. (3.2)

204



According to Lemm 2. 2, 4(H,)>0, for c>>¢. Consequently, given the continuity of f the
mean value (3. 1) is then well defined.
The following are properties of our mean value which are easy to be verified.
Proposition 3.1 For c>¢,
M(f, o)<e.
Proposition 3.2 [ f c,—=>c,>¢, then
MCf, ) =MCfs c1).
Proposition 3. 3  The mean value of a function over its level sets has the following
properties
(1) Constancy. M(X, ¢c)=2A, fora constant A =c.
(2) Homogeneity. MQf, Ac)=AM(f, ¢), for constant A\>>0 and c¢>>c.
(3) Translation. M(f+X, c+A)=MC(f, ¢)+A. for constant A and c>>c.
Proposition 3.4 Suppose {c;} is a decreasing sequence whose limit is ¢c=>c. Then
M(f,c)—hmM(}‘, cr) (3.3)

(},:

Proof. According to Proposition 3. 2, the sequence {M(f, ¢;)} is decreasing and M( [, ¢;)=
M(f, ¢), for k=1,2,+, so that the limit (3. 3) exists. Moreover,

L S
\p<H[.k>J”%f(">d# (H_)J”fmd#

|
<,1<H4.k>JH%f(‘T)d/‘ peini f(“dﬂ‘

1 1
(H)J e (H)J fmd"‘

< ‘ (;;(131%) *,m%m )J f(l)d#’+p(H )

The last two terms will tend to zero as ¢, goes to ¢ because of that {J f(I)d#} is

Jo ]

bounded and the continuity of ; and the absolute continuity of the integral of a bounded
measurable function f.
3.2 A limit-based definition

We have defined the concept of mean value for ¢>>¢. What happens at ¢? When c=¢,
the measure ;(H,) may vanish and in this case definition (3. 1) would not make sense.
The following definitions circumvent the above difficulty.

Definition 3.2 Iet c==¢ and {c¢,} be a decreasing sequence whose limit is ¢. The mean

value M(f,c) is defined to be;

MCfs o = },‘@#(H )

The above limit is well defined since {M (f, ¢ } is a decreasing bounded sequence.

J' S (3.4

Moreover, this limit is independent of the choice of the decreasing sequence. Suppose we
take another decreasing sequence {b;}, which tends to ¢ as £k—>co, Combining the two

sequences {¢,} and {b,} and reordering them, we obtain a new decreasing sequence {d,} which
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still tends to c. Now, we have a new bounded decreasing sequence {#(I-II)JH f (x)dp} , the
‘[m

m

limit of which exists., Therefore, being those of two subsequences of the same sequence,
the following limits exist and are equal:

. 1 . L 1 [
fimoegrs) £ = fimeegs], S0

By Proposition 3. 4, it is elear that Definition 3. 2 extends Definition 3. 1 to the case of

c=c. By the same token, Propositions 3. 1~3. 4 remain valid for c=¢.
An alternative equivalent definition of mean value in terms of a right-hand limit
process is given by:

Definition 3.3 Let c=¢, the mean value M(f, ¢) is defined to be the limit

MCf © = lim /%mjwfmdﬁ. (3.5)
The equivalence between the (3. 4) and (3. 5) is obvious.
3.3 Mean Value Conditions
We are now ready to prove our mean value characterization of global optimality.
Theorem 3. 1(Mean value conditions). Forthe problem (1.1) under assumptions (A1) and
(Ay), a point T is a global minimum with ¢ = f(x) as the corresponding global minimum
value of f if and only if
M(f, ¢)=c, for c>¢ (3.6)
or
Mf, o) =c. (3.7
Proof. Suppose ¢ is not the global minimum value of f and ¢ is. Then ¢ —¢=29>0.

According to Lemma 2. 2, p(H.,)>>0 and x(H:)>>0. We have
M(fs © —#(H?)J”?fu)d# /AHJ(J f(x)d,ﬂrjuwf(x)d#)

_c N , P PPN
= ¢ e D et = ey

Ha pety

where

_ u(Hep
B s 0 (3.8)

This establishes the sufficiency of (3. 7).
To demonstrate the necessity of (3. 6) and (3. 7), suppose ¢ is the global minimum
value of f. Then f(x)=c for all x. So, for ¢c>>¢, we have

_ 1 B S e R
M(fs o) = #(H()J”Af(x)dla>#(H{)J”Acdﬁ c,

which is (3. 6). Take a decreasing sequence {c,} such that gim ¢, =c. From (3. 6) we have

mM(f, ¢,)=c,

< Ve

M(f, o) =c.
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But M(f, ¢)<<c for ¢>¢, so that M(f, ¢)<c. Therefore

4 Variance and Higher Moment Conditions

In this section we will go a step further introducing the concepts of variance and
higher moments to prove the corresponding global optimality conditions. In doing so, we
shall retain all the relevant assumptions in the proceeding sections.

4.1 Variance
Definition 4.1 Suppose c>c=min f(zx). We define

_ 1 N 2
V(o) fﬁ(H()JHA (Fa) —MCfr )2 dy (4.1
and
Vi(fie) = [ (f) — o (4.2)
s p(HO ), # )

to be the variance and the modified variance, respectively, of the function f over its level
set He.
Obviously, both variance (4. 1) and modified variance (4. 2) are well defined. They
have the following properties:
Proposition 4. 1  For ¢ ¢, we have
V(f, O=M;(f, c; 0)—(M(f, )%, (4.3
where

1 o
M,(f, ¢5 0) #(H[)jH{qu)) dpe.

Proposition 4. 2 The variance of a function over its level set has the following

properties
(1) Positivity V(f, ¢)=0; (4. 4)
(2) VX, ©)=0, fora constant A =c; (4.5)
(3) Second-degree homogeneity VAf, Ac)=X*V(f, ¢). for A=>0 and ¢>¢; (4. 6)
(4) Cancellation V(f+x, ct2)=V(f, ), forc>c. 4.7

The following lemma is needed in the proof of Proposition 4. 3

Lemma 4. 1 (f(x) +1)*duis nondecreasing in ¢ for c=>cif f+i=0.

1 J
p(H) Jn
Proof. Suppose ¢,=c; >¢, then

CHy ), U@
1

_ ) 1
_ ,,L<H(1>JHL,W“ S 0"t s

n(H ) —u(H,) 4 1
nCH. ) nCH )

| @+t

= (e +2)°

|+t
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(H,) — p(H.) ( ,
s ——— 1J(f(x)+/\)zdp+ (f(2) + Dy

W(H)  u(H)Jn

- #(;I_ ) | w0

2

Hence, (f(2) +2)*du is nondecreasing in ¢ for ¢>c.

i)
p(HOD Jh
Proposition 4.3  Suppose {c,} is a decreasing sequence which tends to ¢ >¢. Then

V{f, c)—hmV(}‘, 9] (4. 8)

4,4

Proof. Since the sequence {mJ” (f(2) +2%du| is decreasing (Lemma 4.1)
s <

| L
bounded from below by W CH. J (f(x) +21)7dy, limit
. )
}ﬁlm(H )J ) 402 du (4.9)

exits. Moreover

1 d 2 . 1 - g 2
O<,J(H >J (fl) +2)"dn #<H(.>JHL_("‘<I>H) &y
‘ J F@ + 0% du— [ (fo + 0 ‘
p(H,) o p(HO ) n, "
. 2 o 1 N )
+‘ 55, @ gy )j F) 42 dﬂ‘
<‘ =) v@ o ‘+ J (F)+207d
= <#(H(.k) p(HJ) “TLCHD 7l

The continuity of measure and absolute continuity of the mtegral of a bounded continuous
function ( f(x) +X)? imply that each of the terms on the right-hand side tends to zero.
Furthermors, according to Propositions 3. 3 and 3. 4, we have

(MCf+2as e+ =M f, C+A))Z—11m(M(f, Cr +A)))—l1m(M(f+A, A’

Hence, since {x| f(x) +1<c, +A}=H ., » We obtain
ImV(f, ) = hmV(f A A

v e 1ﬁ c

] 0 e A ot 20)7)
—V(fFa e+ = V(s o

The following proposition is useful in deriving properties for the modified variance
from those of variance.
Proposition 4.4  For ¢ >c¢, we have

Vi(fs O=V(f, OFWMf, )= . (4.10)

Proposition 4. 5 The modified wvariance of a function over its level sets has the
following properties ;

(D Vi(fs oO=V(f, o, forc>>c;

(2) Suppose {c;} isa decreasing sequence which tends to ¢ >>¢. Then
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liLnVl(f, c)=V1(f, o. (4.12)
4.2 A Limit-Based Definition

We can also define the variance V(f, ¢) and modified variance V', (f, ¢) over its level
sets for all cZ=¢ by a limiting process.
Definition 4.2 Let c=c=min f(x) and {c;} be a. decreasing sequence which tened to ¢

as k—~>oo, The limits

N 1 _ - 2
V(f, c) = }:E} (I, JH% (f(x) —MC(f, o))*du (4.13)
and
1 1 N
Vi(f, ¢o) = }’ILT} W(H, )JH% (f(x) —o)du (4. 14)

are called the variance and modified variance, respectively, of f over its level set H..
Both limits (4. 13) and (4. 14) exist by the proof of Proposition 4. 4 and Proposition
4. 6. Like the mean value case, these limits are independent of the choice of the decreasing
sequences. Note that, Definitions (4. 13) and (4. 14) are consistent with (4. 1) and (4. 2)
by Propositions 4. 4 and 4. 6. Moreover, Propositions 4. 1, 4. 2, and 4. 4—4. 6 remain
valid for c=c after applying a similar limit-based argument.
That Definitions (4. 13) and (4. 14) are equivalent to the following alternative
definition.
Definition 4.3 Let c—=¢. The limits

T 1 N 2
V{if, o) = %1;1 #(HJ)Jde(l) MCfs ) du, (4.15)
and
1 1 N N2
Vi(f, o) = élgl ,u(Ha)Jde(l) ) ’du (4.16)

are called the variance and the modified variance of f over its level set H,, respectively.
4.3 Variance Conditions
In this subsection, variance condition and modified variance conditions will be stated

and proved.
Theorem 4. 1(Variance Conditions) For the problem (1.1) under assumptions (A;) and
(Ay), a point T is a global minimum with ¢= () as the corresponding minimum value
of fif and only if

V(f. =0 417
or

Vi(f, ©)=0 (4.18)
Proof. Sufficiency of condition (4. 17). To prove by contradiction, suppose x is not a
global minimum so that ¢c= f(Z) is not the global minimum value of f. Using Lemma 2. 2,
we have that ¢(H:)>0. We shall show that V(f, ¢)>>0. Suppose the contrary that

V(f, o) = S () —MCf, e)*dp = 0.

)
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Then f(x)=MC(f, ¢) for all x€ H: since f is a continuous function. But € H. = {x|
f(x)<). Therefore c= f () =MC(f, ¢); i.e., T is a gloabl minimum of f(x) by
Theorem 3. 5. This is a contradiction.

To prove the necessity of condition (4. 17), suppose x is a global minimum point
while V(f, ©)=29>0 withc= f(Z). Let {¢,} be a decreasing sequence which tends to ¢
as k—>co, Therefore there is a positive integer N such that

V(f, a)>n, for k=>N. (4.19)
This means (applying Propositions 4. 1 and 4. 2) that

1 2 1
n(H,, )Ju% (@) 207 dpe > nCH, )

where A is a real number such that f(x) +A=0. Since c<< f(x)<¢, for x€ H,, , we have,
from (4. 20),

| G@rndor g @

(e FD*=>C+H0% (4. 21
As k tends to oo, (4. 21) implies that

(c+D*Z=C+0+79,
which is a contradiction.

We now turn our attention to the modified variance condition. If V;(f, ¢)=0, then
since OV (f, )<V, (f, &), V(f, ¢)=0; so that T is a global minimum and ¢ is the
global minimum value of f.

Conversely, if T is a global minimum of f, then M(f, ¢)=¢= f(x). This means that
Vi(f, oO=V(f, o). Therefore, V,(f, )=V (f, ¢)=0.

4.4 Higher Moments
Suppose ¢>>c=min f(x). Then p(H.)>0.

Definition 4.4 Suppose m is a positive integer and ¢>>¢, we define

1 " m
#(H[)JHL F) —ardu (1.22)

to be the »mth moment of f over its level set H, centered at a.

M, (f, c; a) =

This concept extends those of mean value, variance and modified variance.

Specifically,
MCf, O=M,(f, c; 0); (4.23)
V(f, =M, (f, c; M(f, ¢)) (4. 24)
and
Vilfs oO=M,(f, c; o). (4. 25

Proposition 4. 6  The m-th moment of [ over its level set has the following properties ;
(1) mrth degree positive homogeneity ,
M, (Afs Ac; Aa)=X"M,,(fs ¢; a), forc>c¢ and A=0; (4. 26)
(2) Cancellation
M, (f+xs ctAs atD=M,(f, c; a)

= > (=D (Zn)M((er/\)", (0D @+,

i=0
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forc>¢ andreal A (f(x)+A=0), (4.27)

where <m>: 71.!(7”71.)!.

7 m!

Proof. (1) Since {x|Af(2)<Ac)={x| f(2)<<c}=H, for >0, so

M, (f + des Aa) = ,AIILLJJH(. Of (@) —2a)" du
= A (@) — @ = ML s @),
p(HO) ) 1,
(2) Since {z]| f(x) +Ax<<c+1}=H. for real number A, we have
M, (f4as c+as atr) = ;xulﬁL.)Ja F) +A— (a+2)"dy
=M, (f, c; @)

—2(—1)%( )(#J <f<x>+/x>id,l><a+x>~ﬁ

- m v . .
= 2(—1)%(, )M((f+/1)’, (0D a+1""
i=0 7
Like the mean value and the variance cases, M,,(f, ¢; a) is right-hand continuous in c.
Proposition 4.7 Suppose {c;} is a decreasing sequence which tends to ¢ as k—>co and ¢ >
c. Then
M., (f, c; a)—hmM,”(f, sy a)s for me{1,2,+-}. (4. 28)

(k c
Proof. Take a real number A such that f(x) +1=0 for x€ H,. Now {(¢, +A)'} is a
decreasing sequence which tends to (¢c+21)’. By Proposition 4. 6
lim M, (f+ ei30)=lim® (— D" '(’.n)M«fﬂ)", (e t0D (@t
‘k c v =

=D (—1)" ( )M((f+/1)’, (0D (at+a)m

i=0
=M, (f, c; a),
since

hmM((erA) s (D =MD e+, (4.29)

(‘ C
applying Proposition 3. 4.
The following extends Definition 4. 4 to include for possibility of ¢c=¢.
Definition 4.5 Suppose ¢==¢ and m is a positive interger. Then the »-th moment of f

over its level set H, centered at a is defined to be

M, (fs c5 @) = }:T#(H ) j fl@) — (@"dp (4.30)

The limit (4. 29) exists for each 7, so the defmmon (4. 30), which does not depend on
the choice of the decreasing sequence {c;}, is well defined. Note that Definition 4. 5 is
consistent with Definition 4. 4, and Propositions 4. 6 and 4. 7 are also valid for c=c.

Applying Proposition 4. 7, the following offers an aquivalent alternative definition of
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M, (fs ¢c; a).
Definition 4. 6 Suppose c==c¢ and m is a positive integer. Then the »-th moment of f over

its level set H, centered at a is defined to be

M, (fs c; a) = ;{1/31 /%HLJ)JH‘, (f(x) — (@™ dp. (4.3D)
4.5 Higher Moment Conditions

We shall demonstrate that the mean value and variance conditions of the earlier
subsections are special cases of the higher moment conditions developed in this subsection.
In particular, they correspond to the odd and the even higher moments respectively.

We first provide the odd moment conditions below.
Theorem 4.2 For the problem (1.1) under assumptions (A;) and (Ay), a point T is a

global minimum and ¢ = f(x) is the corresponding minimum value of [ if and only if

M., (fy c; O)=c"""", forc>c (4.32)
or
M, (fsc; OO=c""", (4. 33)
for some integer m.
Proof. Note that ¢ is the global minimum value of f if and only if ¢ ' is the global

minimum value of f#"~!. Also, the level set H, induced by f is identical to the level set
Ha2—1 induced by f#! over its level sets H2»—1 induced by f*~!. Expressions of (4. 32)
and (4. 33) are the simply restatement of the mean value conditions in Theorem 1. 8 for
! over its level sets Hzn1 parameterized by ¢*" .
Theorem 4,3 With respect to the above problem , a point x is a global minimum point and
c=f(Z) isthe corresponding global minimum value i f and only if

M, (f, ¢; M(f, ¢©))=0, (4. 34
for some positive integer m.
Proof. Suppose condition (4. 34) holds but ¢= f(Z) is not the global minimum value of
S then p(H:)>0. We have

1
2 (H.)

which implies that f(x)=MC(f, ¢) for all & H; since f is continuous. It follows that
Mf, o=,
so that x is a global minimum point of f which yields a contradiction.
Observe that | f(x) [<L for € H, , where ¢;>>¢ and L=max{c,,|c|}. We have, for
€ H, ,

0

| —Ms oy du—o, (4.35)

0 (f () =M fye)™<QL)" 2 (f(a)—M(f,e))?,
so that
0<M,,, (fs ¢; M(f, D<) 2V ([, ¢)y m=1,2,++-,
If c=f (=) is the global minimum value, then V(f, ¢)=0 which implies that
M., (f, c; MD(f, ©))=0.
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This proves the necessity of (4. 33).

Conditions (4. 32) and (4. 33) are not extendable to the even case neither can
condition (4. 34) be extended to the odd case. A more general form of higher moment
condition which applies to odd as well as even moments is given bolow.

Theorem 4.4 A point T is a global minimum point , forthe problem in Theorem 4.2, and
c=f(Z) isthe corresponding global minimum value if and only if
M, (f,c; ©)=0 (4.36)
for some positive integer m.
Proof (Necessity)., Suppose ¢= f(Z) is the global minimum value and m is odd, then
M, (fs ¢c; 0)<0, for c>c,
since f(x) —¢<<0 for x € H.. But, for any decreasing sequence {¢,} which tends to ¢,

we have
limM,,l(f, Crs Cp)
- (lklrf(l;(*l)”m< ) o )(J (fl) =D dy) @ e
lim )J @) == MU D, (4.37)
Thus,
M, (f. & O=0. (4. 38)
On the other hand, since f(x)—¢=0 for all x,
Mo (fr @0 = mM, (f a5 © = }km}#(H )j Fa) — @ du = 0. (4.39)

Hence, from (4. 38) and (4.39), we have
M, (f, ¢; ©)=0.
If m is even and ¢= f(Z) is the global minimum value, then M(f, ¢)=¢, so that
(4. 35) is equivalent to
M, (f, ¢; ©)=0.
(Sufficiency). If m is even and M,, ( f, ¢; ¢) =0 but ¢= f(Z) is not the global
minimum value of f, then p(H<)>O We have

(H ) [ (fC) =) "du=0,

which implies that f(x)=¢ for all x& H; since f(x) is continuous. It follows that
MC(f, o)=-c.
Therefore, ¢ is the global minimum value.

Suppose m is odd, T is not the global minimum point and ¢= /() is not the global
minimum value of f, while ¢ is. Let 2y=c¢—¢>0. We have that x(H:) and x(H:-,) are
both positive. Meanwhile,

f'(:r)<zf>7, for x € Hy.f,]
For m odd, we have that
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(f(x)—o"<<—y", for x€ H:

7
and
(f(x)—¢)"<0, for x€ H-.
We now have
~ ~ — 1 —=\m
M, (f,c;0) = #(H;)JH? (f(x) —o)"du
o 1 _=\m 1 __=\m
MH()JHC\HL*V(f(I) o d/er#(H()JHm(f(x) " dy
__m (HT*)
<7 4L#(H;) < 0.

This is a contradiction to condition (4. 36).
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Optimality Conditions for Global Optimization ( [[ )~

Abstract: In this paper we continue to investigate the global optimality conditions for

constrained problems by the theory of measure and integration.

Let X be a Hausdorff topological space, f:X-—> R a real-valued function and S a

closed subset of X. The problem considered here is to find the infimum of f over S,
E:iggf(x)

and the set of global minima.

Here, as in [12], we also asumme that the following two conditions are satisfied:

(A f:X—R is continuous;

(A,) There is a real ¢ such that the level set

H.={z| f(x)<c}

is compact and S(VH.# .

For a knowledge about Q-measure, refer to [12].
5 The Constrained Case

This section parallels, the development in the previous sections of the mean value,
variance and higher-moment characterizations of global optimality for some constrained
cases. Specifically, we treat the case of a robust feasible set, the case where the feasible
set is a manifold and the case of the intersection of these two sets. An exposition in terms
of a linear manifold in R" corresponding to a set of linear equality constraints has been
discussed in detail in [ 10].

5.1 Rejection Conditions

Suppose the set SCX is robust. Consider the problem of finding the global minimum
value of a real-valued function f on X over S. As before, we assume that assumptions
(A)) and (A,) are satisfied.

Let (X,Q,x) be a Qmeasure space. We can construct a derived Q-measure space (X
1S,Q,,p,) in the following manner. The set O[S is regarded as an open set if set O is an
open set in X. The family of sets Q,={SB|BEQ} is a s-field.

The measure y, is defined by

% Reprinted from Acta Mathematicsae Applicatae Sinica, 1985, 2(2):118—132.



n (A =p(ANS), for A€ Q. (5.1
A nonempty open set in XS is written as O S(# ). By the proof of Lemma 2. 2, we
have
1:.(O)=p(ONS)=>0.

Hence, (X(1S,Q, . is a Qmeasure space.
Definiton 5. 1 Suppose SCX is a robust set. The measure space (X(1S,0Q, ) is called a
rejection measure space.

The rejection versions of mean value, variance and higher moments of a function over
its level sets are defined below.

Definition 5.2 Suppose {c.} is a decreasing sequence which tends to c=c¢=minf (x). The
xE€S

limits
M(f,c;s>:(1kir'r3m JH @, (5.2)
V(f,c‘;S):}kirvr}m J”ws S —MfresS)2dus (5.3)
v, <f,c;s>:(1_313m JH%QS F(—)du (5.4)
and

P S
Mn(f’(”a’S) };I;r‘l /’L(H[k ﬂS)

arc called, respectively, rejection mean value, rejection variance, rejection modified

J (f()—a)"dpsm=1,2,-+ (5.5)
H, NS

variance and rejection m-th moment of f over H,[)S.

Since a rejection measure derived from a Q-measure is also a Q-measure, the above
definitions are well dfined. Consequently, we inherit for the rejection moments all the
properties of the moment of f over its level sets H. developed in Sections 4 and 5. The
corresponding rejection global optimality conditions are collected in Theorem 5. 1 below.
Theorem 5. 1  With respect to the constrained minimization problem (1. 1) (under
assumptions (A1) and (Ay)) with a robust constrained set S, the following are
equivalent .

a. € S is a global minimum and ¢ = [ () is the corresponding global minimum

value ;
b. M(f,c;S)=c, for c>c; (5.6)
C. M(f’?;S):E; (5.7)
d. V(f,¢c;5)=0; (5.8)
e. Vi(f,c;8)=0; (5.9
f. My, (fyc3059) =™, for c>tand some positive integer m ; (5.10)
g M, (f,¢;0;9)=*"", for some positive integer m ; (5.11)
h. M, (f,c;M(f,¢;S)3;S)=0, for some positive integer m ; (5.12)
i. M, (f,c;¢;8)=0, for some positive integer m. (5.13)
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Example 5.1 Consider the problem of finding the minimum of f(x)=X over the robust
set S=[1,2]. For any ¢, the level set H(.:{I\x<c}:(*®<ﬁ,c‘] so that

_ 1 D S 1y —
_#(H(ﬂs)Jmsﬂx)dﬂ L [ de= g s @D =

for c=1. Applying the mean value condition, we have

ct+1
5

M(fre;S) CH

MC(f,c;S)=c=

Hence, c=1 and H={1}.
5.2 Reduction Conditions

A manifold L in a Hausdorff space X is a Hausdorff topological subspace of X in
which each point has an open neighborhood homeomorphic to a topological space Y.
Sometimes the topological space Y is endowed with a special structure. For instance, Y=
R™; in this case the manifold L is called a topological m-manifold. In this subsection we
only consider a general case of manifold. In [10], we consider linear m-manifold in X =
R™ in detail.

Suppose the constrained set L is a manifold in X. Then the minimization problem is
restricted to the manifold L. In L, the open set has the form L()O, where O is an open set
inX. Let Q. ={LNB|B€Q}, where  is a Borel field of subsets of X. We further
suppose that there is a Q-measure ;. on ;. Thus we have a reduction Q-measure space
(L Qs p).

Definition 5.3 Suppose LCX is a manifold. The Q-measure space (L, »py) is called a
reduction measure space.

We can also provide the reduction version of the moments of a function over its
truncated level sets.

Definition 5.4 Suppose {¢;} is a decreasing sequence which tends to c}?:?(qeiyf(.r) as

k—>co, The limits

M(freiL) }Ll?mj"ﬂ PO (5. 14)
V(fresl)= }Lm?mj' @M L) s (5.15)
Vi (faesL)= }:ijﬁ = (5.16)
and k
M, (frcsasL)— }:?mj @ =) =12, (5.17)

are called, respectively, reduction mean value, reduction variance, reduction modified
variance and reduction m-th moment of f over H.(L.

As in the rejection case, these limits are well defined and the useful properties of
various moments of f over its level sets H. treated in Sections 3 and 4 remain valid. The

optimality conditions in terms of the reduction moments are given below.
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Theorem 5. 2 With respect to the constrained minimization problem (1. 1) over a
manifold S = L (1 X Cunder the assumptions (A;) and (A;)), the following are
equivalent .

a. x € L is a global minimum and ¢ = f(x) is the corresponding global minimum

value ;
b. M(f,c;L.)=c, for c>c; (5.18)
c. M(f,c;L)=rc; (5.19)
d. V(f,c;L)=0; (5.20)
e. Vi(f,c;L)=0; (5.2
f. My, — 1 (f,c30;L) =)™, for c>tand some positive integer m ; (5.22)
g. M, (f,c;0;L)=¢c, for some positive integer m ; (5.23)
h. M, (f,c;M(f,c;L);L)=0, for some positive integer m ; (5.24)
i. M,,(f,c5¢5L)=0, for some positive integer m. (5.25)

Suppose (L, sp) is a Qmeasure space, G is a robust set in X and L) int G# .
Then a rejection-reduction measure g can also be introduced
pine(A)=p (ANG), for ACQ. (5.26)
The following definitions and theorem are similar to those of the rejection and the
reduction cases:

Definition 5.5 Suppose {¢;} is a decreasing sequence which tends to ¢cZ=¢= min f(x) as

x€LNG
k—>co, The limits
MCf s LOG=lim s ﬂmo)J @ (5.27)
V(o LNG) = }flﬂr}m(HuﬂLﬂG)JH DM GLNG s (5.29)
Vi (o LNG) = }}ﬂanwanG)JH D= (5.29)

S S
M, (fsc; Lﬂ(z)—(lllﬂnm (H,NLNG

are the rejection-reduction mean value variance, modified variance and m-th moment of f
over H.(N\LG, respectively.
Theorem 5.3 With respect to the constrained minimization problem I. (1. 1) over S=L|)

| F)—a) dpy sm=1.2.+  (5.30)
H, NLNG

G (under assumptions (A)) and (A;)), the following are equivalent

a. =€ LNGis a global minimum and c= f(T) is the corresponding global minimum

value ;
b. M(f,c; LONG)=¢. for c>T; (5.31)
C. M(f,E;LﬂG):E; (5.32)
d V(f,6;LNG)=0; (5.33)
e. Vi(f,e;LNG)=0; (5.34)
f. My~ (foc;0;LNG =@, for c>Cand some positive integer m ; (5.35)
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g. M,, 1 (f,c;0;LNG)=¢, for some positive integer m; (5. 36)
h. My, (f,csMOf,c; LG ;L G) =0, for some positive integer m ; (5.37)
i. M, (f,c;5¢;L(G)=0, for some positive integer m. (5. 38)
We observe that our constrained global optimality conditions share a unified form with
those of the unconstrained case. The difference between them arises mainly from the
definition of different Q-measure space for the same problem. In the working paper'™, we
treat the case of linear equality constraints in R” as an example of the application of the

reduction conditions.

6 Penalty Global Optimality Conditions

In this section, the concepts of mean value, variance, modified variance and higher
moments over level sets will be extended to the case of penalty functions. The
corresponding global optimality conditions turn out to be particularly implementable when
we discuss theoretical algorithms of penalty!'). We will assume that the topological space
X is a metric space in addition to the assumptions (A;) and (A,) maintained so far.

6.1 Penalty Mean Value
Let S be a closed subset of X. Consider the constrained minimization problem:
?:rlneiglf(x). (6.1
Definition 6.1 A function p on X is a penalty function for the constrained set S if

(i) p is continuous;

(i) p(a)=0 for all xE X
and

(iit> p(x)=0 if and only if xE S.

In this section we will consider the case where S is a robust set in X. We introduce
now a sequence of penalty level sets which is useful in our definitions of a penalty mean
value. Suppose {c,} is a decreasing sequence which tends to ¢>¢ as k—>co and {a,} is a
positive increasing sequence which tends to infinity as k—>co, Let

H,={x| f(x)tap(x)<c} k=1,2,. (6.2)
Lemma 6.1 The sequence {H,} given by (6. 2) is decreasing by inclusion. Moreover,

1imHk:D] H,=H.NS. (6.3)

p—>oc

Proof. Suppose x& H,+,, then
(@) Far p() <.
Since ak+1<ak and CkA1>C/\, s SO
f() tap ()<[f () tap p(x)<cpi1<¢;.
Therefore, xt€ H,, i.e., H,.1 CH,.
Suppose x& le H,, then x& H, and
f(o)tap ()<, <c,» for all k. (6.4)
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If €S then p(2)>0. Hence, a;p (x)—>c0 as k—>co which contradicts (6. 4). Therefore,
x€ S and

f(o)tap ()= f(x)<c;, for all .
This implies that x& H.. Thus, we have proved

fj H,CH.NS.
On the other hand, if xt& H.(\S, then
[ Fap ()= f(2)<c<cp» for all .
Hence, € H, for all %, i. e.,
H. msch(rjl H,.

By using LLemma 6. 1, we now proceed to prove:
Lemma 6.2 Suppose c >¢, {c,} is a decreasing sequence which tends to ¢ as k—>c° and

{cy} is a positive increasing sequence which tends to infinity as k—>co, Then

S S -1
ﬁl»’ﬁMHk)ij [(0dy MHCHS)JMS{(XM,L (6.5)

We defined in Section 5 the rejection mean value of f over its level set with robust

constrained set S to be

N S
M(f,c;S)—H(HCﬂS) jH(ﬂS {((x)dp
if c>¢. Therefore,
S S _ .
fim p(H Lk GO dp=M(. ;) (6.6

and the limit does not depend on the choice of sequence {¢,} and {a;}.

Definition 6. 2 Suppose ¢>>¢. The limit

=lim 1
teo ptCHY)

is called the penalty mean value of f over its level set with respect to the penalty function

M(fscs p) | reoda (6.7

p defined on the feasible set S.

Note that the penalty mean value M(f,c; p) does not depend on the choice of {c¢;} and
{a,} when ¢>¢. What about the case ¢=¢?
Lemma 6.3 Suppose c=f(x) isthe global minimum value of f over S, then

c=M(f.,c; S =MC(f.c;p). (6.8)

Proof. lf c=f(Z) is the global minimum value of f over S then c=M(f,¢;S). Suppose
{cy} is a decreasing sequence which tends to ¢ as k#—co and {a,} is a positive increasing
sequence which tends to infinity, then

1
1 CH

1
JH& f(l‘)d/z<,l7(Hk) JH}: (f()Fap (@) dp=<<c,s for k=1,2,--.
Hence
lim sup#j F () dp<le (6.9)
e Py (CH i - A '
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We will prove that

hm 1nf

flodu=e. (6.10)

l

| i) such that

<Hﬁ> S

(H/«) H,

Otherwise, there is a subsequence of {
/lgl} #(Hk 5 J fodp=c <e.
Let Zn:F*8>O. Then there is an integer N such that

1
n(CH)

It follows that there is at least a point x, € Hy, such that
Sl )<<c—y, Rk >N. (6.12)

Therefore, we have constructed a sequence {xk, }r,—~ which has a convergent subsequence

| rdu<e—y. for all k>N (6. 1)

because of the assumption of compactness (A;). Without loss of generality, suppose {x;, |

-

. o ) A ) ) S

is a convergent sequence x; —> as k;—>oo, It is clear that x is contained in () H, which is
=1

closed. Hence,

f)=lim fa )< —p. (6.13)

According to Lemma 6. 1, £ € H: (1 S. This implies that f(z)>=>¢, which contradicts
(6.13).
The result follows from by observing that

c<11m 1nf J f(x)d/lélirfl supﬁ J.H [ () du<c. (6.14)
I k A

(Hﬁ)
6.2 Penalty Mean Value Condltlons
Since penalty mean value coincide with rejection one, by Theorem 5. 1 we have
Theorem 6.1 The following are equivalent :
a. A point T € S is a global minimum with ¢ = f(x) as the corresponding global

minimum value of [ over S;

b. M(f,c;p)=c, for c>c; (6.15)
c. M(f,c;p)=c. (6.16)
It is natural to think that one can use

M'(fcs p)=lim (HA)J CFC) +ap () dy (6.17)

k

as an alternative definition of penalty mean value. The following two lemmas tell us that
they are equivalent,
Lemma 6.4 Suppose c>¢, {c;} is a decreasing sequence which tends to ¢ as k—>c° and

{ap} isa positive increasing sequence which tends to infinity. Then

kT’L){)
lim

1 " .
#(Hk)JHk S Fap ) de= g ﬂs>j

Proof. Since ¢c=>¢, we have p(H,(1S)>>0 and after applying Lemma 2. 2. We have

S od, (6.18)
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1 , o
’#(Hk)JHk(f(l)Jrakp(l))dp S S)Jm”f(x)dﬂ‘

1 _—
< pn(Hy  p(H, N S)‘ Huk (f(x)%akp(x))dla‘
1 S 0 ‘
+MJHk (f(l)—ﬁ—akp(x))d/x JHLﬂS(f(I)—Q—akp(x))d/x‘.
Now, by Lemma 6.1, we have
1 1 \y(Ht.ﬂS)*;x(H;\,H

~>O,

[ tapend) <t

w(H) pu(HNS) »(H.NS

as k—»OO )

and
1 " . " .
A UH (f(x)—|—ak])(x))d,u*JH(ﬂs(f(x)—|—ak])(f))d,u
PLIp(HO—p(HAS|
< (NS 0, as k .
Lemma 6.5 Suppose ¢ is the global minimum value of f over S. Then
gy ], (G Fap 0) =M )=z, (6.19)

Proof. Let {¢,} be a decreasing sequence which tends to ¢ as k—oc and a, >0, a; 4 oo.
We have

1
#(Hp)

As k—>co, we have

| rades FCo) Fanp o) dp<er.

(H)J

c=MC(f,c; p)<hm 1nf (f()Farp () du

L,

<lim sup jH f() Fap () du<.

1
n(H)
Hence, we have the following theorem.

Theorem 6.2 The following are equivalent
a. A point T € S is a global minimum with ¢ = f(Z) as the corresponding global
minimum value of f over S;

b. M (fsc; p)=¢s for c=>¢;

c. M (f,e5p)=rc. (6. 20)
Remark Although M'(f,c; p)=M(f,c;p) for c==¢, we adopt the latter as the definition
of penalty mean value for computational case. In practice, it is more convenient to
compute f(x) rather than f(z)+a,p(x) especially when a, becomes very large.

6.3 Penalty Variance and Higher Moment Conditions

As in the preceding subsection, the corresponding concepts of penalty variance,
modified variance and higher moments are introduced.

Definition 6.3 Suppose c==¢, where ¢ is the global minimum value of f over S, {c.} is a

decreasing sequence which tends to ¢ as k—>oo, and {a;} is a positive, increasing and
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unbounded sequence. The limits

V(fesp=lim s | @M ) e (6. 21)
Vi (fres p)= hmmj F)—) dy (6.22)

and
M, (fesa3 p)=lim (H)J FO =@ dpsm=1,2, (6.23)

are called the penalty variance, penalty modlfled variance and penalty »mth moment of f
over its level set H. with respect to penalty function p(x) depending on the constrained set
S, where
={x| f()tap(x)<cr}k=1,2, .
Of course, we should prove that (6. 21), (6. 22) and (6. 23) are well defined, 1. e.,
the limits exist and do not depend on the choice of sequences {¢,} and {a,}. This is the
content of the following lemma.

Lemma 6.6 Suppose c=c, then

V{f,e;p)=V(f,c;9), (6.24)
Vilfse; 0=V (f5¢;9) (6.25)

and
M,,,,(f,c;a;p):M,l(f,c;a;S) n=1,2,%-. (6. 26)

Proof. The results of Lemma 6. 6 for the case of ¢>>¢ follow by applying method of the

proof of Lemma 6. 2 For the case c=¢ we will only prove (6. 26).

Since
L[ —ardu— S =M | ro—orduta—or
/J(H/\’) H ' a i=0 (i)#(Hk) H, ' a
(6.27)
and
M, (fecias )= D) (—1)m (@)M;(f,c;a&(a—am*f (6. 28)
i=0 1
for c=c, it is sufficient to prove that
1 g i — S R e T e ) — coe
%Lm#(Hﬁ)J , (F@) = M(fE5E9), for i= 1.2, (6. 29)

For the Case 1 is odd the proof is similar to that of Lemma 6. 3. Suppose i =2r is

even. Then

1 DN =\ 2r
K,TH@JW F)— ¥ du
It follows that
0<lim inf— 1 (H ) J F—0 " dp. (6. 30)

Suppose
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lim sup

1
oo pCHR)
Then we can also find a subsequence {zrkl } such that e, € Hy v 2y, —>7 as k;—>0co, so that

(f(@) ==y,

| —orduzyo. (6. 3D

Hence, we have either
(fH == (6. 32)
or
([ —O<—y. (6.33)
Suppose (6.32) holds, i. e.. f(2)=c+7f. Note that, f(£)<c;» and 24 € Hys k=1,2,%+, s0
7€ H:NS. Therefore, f(7)<<c which is a contradiction. Condition (6. 33), i. e.. f(2)<lc

—1]2%' contradicts the assumption that ¢ is the global minimum value of f over S since € S.
This completes our proof for the even case since M, ( f,c¢;¢;S)=0.

Hence, we have the following theorem.
Theorem 6.3 The following are equivalent .

a. A point T € S is a global minimum with ¢ = f(Z) as the corresponding global

minimum value of [ over S;

b. V(f,c;p)=0; (6. 34)
c. Vil(f,c;p)=0; (6. 35)
d. My, (fyc;05p) =", for c=>¢, for some positive integer m; (6. 36)
e. My, (f,¢;0;50)=CO*"", for some positive integer m ; (6.37)
f. M., (f,e;M(f,c;p);p)=0, for some positive integer m ; (6. 38)
g. M, (f,c;5¢c;p)=0, for some positive integer m. (6.39)

We can also define penalty variance, modified variance and m-th moments,

respectively, of f over its level sets with respect to penalty function as follows:

V/(fres p)=lim (}I)j F) +ap (@) —M Fres p))7dus (6. 40)
k H,
’, . . 1 " . _
VICfes ) =lim - s jH CF) +ap () —0)du (6.41)
and
M, (frcs p)= hmmj SO Fap (D —a) dusm—=1.2,+.  (6.42)
and prove that
V/(f‘vc;P):V(fac;])>:V(f‘7C§S)7 (6.43)
Vifses D)=V (fac; D)=V (f,c;S) (6. 44)
and
M, (ficsas p) =M, (f.csa; p)=M, (fic;a;S),m=1,2,+-. (6. 45)

Theorem 6. 3 would also be valid for these alternative penalty variance, modified variance
and higher moments.

Since penalty mean value, variance, modified variance and higher moments of f

224



coincide with the constrained ones, they share the same properties. For instance, the
penalty mean value M(f,c; p) is an increasing function of ¢(¢c=¢). In our discussion of
theoretical algorithms and implementations, the penalty optimality condition (in an

appropriate form) turns out to be more useful than the constrained ones.

7 Examples

All of the previously mentioned optimality criteria are sufficient and necessary under
non-stringent assumptions. They can be reduced to other known optimality conditions. A
specific measure corresponds to a specific criterion. Here we list a few examples.
Example 7. 1 In the Nelder-Mead simplex method for nonlinear minimization problem

([4]) the following requirements have been suggested in the criteria;

nt1
L3 (fan—far<e (7.1
i=1
and
1 ntl
20 @)~ f) e (7.2)
i=1

where x,=(x,+a,++x,01)/(n+1) and frx=max(f(x1),s f(az) sy f(x,1)). In
our setting, they can be regarded as approximation forms for variance conditions V( f,¢) =
0 and V,(f,¢)=0, respectively.
Example 7.2 (Convex Case) Suppose X is a locally convex linear topological space, S is a
closed convex set of X and f is a continuous convex function. Let

S (x)=c+<{&,x—T), (7.3
where £ is a vector in the dual space X" and c= f(Z).

The following lemma can be proved.

Lemma 7.1 A point T €Sis a global minimal point of [ over Sif and only if there isa
vector €€ 9 f(x) such that
M(f:,c38)>=c, forc>c (7.0
holds, where d f(x) is the subdif ferential of [ at point x.
From LLemma 7. 1, one can prove the following lemma.
Lemma 7.2 A point x €S is a global minimal point of f over S if and only if
If( NP#T, (7.5
where P is the set of the support functionals.

We know that the set of support functionals P coincides with the dual cone of the
tangent directions of set S. It also coincides with the dual cone of the feasible directions
when S is a robust set. Hence one can establish the optimality conditions in the convex
case by LLemma 7. 2.

Example 7.3 (Generalized Gradient)

Here, we will establish the link between our integral characterization of global
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optimality and Clarke’s!'**) generalized derivative approach to obtain necessary conditions
for nonconvex programming.

Let X be a Banach space and f a real valued function on X. The function f is said to
be locally Lipschitz if for any point x € X, there is a neighborhood O(x) such that for
some K and any y and 2 in O(x), we have

) —f(|<K || y—=]. (7.6)
For each v in X, the generalized directional derivative f°(x;v) in the direction y is
defined by
flasv) :lirrhl ;Zup[f(1'+h+/lv) — f(x+h)]/A.
Av 0
The generalized directional derivatiife f°(x;3v) can be taken to be convex in direction v,
Definition 7. 1 The generalized gradient of f at x, denoted by d.f (x), is defined to be
the subdifferential of the convex generalized directional derivative f°(x; ¢ ) at 0.
Lemma 7.3 If X is a local minimum for f, then 0 isa global minimum of °(Z; * ).

Applying the global optimality conditions of Theorems 3. 6, 4. 7 and 4. 10, to the
generalized directional derivative f°(Z;v) at a local minimum 7 in the above lemma, we
obtain the following conditions:

Corollary 7.1 If xis a local minimum of f . then

MCf°(Z5 *)se) =0, forc>0; 7.7
M (x5 »),0)=0; (7.8)
V£ (x; +),00=0; (7.9
Vi(f (T +),00=0, (7.10)

where M, V and V, are de find with respect to any Q-measure p on a Borel field of X.
By Lemma 7. 1, we have

Corollary 7.2 1f xis a local minimum for f, then there exists E& 9. f(x) such that

M(E, « ) ,c)=0, for c>0. (7.1D)
We are now going to consider the constrained case:
meiglf(x). (7.12)

Recall that the cone of tangents of S at x, denoted by T=T(x,S), consists of all
directions d such that d:l’im X (ap—2), where 2, >0,2:, €S for each & and some {x;}
k—0

which converges to x. Note that T is a closed cone.
Theorem 7.1 If the point x € S is a local minmum of f over S, then 0 is a global
minimum of f (T3 * ) over T(Z,S).
Suppose T is a non-empty closed convex cone included in T(Z,S), then
minfo(i;d)Zmi?fo(I;d))fo(f;()).

dET, de
Therefore, we have
Corollary 7.3 I1f x is a local minimum of f over S, then 0 is a global minimum of f°
(x5 ¢ ) over T,.

We consider reduced problem of minimizing the convex function f°(x; * ) over T,. By
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Lemma 7. 1 and Corollary 7. 3, we have
Theorem 7.2 [fxisa local minimum of f over S, then for any non-empty closed convex
cone T\ included in T(x,S), there exists E€d.f(x) such that
M(E, » ), T)=0, for c>0. (7.13)
LLemma 7. 1 tells us that if & S is a global minimum of f over S, then there is £€9,f(Z)
such that
(&,d>=0, for all d€T).
That is, £ is a vector in the dual of T,. Hence
Corollary 7.4 1f x is a local minimum of f over S, then for any non-empty closed
convex cone T included in T (x,S),
If@N(T) " #LI. (7.14)
Note that, the tangent cone J (x,S) is closed and convex. The following lemma shows
that J(x,S) is included in the cone of tangents T(x,S).
Lemma 7.4 Suppose S is a closed subset of X and x&S. Then
J(Z,9CT&,S).
The following results of Clarke'* and Hiriart-Urruty"®' are stated as an proof for the
sake of completeness.
Theorem 7.3 If x is a local minimum of f over S, then
L@ N(—N@. ) #J (7.15
and
If@NI] (&S #, (7.16)
where N(x,S) is a normal cone.
Example 7.4 (Integer Minimization Problems) Let X={x,***,2,,***} and z=2% be the
power set of X, Under the discrete topology (X,7) is a topological space.
Let S be a subset of X and f: X—>R be a real-valued function. We are interested in

finding the minimum value ¢ of f over the constrained set S

Z:rnei?f(r), (7.17)
and the set H of global minima
H={x| f(x)=¢}, (7.18)

if there are solutions to (7. 17).
For each real ¢, the level set
H.={x| f()<c}
and the set
H. = {x| f(x)<c}
are subsets of X. Since any subset of X is open as well as closed, each real-valued function
on X is continuous,
We replace assumption (A;) by
(A)) There is a real number o such that the level set
H,={x| f(x)<a}
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is finite and the intersection H, (]S is non-empty. Let a,>0, i=1,2,--. Take

N={A|ACX}
and define the measure p on Q2 by:
p(AD= >l a,.
,riEA

Proposition 7. 1

(X,Q,p) is a Qmeasure spac

e.

(7.19)

(7.20)

We define the concepts of mean value, variance, modified variance and higher

moments as follows:

Definition 7.2 Suppose a—=c=c=min f(x). We label

1

24

x; €H,

M(f,e)=

V(f,o)=

Vilfso=

and

M, (fsc;d)=
a;
.rIGIIA

2 a;f(l‘i) ’

.1‘1»611‘.

> a (fae)—Mfo)?,

; x,€H,

DV a(fla)—o)

i ;€ H(

D0 ai(fa) —d)"am=1,2,-

z €H,

(7.2D

(7.22)

(7.23)

(7.24)

respectively, as the mean value, variance, modified variance and 7-th moment centered at

d of f over level set H..

Since x(H,) = Z a;>0 and | f(x;) ]| is bounded on H,, (7. 21)—(7. 24) are well

x; €H,

defined, so that there is no need for a limit-based definition as in the general case.

We can also define the constrained version of the above concepts as follows:

Definition 7.3 Suppose a}c)fzmei?f(x). We label

M(foe;S)= — 3

J'I-EH(;ﬂS
V(foce;S)= 2

x; €H, ns

Vilfeie; )= ——

; 1'1.6”( ns

and

M, (fsc;d;S)=

.rIGH( ns

2. a

2 a

2. a

E a,-f(x,-)»

x; €H, ns

D7 a(fla)—Mfe?

RS H(_ ns

2 Cll‘(f(I,’)_C)Z

D a; (fa)—d)ym=1,2,-

1'1.6”( ns

(7.25)

(7.26)

(7.27)

(7.28)

respectively, as the constrained mean value, variance, modified variance and m-th moment

centered at d of f over H.[)S.
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Now, the optimality conditions for integer minimization problem can be stated as
follows:
Theorem 7.4 The following are equivalent .

a. A point * €S is a global minimum and ¢ = f(Z) is the corresponding global

minimum value of f over S;

b. M(f,c;S)=¢, for c>c; (7.29)
c. M(f,c;S)=c¢; (7.30)
d. V(f,¢;5)=0; (7.3D)
e. Vi(f,c;S9=0; (7.32)
f. M, (f,¢;0;9)=*""", for c>Cand some positive integer m; (7.33)
g M,, 1 (f,c;0;S) ="', for some positive integer m; (7.34)
h. M, (f,c;M(f,c;S)3S)=0, for some positive integer m ; (7.35)
i. M,,(f,c5¢;8)=0, for some poitive integer m. (7.36)

Remark  The theory can be also generalized to minimize a class of discontinuous

functions. For more details see [ 8].
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Integral Global Optimization Method for Solution of

Nonlinear Complementarity Problems”

Abstract;: The mapping in a nonlinear complementarity problem may be discontinuous.
The integral global optimization algorithm 1is proposed to solve a nonlinear
complementarity problem with a robust piecewise continuous mapping. Numerical

examples are given to illustrate the effectiveness of the algorithm.
1 Introduction

Historically, the use of optimization methods to solve nonlinear complementarity
problems has been obstructed by the fact that the solution of global optimization problems
was required. In general, these global optimization problems involved constraint sets
which were not convex, and did not always satisfy constraint qualifications. Sometimes the
defining functions were not differentiable. The objective functions for such optimization
approaches to complementarity were also difficult to handle and were neither concave nor
convex. The depth of the technical difficulties resulting from all these factors has
discouraged the research community from this line of thinking. However, recent progress
in global optimization, now causes a re-examination of the problem. A new method of
global optimization which is based on integration of functions has been developed [6—12].
From this fresh point of view, it is possible to handle the technical difficulties mentioned
above and to resolve them in a systematic way. In this research we will investigate the
solution of nonlimear complementarity problems via integral global minimization methods.

Some related work has been recently completed by Mangasarian and Solodov[4]. In
their paper, the nonlinear complementarity problem is reformulated as an unconstrained
minimization problem and then solved by local methods. Applying these methods from
many starting points, they are often able to solve the nonlinear complementarity problem.
However, with their approach it is quite possible that a suitable starting point will not be
chosen and hence they will miss the solution to the nonlinear complementarity problem.
They also assume the functions are differentiable in order to apply existing local methods
of optimization. In the approach followed here, such assumptions are not necessary.

Let f: R*"— R" be a given mapping, O an orthant in R". The complementarity

% In collaboration with Kostreva M M. Reprinted from Journal of Global Optimization, 1994, 5:181—193.
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problem associated with f is;

Find & R” such that x€0, f(x)€O* =0, <(x,f(x))=0, (1. D
where

(x, f(x))=x fL()Fta,f. ().

The mapping f is not necessarily assumed to be continuous. For instance, Habetler and
Kostreva [ 2] consider problem (1. 1) when f is a P-mapping. Recall that in [5] a mapping
f:R">R" is said to be a P-mapping on a set S if for all x,y&E S with x5y, there exists
an index i=i(x,y) such that (x;—y;) (f;(2)— f:(y))>0. A P-mapping must be one-to-
one, but need not be continuous.

Let N={1,2,++,n} and I*,k=1,2,++,2" be subsets of N. Let f: R"—>R" be a P-
mapping on R*. If for each £#=1,+++,2" the mapping

(), €I?,
o=
is a mapping from R"onto R", then f is called a nondegenerate P-mapping.

The following theorem represents a quite general result for nonlinear complementarity
problems, since the functions are not required to be differentiable or even continuous and
the orthant of definition is left general. However, this level of generality is nevertheless
compatible with an approach through the integral global optimization.

Theorem 1. 121 Ler: R*—>R” be a nondegenerate P-mapping. Then for each OC R”,
(1. 1) has a unique solution.

The complementarity problem (1.1) can be formulated as the following minimization

problem:
rlnei?g(x), 1.2
where
g()=(x,f(x)) and S={zE€ R":2€0, fEO). (1.3)

The problem (1. 1) has solutions if and only if the global minimum value of (1. 2) is
equal to 0 and the set of global minimizers is the solution set of (1. 1).

To solve (1. 2), a nonsequential unconstrained minimization algorithm for finding the
set of global minimizers of a constrained problem is proposed as follows:
Algorithm

Step 1. Take ¢y >min,es g (x) and e2>0; take ao >0 sufficiently large and g>1. 0;

Hy:={x:g(x)taps(x,H)<cy}3k:=0;
Step 2 ;. Calculate the penalized mean value

Cr+1 ::/%I—I;\,)JH’\’ [8’(I)+akps(:f’8)]dp;
with
Hk — {I:g(T) +C¥/¢p5(1‘98><();¢ } H

Step 3 : Calculate the penalized variance
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v :#(Il_lk) Ju Eg(x)Jrakps(l"a)*c/a]zd#;

if v=>¢ then 411 =a; * B3k:=k+1; go to Step 2; otherwise, go to Step 4;

Step4d: ¢” <cpr13H"<Hg15 Stop.

Here 0 is the accuracy requirement given in advance and ps(x,8) is a penalty function
defined by (3.4) and (3.5).

As was discussed in [ 6,7], a problem formulated with a nonrobust mapping may be
numerically unapproximatable and unstable. Thus, we restrict ourselves to study the
problem of a robust piecewise continuous mapping f. In the next section, we will review a
few basic concepts of robust sets, mappings and the integral approach of minimization
which we will use for further consideration. We will examine robust piecewise continuous
mappings in Section 3. In Section 4, we will give numerical examples to illustrate the

effectiveness of the algorithm.
2 Integral Global Minimization

In this section we will summarize several concepts and properties of the integral global
minimization of robust discontinuous functions, which will be utilized in the following
sections. For more details, see [8,9,12].

Let X be a topological space, a set D in X is said to be robust if

cl D=cl int D, 2. D
where cl D denotes the closure of D and int D the interior of D.

A robust set consists of robust points of the set. A point x& D is said to be a robust
point of D, if for each neighbourhood N(x) of x, N(x)(\int D# . A set D is robust if
and only if each point of D is a robust point of D. A point x& D is a robust point of D if
and only if there exists a net {x,}Cint D such that x;—>x.

The interior of a nonempty robust set is nonempty. A union of robust sets is robust.
An intersection of two robust sets may be nonrobust; but the intersection of an open set
and a robust set is robust. A set D is robust if and only if 2D=3int D, where dD=cl D\
int D denotes the boundary of D. A robust set can be represented as a union of an open set
and a nowhere dense set.

A function f: X—R" is said to be upper robust if the set

F.={x: f(x)<c} (2.2)
is robust for each real number c.

An upper semicontinuous function is upper robust since (2. 2) is open for each ¢. If X
is a complete metric space, then the set of points of discontinuity (continuity) of an upper
robust function is of first (second) category.

A function [ is upper robust if and only if it is upper robust at each point; f is upper

robust at a point x if x& F, implies x is robust to F..
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Example 2.1 An example of a non upper robust function on R' is
0, x=0,
f(x)=
1, x540.
f is nonrobust at x=0.

In [ 6], robust and approximatable mappings are studies. Let X and Y be topological
spaces. A mapping f: X—Y is said to be robust if for each open set GCY, f'(G) is a
robust set in X.

The following example shows that a P-mapping may be nonrobust.

Example 2.2 Let f=(f, f»): R*>R? be defined as follows:

x1sT1, x,>0and Y.

filxys xg):JO.l, x1=0 and VY x;,

x—1, 21<<0 and VY 3

and
folays 25)=2,10.5, VY, and x5.

It is easy to verify that the mapping f is a P-mapping. For this mapping the
complementarity problem (1. 1) has a solution x=(0,0)T and y= (0.1, 0. 5)T. However,
f is nonrobust. Take G=(—0.5, 0.5) X (0, 1), then f'(G)={0.1} X (—0.5, 0.5).
f (G is a nonrobust set in RZ.

Suppose C is the set of points of continuity of f. f is said to be approximatable iff C
is dense in X and for each € X, there exists a net {x, } CC such that

minx,=x and min f(x,)=f(Z).

An approximatable mapping is robust. If X is a Baire space and Y satisfies the second
axiom of countability, then a mapping is robust if and only if is approximatable.

In order to investigate a minimization problem with an integral approach, a special
class of measure spaces, which are called Q- measure spaces, should be examined.

Let X be a topological space, Q a ¢field of subsets of X and ; a measure on Q. A
triple (X, Q, p) is called a Q measure space iff

(i) Each open set in X is measurable;

(ii) The measure 4(G) of each nonempty open set G in X is positive: x(G)>0;

(iii) The measure x(K) of a compact set K in X is {inite.

The ndimensional Lebesgue measure space (R", 2, x) is a Q measure space; a
nondegenerate Gaussian measure u on a separable Hilbert space H with Borel sets as
measurable sets constitutes an infinite dimensional @Q measure space. A specific
optimization problem is related to a specific Q-measure space which is suitable for
consideration in this approach.

Once a measure space is given we can define integration in a conventional way.

Since the interior of a nonempty open set is nonempty, the Q-measure o f a measurable
set containing a nonempty robust set is always positive. This is an essential property we
need in the integral approach of minimization. Hence, the following assumptions are
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usually required:
Assumption (A") [ is Qmeasurable.
Assumption (R) [ is upper robust and bounded below on S.
Assumption (M) (X, Q, p) isa Q-measure space.
In the following application, we need a lemma.
Lemma 2.1 Suppose that the conditions (A"), (M) and (R) hold. 1fc¢>c¢* :fgjeiglf'(‘r) )

then
n(H. NS >0.
Suppose that the assumptions (A"), (M) and (R) hold, and ¢>>¢* =inf,csf (x). We
define the mean value, variance, modified variance and »th moment (centered at a),

respectively, as follows:

gy — L -
Mfs e n(H. N S)JHL_ﬂSf () e
Ve S = S)JH[mfm MCf. c5 $)dys
ey () — 2
Vil e S = i SJHCQS(f(x) O dus
1

M, (f, c; a; S) = JH mg(f(.’f) —a)"dy, m=1,2,--

n(H. NS
By Lemma 2. 1, they are well defined. These definitions can be extended to the case c=¢*

by a limit process. For instance,

. T e . pr— 1 71 . — m f— e
M, (fs c5 a3 S };T#(Hlk A S)JH%QS(J((I) a"dps m = 1,2,

The limits exist and are independent of the choice of {¢;}. The extended concepts are well
defined and consistent with the above definitions.

With these concepts we characterize the global optimality as follows:
Theorem 2. 1 Under the assumptions (A"), (M) and (R), the following statements are
equivalent ;

(1) 2" €Sis a global minimizer of f over S and ¢* = f(x") isthe global minimum
value ;

(1) M(f, ¢* 3 S)=c" (the mean value condition);

(i) V(f, ¢ 3 S =0 (the variance condition) ;

Gv) Vi (f, ¢ 3 S)=0 (the modi fied variance condition);

(v) M,,(fy, ¢*5 ¢35 S)=0, for one of positive integers m = 1,2, (the higher

moment conditions).

3 Robust Piecewise Continuous Mappings

In this section we will examine basic properties of robust piecewise continuous maping

and formulate a nonlinear complementarity problem as an unconstrained minimization by
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using a discontinuous penalty function.
Definition 3. 1 Suppose S is a robust set of a topological space X. If there is a family of
robust sets {V,}, A€ A such that

S=UV, and V.,#X, V.NV,=#4T, (3. D

AEA
then {V,} is called a robust partition of S. Suppose {U,}, « € A is another robust partition

of S. If for each V, there is U, such that U,CV,, then {(U,}, a € A is called a robust
subpartition of {V,}.
Definition 3.1 Let X and Y be two topological spaces, S a robust set in X. A mapping f:
SCX—Y is said to be robust piecewise continuous iff there exists a robust partition {V,}
of S, such that for any A€ A, the restriction of f to V), is continuous.
Proposition 3.1 Let X and Y be topological spaces, and [ :X—>Y a mapping. 1f [ is
robust piecewise contionuous with a robust partition {V,} of a robust set S, then it is
robust.
Proof. Suppose GCY is an open set, we will prove that f7'(G) (]S is a robust set.
Indeed,
fHGHNS=f1GN tXJVA:LAJ(f G NV)).

The intersection of the open set f~'(G) and the robust set V, is robust, and the union of
robust sets is robust.
Remark 3.1 Note that if in the above definition the partition of S is not required to be
robust, a piecewise continuous mapping may be non robust.

The class of robust piecewise continuous mappings with the same robust partition has
some desirable properties.
Proposition 3.2 Let X be a topological spaces, Y a linear topological space, and f, g: X
—>Y mappings. 1f f and g are robust piecewise mappings with the same robust partition ,
then for real numbers a and B,a * [+ * gis also a robust piecewise continuous mapping.
Proof. Suppose f and g are robust piecewise continuous with a robust partition {V,}. For
each give robust set V, in the partition, f and g are continuous on it; so is the function a *
f+pB+ g Hence, a+ f++ g is robust piecewise continuous with the partition {V,}.

The following two propositions can be proved similarly.
Proposition 3.3 Let X be a topological space and f, g: X—R" functions. 1f f and g are
robust piecewise continuous with the same robust partition, then f « g, f/g(g#0),
max(f, g), min (f,g) and | f| are also robust piecewise continuous.
Proposition 3.4 Let X be a topological space, then f=_f1, =+, )" :X—>R"is a robust
piecewise continuous mapping if and only if each of the component functions f;, 1=
1, ==+, nis robust piecewise continuous with the same robust partition.

For the complementarity problem (1.1), the feasible set is

S={xER":2€0, f€O0;. (3.2)

We assume S and S° are robust and X={S, S‘} has a robust subpartition, and assume that
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f is robust piecewise continuous with respect to this robust subprtition.
We can use a discontinuous penalty function to formulate the constrained minimization
problem (1. 2) as an unconstrained one, where we assume that X=R" and O={x=(a,,

oo, 17,)’1‘;1,29 =1, -, n}:

min[ {x, f(x))+tap,(x,8 ], (3.3)
where p,(x, &) is defined as follows:
09 657
Pl = ! (3. 4)

6+d(1f)a 165(7
where §>>0 is given and

d(x) = >, [ | min(z;, 0) |+] min(f;(x),0) |]. (3.5)
i=1

Note that in the above definition we relax the requirement of continuity from the
traditional definition [1,3] as we wish to utilize discontinuous penalty functions.
Definition 3.3 A function p(x) on X is a penalty function for a constraint set S it

1) plx)=01if 2€S;

(iD) inf‘,&sﬂp(lr)>0, where Sp={u: || u—v | <p, V.€S} and g>0.

Remark 3.2 It is expected that the penalty will be increasing when the distance of a pint
X to the constraint set S is getting larger. We replace the traditional property
p(x)>0, if ugS

by ().
Definition 3.4 A penalty function p for the constraint set S is exact for a minimization
problem
min g (x) (3.6)
€S
if there is a real number qy >0 such that for each a=a, we have
min{g(x) tap(x)}=ming(x)=c" (3.7
2€X 2€S
and
{x:g()tap(a)=c* }={xES:g(x)=c* }=H". (3.8)

Proposition 3. 5  Suppose X = R" and [ is robust piecewise continuous with a robust
subpartition of {S,S°}, then for each >0 and §>>0 the penalized function

(xs f(2))Fap,(x,d) (3.9
is a piecewise robust continuous function.
Proof. Suppose {V,} is the robust partition with which f is robust piecewise continuous.
Then the component functions f;, i=1, **= , n are robust piecewise with it. Thus,

(xs f())=xf1(x)F+Fa,f,(2)

is robust piecewise continuous. (The functions |min(x;, 0)|) and |min(f;, 0], i=1,
«++, n are robust piecewise continuous, so is the function §+d (x).) Since, {V,} is a
subpartition of {S, S}, thus, the penalty function p, (x, §) is robust piecewise
continuous with {V,}. As the sum of (x, f(x))and ap,(x,8), the penalized function

(3.9) is robust piecewise with {V,}.
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When we use the integral approach to deal with minimization problems, a Q-measure
space is used. Then we require that each set V, in the robust partition is measurable in the
given Q-measure space. A robust partition {V,} is called a measurable robust partition if
each set in the partition is measurable. If {V,} is a measurable robust partition, then a
robust piecewise continuous function with this partition is measurable.

Observe that the conditions (A", (M) and (R) hold for problem (3. 3). The penalty
function (3. 4) with (3. 5) is exact (see, [10, 11]). We can use integral minimization
algorithms to solve the unconstrained problem (3. 3).

Return to the algorithm in Section 1. Let ¢e=0 in the algorithm. It may stop in a

finite number of steps or we obtain a decreasing sequence

Co=>C) > >0 > Cpp =t (3.10)
and a monotone sequence of sets
H,DOH D+ DH,DH,. D= (3.1D)
The limits of these sequences exist. Let
c :I%er}c‘k (3.12)
and
H* =lim H;= ) H;. (3.13)

The following theorems can be proved by applying Theorem 2.1 (see [12], Theorem
5.3.3).

Theorem 3.1 Under the assumptions (A"),(M) and (R), the limit ¢* of (3.12) is the global
minimum value and the limit H* of (3.13) isthe set of global minimizers of g over S.
Corollary 3. 1 Under the assumptions of Theorem 3. 1, if [ is a nondegenerate P-
mapping , then complementarity problem (1. 1) is solvable by the integral optimization
method .

Note that the errors at each iteration in the algorithm are not accumulated. Suppose
we calculate c; =M(g, ¢,; S) with an error A; and obtain d; =c, +A; ; then calculate ¢, =
MC(f, di; S) with an error A,, and obtain d,=c¢",+A,, and so on. In general, we have

=M(g, dp 15 S and A=d,—cis k=12, (3. 14)
and obtain a decreasing sequence {d,}. Let

d=lim d,. (3.15

Theorem 3.2 Under the assumptions of Theorem 3.1, d is the global minimum value of
gover Sif and only if

ﬁlig}Ak:O. (3.16)
The algorithm has been implemented by a properly designed Monte-Carlo method. At each
iteration we need to find: (1) A level set; (2) a mean value and (3) a modified variance
(multi-dimensional integrations). Monte-Carlo technique can handle higher dimensional
integration with lower accuracy:
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where N is the number of sample points and ¢° is the variance. §—>0 as ¢—0 by the
modified variance condition,

The numerical tests show that the algorithm is competitive with other algorithms.

4 Numerical Examples

The examples of this section are quite challenging. One example was proposed by Habetler
and Kostreva [ 2] to illustrate the concept of discontinuous nondegenerate P-mapping. A solution
was not provided there. Indeed, the existence of mathematical methods to handle nonlinear
equation systems with discontinuous functions was unknown at that time.

The second example is even more elaborate and complex, involving polynomial and
trigonometric functions as well as the greatest integer function. It is solved here as a
demonstration of the capabilities of the integral global optimization method on nonliear
complementarity problems with a high level of complexity.

Example 4.1 Let f(x,, 2,)=(—1,—2)"+h(x,, x,), where

1, —1, ,x
V2 L i 2 4a<1,
2 1, 1 X
h(axy, x0)=

[ (‘“ ) , if 2=,

L2

For this example the constraint set is

S={x=C(x1s 2)T:212=20, 2,205 f1(x1,22)=20, fo(x;s 25)=0}.
It has a robust partition;

S=S,US,,
where
Si=SN{x=(a1, )" : 2} +25<1}
and
Sy=SN{x=(a1, 2T : 2} +25=>1}.
f1 and f, are relatively robust piecewise continuous. Then we can use discontinuous
penalty function to solve the following minimization problem:
Iznelg[rl o filars x) s s folar, x2)]. 4. D

As we have expected (4. 1) has a unique minimizer z* = (1. 0, 2. 0)T with the global
minimum value 0.
Example 4.2 Let

X={(x1s 2)":21, 2,=0.001 + j, j=0, 1, 2, -+, 10000},

g1 () =[14+(x;—x2,—1)?(59—26x, — 32} — 262, + 61,2, +32% ]

X304 (221 +322)2(5—20x, +1222 —30x, +36x120. +2723) ],
2> () =10. 0sin® (zrxy) +(x; —1. 0)2[ 1. 0410. Osin® (xay) ]+4
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and
i) =g (@) —[g1(x)/10], fr(x)=g,(x)—[g:(x)/5],
where [ y] denoted the integer part of y. The mapping f = (fi, f:)7: X—> R? is
discontinuous and the admissible set is discrete. Let
D={(z1, 2)":([1000 * Z, ]/1000,[ 1000 * z, |)/1000)" € X}.
It is easy to verify that D=[0, 10.001)X[0,10. 001) which is robust.
We define a new mapping F=(F,, Fy)T:D—>R?, where
F.(2)=f,([1000 * 2, ]/1000.[ 1000 * 2,71/1000), i=1.2.
For this example the feasible set is
S={z=(21, 2)7€ED;:2, >0, 2,20, F (2)>=0, F,(2)>=0}.
F, and F, are robust piecewise continuous. Then we can use a discontinuous penalty
function to solve the following minimization problem:
min[ 2z, « Fi(z15 22)+2 * Fo (215 22) . (4. 2)

z€S
The constrained minimization problem (4. 2) has a solution corresponding to a unique

minimizer x* = (1.0, 0. )T € X with the global minimum value 0. After 13 iterations with
670 function evaluations, we obtain
X1 :1. 09 IZZO- O’ F] :O. Oa FZZS. 09 D1 :O. O,

where v; is the modified variance.

5 Conclusions

In this paper the methodology of integral global optimization is applied to nonlinear
complementarity problems under the assumption that the mapping is robust, piecewise
continuous, and a nondegenerate P-mapping. Under such weak assumptions, the analysis
which arises is the first which can handle these problems. Difficult nonlinear
complementarity problems arise in a number of contexts in economics, engineering and
management and also may arise as subproblems in system models such as those of
constrained parameter estimation and optimal control. Therefore, the contribution of this
paper has wide raning application and, potentially, it may open new avenuse of research
uniting the subjects of complementarity theory and global optimization.

The examples presented in this paper are illustrative of several noteworthy ideas.
Examples 2. 1 and 2. 2 show that there are solvable nonlinear complementarity problems
which are not within the theoretical framework covered here. Examples 4. 1 and 4. 2,
however, are covered by this paper. For these examples, the new solution methodology
works remarkably well, making computation seem like an almost routine task. It is our

claim that there is no existing methodology which can match that performance.
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Robust Analysis and Global Minimization of

A Class of Discontinuous Functions (I)*

Abstract: In this paper we define and investigate robust points, sets and functions which
will be utilized to study a global minimization problem of a discontinuous function over a

disconnected set by an integral approach.
1 Introduction

Let X be a Hausdorff topological space, SC X a closed set and f a real-valued
function. The problem considered here is to find the infimum of f over S,

E:irelfsf(x). (1. D

Under the assumption that

(A) S is compact and f is lower semi-continuous (l.s.c. ), the set of global minima

H={x|f(x)=c, €S} 1.2
is nonempty. In this case we want also to find the set H.

The problem of maximizing or minimizing a function over a constrained set has been
investigated since the seventeenth century with the concepts of derivative and Lagrangian
multiplier. These concepts have been enhanced progressively, owing their motivation to
practice, such as gradient, variation, subgradient and generalized gradient and so on. The
theory of optimization was founded. Convex analysis and nonsmooth analysis are accepted
and become popular. One can easily notice, however, that the core of these concepts is not
changed substantially; they have only been generalized.

The gradient-based approach of optimization has its distinct advantages. It is intuitive
geometrically; the calculation of a gradient is quite convenient. Because this approch is
well developed many mathematical areas such as linear algebra, differential equation etc.
are infiltrated with it. From the numerical point of view, the grdient-based methods
usually have a higher rate of convergence. There are quite a lot of available sophisticated
softwares to be chosen. Thus, it is the main strain of the research of optimization so far.
But its straits are also clear. The requirement of differentiability restricts it to be applied
to many practical problems. Moreover, it can only be utilized to characterize and find a

local solution of an optimization problem.

% Reprinted from Acta Mathematicsae Applicatae Sinica, 1990, 6(3):205—223.
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Up to now people rarely consider the problem of finding the solution (1. 1) under such
a loose condition (A) not because it is useless. The objective function may be
discontinuous, the constrained set may be disconnected. But many problems in natural and
social sciences, as well as in industrial applications do require minimizing a discontinuous
function. On the other hand, problems in applications may require the constraint set S to
be disconnected for physical reasons, if we are concerned only with the problem of finding
a local minimum, it would not bother us whether S is conected or not.

We know that as a function of price and quantity of a commodity the cost may be
discontinuous since the price depends on how much to purchase. This implies that the
objective function appearing in economical and management sciences may be discontinuous.
An optimization problem involving probability distribution functions may require
minimizing a discontinuous function. Every combinatorial optimization problem can be
converted into a minimization problem of a discontinuous function, so can a mixed
programming. We can easily get an exact penalty function without any constrained
qualification if we can solve an unconstrained minimization problem of a discontinuous
functions. Thus, it is very flexible to investigate problems of optimal design, inventory,
optimal control etc. , if we can use discontinuous objective functions. We believe that it
will become popular in the next decade to consider problems of minimizing discontinuous
functions over a disconnected set.

Several works consider a minimization problem of a discontinuous function [4, 5, 6]
by combining smoothing technique with tranditional minimization methods to obtain a
solution. They are complicated, especially when the number of variables of the objective
function is large.

We will utilize an integral approach. In this paper and in [1], with a title of “Robust
Analysis and Global Optimization of a Class of Discontinuous Functions”, we extend
eariler works [9] and [10]. We first consider a class of sets, robust sets, and a class of
discontinuous functions, robust functions, in a toplogical space in Section 2 and Section 3.
In Section 4 we investigate the structure of robust sets and discontinuities of robust
functions on the real line in detail. We study the relative robustness and robustization of a
function in Section 5 and Section 6. In [ 1] optimality conditions are examined; algorithms
are proposed, and their convergence properties are studied. Numerical tests show that

these methods are effective.

2 Robust Sets and Points

2.1 Definitions

We begin with defining the concepts of robust sets and points. Let X be a topological
space, D be a subset of X.
Definition 2.1 A set DCX is said to be robust iff
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cl D=cl int D, (2. D

An open set G is robust since G=int G. The empty set is a trivial robust set. A closed
set may be robust or nonrobust.

Remark 2.1 A robust set may be disconnected.

Remark 2.2 The concept of robustness defined here is closely related with the topological
structure, For instance, the set D={1, 2} is nonrobust if we consider it in X=R", it is
robust if X=2Z7=/{the set of the interers with discrete topology}.

A set G is open if and only if each point on G is an interior point of G. Similarly, a
robust set consists of robust points of the set.

Definition 2.2 A point x&cl D is said to be robust to D (or a robust point of D) iff it is
a cluster point of int D, 1. e., for each neighborhood N(x) of x,
N(x)Nint DF# . (2.2

An interior point x in D is always robust to D; x€int D implies int D7 and {x}C
N(X) ) int D for each neighborhood N(x) of .

In Definition 2. 2 we only consider the robustness of the points which are in ¢l D
because if x is not in cl D, then there is a neighborhood N(x) of x such that N(x) (\cl D
= (. Thus, the point which is not contained in cl D is always nonrubust to D.

The following theorem connects the concept of robust sets and that of robust points.
Theorem 2.1 A set D is robust if and only if each point x of D is robust to D.

2.2 Robust Points

From Theorem 2. 1, the properties of a robust set is closely associated with those of
robust points of the set. In this subsection we will discuss properties of robust points. We
first give several propositions which are easily proved by Definition 2. 2.

Proposition 2. 1 [ f x is robust to D and int DCA, then x is robust to A.

Remark 2.3 If a point x is robust to D, then x is robust to ¢l D because DCcl D.
Conversely, if x is robust to ¢l D, the point x may be nonrobust to D. For instance, let D
=[0,1]U{rational numbers in (1,27]}. Then ¢l D=[0,2], x=2is robust tocl D on R".
But int D=(0,1); =2 is nonrobust to D because there is a neighborhood (1.5, 2.5) of
x=2, (1.5, 2.5 N0, D =d.

Proposition 2.2 A point x €D is robust if and only if x Eclint D.

If a point x is robust to a set D, as well as to a set G, then x may be nonrobust to
DG even if € DNG.

Example 2.1 Let D=[0,1] and G=[1,2]. The point x=1 is in D(\G and is robust to
both of D and G. But D(Y\G={1}, =1 is nonrobust to D(1G on R"'.
Theorem 2.2 Suppose x is robust to D and x €int G. Then x is robust to D(\int G. The
point is then robust to D(G.
Proof. For each neighborhood N(x) of x, we can find a new neighborhood N, (x) of x
such that

N, (x)CN) Nint G, (2.3
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because € N(x)[\int G. Since x is robust to D, so we have
N, (2) Nint DFJ. (2. 4)
But
N, () Nint DCN(2) Nint G(int D=N(2) Nint(D\int &). (2.5)
From (2.5), N(x) Nint(DNint G)# . Therefore, x is robust to D(\int G.
2.3 Robust Sets
With the help of Theorem 2. 1 and Theorem 2. 2, we can easily prove the following
two theorems on the properties of robust sets.
Theorem 2.3 The union of robust sets is robust.
Proof. Suppose that each set D,, p€ A, is robust, where A is a given index set. Let
D=U D,. (2.6)

prEA
We now prove D is robust. For each fixed point x&€ D, we have x&€ D,, , for some p, € A.

The point z is robust to D, . so it is also robust to D since D, CD. We have proved that
each point of D is robust to D. Hence D is robust by Theorem 2. 1
Theorem 2.4 The intersection D (G of a robust set D and an open set G is robust.
Proof. For each fixed point x&€D(\G, x € G=1int G. Thus. x is robust to DG by
applying Theorem 2. 2. Hence, D(\G is robust by Theorem 2. 1.
Corollary 2.1 1f D is robust and F is closed , then D\F is robust.
Proposition 2.3 A set D is robust if and only if

bd(D)=bd(int D), 2.7
where bd (D) =cl D\int D, the boundary of D.
Proposition 2. 4 A set D is robust i f and only if each point x €bd(D)is robust to D.
Corollary 2.2 I/ D is robust, then cl D is also robust.

We now consider the robustness of a convex set in a linear topological space X.
Proposition 2.5  Suppose X is a linear topological space, C is a nonempty convex set.
Then C is robust i f and only i f int C#*J.

We finally consider the robust set in a product space X XY. Suppose X and Y are
topological spaces; AC X and BCY are robust on X and Y, respectively.

Proposition 2.6 [ f A is robust on X and B is robust on Y, then A X B is robust on X XY
with the product topology.

3 Robust Functions

3.1 Definitions
Let X be a topological space and f: X—R"' a real function on X. In this section we
will consider a class of discontinuous functions related with the concepts of robust sets and
points. Recall a function f is upper semi-continuous (u.s.c. ) if the set
F.={z]| f(x)<c}
is open for each real number c. We generalize this concept to robust functions.
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Definition 3.1 A function f is sain to be robust iff the set
F.={z]| f(x)<c} (3.1

is robust for every real number c.

An u.s.c. function f is robust since each open set is robust.
Example 3.1 A monotone function f on R' is robust. Indeed, suppose f is increasing,
for each real number, ¢, F.={x| f(x)<lc}=(co,b), where b=f(c). The point b may be
contained in F. or not. In both cases F, is robust. If f is decreasing, then F.=(b,0), it
is also robust. Similarly, one can prove that a probability distribution function on R” is
robust.
Definition 3.2 A function f is said to be robust at (or by) a point x, if 2y € F, implies x,
is robust to F,(or, there is a neighborhood N (x,) of z, such that N(x,) () F. is robust)
for each real number c.
Example 3.2 If a function f is u.s.c. at x then it is also robust at x. Indeed, a function f
is u.s..c at x iff x€F, implies x € int F, for each real number ¢. But every interior point
of F, is always robust to F..

The following theorem is expected.
Theorem 3.1 The following statements are equivalent ;

(1) fis robust;

(2) fis robust by each point ;

(3) fis robust at each point.
Proof. 1t is easy to see by Definition 3. 2 that (1) implies (2) and (2) implies (3). We
need only prove that (3) implies (1). Suppose f is robust at each point x& X. For each
given real number ¢, every point x € F. is robust to F.. By Theorem 2. 1, F. is robust.
Thus, f is a robust function.
3.2 Properties of Robust functions

The sum of two robust functions may be nonrobust.
Example 3.3 Let

1, «<<0, 0, x<0,

xX)— d 2\) — 3.2
fl(r) Ov 1'207 an f-(r) {19 l‘>o. ( )
Both of f; and f, are robust. But the sum
. 19 #Os
f(x):fl(x)—i-fz(.r):{ * (3.3)
0, x=0

is nonrobust, f is nonrobust at x=0,
Theorem 3.2 Suppose that f is robust at x, and g is u.s.c. at x,(for the division case g
is supposed to be 1.s.c.at xy). Then the following functions are robust at x :

(1) a - f(a=0 and constant ) ;

(2) f+g;

3) feg (glx)=0);

) f/lg (glx)>0).



Proof. (1) If a=0, then a * f is continuous. Suppose a_>0. Then we have
F.,.={x| f(o)<c/a}={x|a -+ f(x)<c}. (3. 4)
If 2o € F.;, then x, is robust to the set F.,,={x|a ¢ f(x)<c}. Thus, a * f is robust at x,.
(2) Let the set of rational numbers be ordered as
Vlie T2 s Tys *°°. (3. 5)

Then we have, for each real number c,

FG.= (2| f() +gor<ch=U (x| for<r) N el glor<e—ny) (3.6)
(see [7], p.56). If o € FG. for some ¢, then x, is, at least, contained in one set of the
union. Say, x, € {x| f(x)<r}U{x|lg(x)<<c—r} =F, ﬁGﬁr1 . Then x, € F, and x, €
G.—,. We also have x, €int G.-, because g is u.s.c. at x,. By Theorem 2. 2, we have that
o 1s robust to FG,. This proves that f+g is robust at x,.

(3) For each real number ¢, we have

{x] f(2) » gla)<lc)= L;Jl{x|f(1‘)<r;\,} N{xlglx)<<c/r:}s (3.7

k
and (3) can be proved similarly.

(4 If g(xp)>0and g is L.s.c. at xy, then 1/g is u.s.c. at x,. And f/g=f+1/g, we
obtain (4) from (3).
Theorem 3.3  Suppose that for each p €A, [, (x) is robust at x,, where A is a given
index set. Then f(x) :%/}i]‘p (x) is robust at x,.
Proof. For each real number ¢, if 2, € {x| f,(2)<c} then f(x0)<<f,(xo)<c, i.e., x,E
F.={x| f(x)<c}. Thus,
{x| f,(x)<<c})CF., VYpEA, (3.8)
or we have
pLEJA{x|fp(.r)<c‘}CF(. (3.9
Conversely, for each z, € F, there is, at least, an index p, € A such that f, (x,)<Zc.
Suppose, on the contrary that f,(x,)=>c, for each p€ A. Then we would obtain that
f(xo):iggf,)(xo)}c,
which contrdicts 2, € F.. This proves that
Xo EpléJA{x\fp(x)<c}.
Hence, we have the equality:

F.= LEJA{I|f/)(I)<C}. (3.10)
ya
Now if 2o € F,, then x, € {x]| S, (x)<<c}, for some p, € A. Since f, is supposed to be

robust at x,, so0 x, is robust to the set {x| S, (x)<c}. Therefore, x, is robust to F,
itself, i. e., f is robust at the point x.
Proposition 3. 1  Suppose f,» n=1,2, -+ are robust at a point x,, amd { f,} is a
decreasing sequence. Then the limit f of{f.} isalso robust at x,.

It is easy to prove the following propositions by Theorem 3. 2, Theorem 3. 3 and

Proposition 3. 1.
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Proposition 3.2 Suppose that [ is robust and g is u.s.c. (for division, g is supposed to
be l.s.c.). Thenthe following functions are robust: (1) a * f (a==0);(2) f+g; (3) f
g: (D f/g.
Proposition 3.3 Suppose that [ ,(x), pE A are robust , where A is given index set. Then
flx) :?gjfp(x) is also robust.
Proposition 3.4 Suppose thet f,., n=1, 2, =+ are robust on X , and {f,} isa decreasing
sequence. Then the limit
S :,li?i Sa (). (3.1D
s also robust.
3.3 Examples
In this subsection we will examine several examples of robust functions which are
useful for the application of robust analysis.
Example 3.4 Consider a minimization problem of f with constraints g; (x)<C0, i=1, -,
r. Let g(a)=max {g,(2), *+, g.(x)} and G={x| g ()0, i=1, **+, r}. In fact, we
have G={x|g(2)<C0}. Suppose that f, g, **, g, are continuous and G is a robust set.
We define, with a real number 6>>0,
g(d. )= i?gm’ i iijzg (3.12)
and
fH@=f)+M- g6, 2), x€X, (3.13)
where M is a positive number. It is easy to prove that there is a number M such that the

solution of constrained minimization problem

mei(nf(x) (3.14)
is equivalent to that of an unconstrained one:
min f;(x), (3.15)

if f is bounded. Now f is discontinuous, but f, is robust. In order to prove the
robustness we need only to prove that g(8, x) is robust. Indeed, if ¢<{§, then we have
{x]g(8, )<} =G or I (3.16)
if c>>¢, then
{x]g(d,0)<c)={x|g(x)<c—6) (3.17D)
is open. These prove that g(8,x) is robust.
Example 3.5 Consider a function h(a;, x) defined on I XX, where I={ay, ***, a,,}» and
X is a topological space. We want to minimize h. This is an example of mixed
programming problem. Consider a new function f defined on [0, m+ 1] X X with the
product topology of R! XX as follows: x=(r, x), where r&[0, m+1], and
[ =ha;,,x), (3.18)
where ar,) means that if the integer part of r equals k£, then a;,)=a,, except for the cases

arng=a; » for 0<r<{1 and ar,;=a,,» for m<r<im—+1. The function f is well defined. We
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now prove that if h(a;, x) is robust on X for each given i, then f(2) is robust on R' X X,

For each ¢, the set

{x|h(a;s 2)<c} (3.19
is robust on X, for :=0, 1, +-, m. Then, by the set
{(ry 2 |harg, 2)<c (3.20)
is also robust on R'X X and the set
{rlapy=a;}={r|lrl=i} (3.21)
is robust on R', =0, 1, -, m. Now, for each ¢, the set
F.={z| f()<c} (3.22)

is just a union of robust sets, which is robust by Theorem 2. 3

m

U{(r, I)‘h(a,y I)<C9i:|:r:|}. (3.23)

i=0
3.4 Robustness of Epigraphs
In this subsection we consider the robustness of an epigraph of a function where an
epigraph of a function is defined as
epi( H={(x, | fl)<c). (3.24)
An epigraph is a subset of the product space X X R!, which has been well in vestigated in
convex analysis (see [8]).
Theorem 3.4 A function f on X is robust at point x, i f and only if each point (xy, ¢) €
epi(f) is robust, with the product topology on X X R', to the set epi (f).
Proof. Suppose f is robust at 2, and ¢, = f(a,). For each ¢;>c¢,, we have x, €k, .
F. X (cry o) Cepi(f) (3.25)
and
int(F, X (¢c;, oo)=int F, X (c;, o2)Cint (epi (). (3.26)
For each point (x4, ¢) Eepi (), we now prove the point is robust to epi (/). Since
the point (xy, ¢) is in epi (), we have c—=c, = f(x,). For each neighborhood N(x,) X
N(c, ¢) of (x4, ¢), where N(c, e)=(c—e, cte), we have
N(xo) XNe, o Nint(epi( /I DN(xg) X N(c, o) Nint F X (¢, o)

DNz Nint F ) X (eys cte)F#T, (3.27)
where we take ¢y<Cc; <<c+¢€/2 in (3. 26). The nonemptiness of the last set is from the
assumption that x, is robust to F. .

Conversely, suppose that each point (x4, ¢) € epi( f) is robust to epi( /). We now
prove that f is robust at x,. Suppose, on the contrary, f is nonrobust at x,. Then there

is a real number ¢ and a neighborhood N(a,) of x, such that

xoEF, (3.28)
and
N(xy)int F.#J. (3.29)
(3. 28) implies f(x,)<<c. Take e=(c— f(2,))/4>0 and ¢,=c—2¢. Then
Fae)<<co—eco<<cyte<le,s (3.30)
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i.e.s (x9s co) €Eepi(f). We now prove that (x,, ¢,) would be nonrobust to epi (f).
Suppose it is. Then
G=N(x4) X N(cy, e)Nint epi (HF#T. (3.3D)

Say, (21, ¢1) € G, and it is an interior point of G since G is open. Thus, there is a
neighborhood N, (x;) of x; and e, >>0(e;<le) such that

N, (x1) XN(c;, e) CTN(xe) X N(cos e)int epi (). (3.32)
For each point (x, d) & N, (x1) XN(c;, ), we have (x, d) Eint epi( /) Cepi( /), which
implies that

f(x)<<d<<c,t+e<c, (3.33)
i.e., x€F.. We now have
N, (x)CF., and x; €int F.. (3.34)
But this means that
1 E€EN(xy)Nint F.#4 &, (3.35)

which contradicts (3. 29). This proves that f is robust at x.
Corollary 3.1 A function f is robust if and only if its epigraph epi (f) isrobust in the
produt space XX R'.

4 Robust Sets and Functions on the Real Line

In this section we will investigate the structure of robust sets and discontinuities of
robust functions defined on the real line.
4.1 Singular Robust Points and Structure of Robust Sets

Intervals [a, b1, (ay b)s [as b) and (a, b] with a<<b (we denote each of them by)
(as b)) on R' are robust sets, so is the union of intervals. The following example shows
that the structure of a robust set on R! is more complicated than that of open sets.

Example 4.1 Let

B, (a, b)= Ul(a+(l)—a)/(2/e+1) sat(b—a)/(2k—1))

=
and

B, (a. /)):kg(b—(/)—a) [(2h—1) b— (h—a) ' (2k+1)).

Denote Dy =DB,(a, &) U{a} and D;=DB,(a, b) U{b}. Then int D,=DB,(a, ) and int D, =
B, (a, b). Moreover, for each neighborhood N(a, & =a—8, a+8), N(a, &) int D,
&, i.e., the point a is robust to D,. Similarly, & is robust to D,. Both of D, and D, are
robust.

Definition 4.1 A robust point x of a set D is said to be singular if x is neither in any
interval nor an end point of any interval within D.

The points a and 6 in Example 4. 1 are singularly robust to D, and D, , respectively.

Lemma 4.1 Suppose that x is sigularly robust to a set D. Then there is a sequence {I,=

{a,s b)) of disjoint intervals within D with b,<a,+ or b, <a,,» n=1, 2, **. Such
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that x is the common limit of the end points of I,» n=1, 2, +=+. Moreover [ b,, a, 1 |
D= forthe cases b,<aui1s n=1s 2, **+y or [byi15 a, |NDFED for the cases b, 1<a, s
n=1, 2, «-.
Proof. Take §,>>0. Then N(x,8) \int D= . Let y, € N(x, 8 ) ()int D and look for
the largest interval I, =<(a, . b;>CD containing y;. The point is neither in I; nor an end
point of I ; the distance dy =p(x, I;) from x to I, is positive. Let §; =min (d;, 61/2) and
v, € N(x, 82)()int D. Again, find the largest interval I,=<a,, b,>CD containing y,. By
construction I, ) I, 7% &. Suppose we have constructed % disjoint intervals I, =, I,
within D; I;={a;, b;)and x#a;, b;s i=1, =+, k. Let d,=p(x,[;) amd 0p1 =min(d,) ,
8./2). Then N(x, 81D NLFZS, i=1, 2, =+, b and N(x, 64:i2) [)int DF# T since x is
robust to D. Take y,+1 € N(x, 8+-1))int D and look for the largest interval I, =<{ast1 >
br+1)C D containing y,+;, and so on. We obtain a sequence {I,} of disjoint intervals.
There is, at least, an infinite subsequence of {I,} on one side of x, say, on the left hand
side, and then we have 6,<Za,+,, n=1, 2, - case. We still denote the subsequence by
{I,}. By construction, we have I, CN(x, §,—1). Indeed, if there is 2 & I, and 2 €& N («x,
8y,—1) s then we have =<<x—8, 1<y,—1v, and [z, v, |ZI,. It implies that y, €1, (I,
. This is a contradiction. Now, {8, }is a decreasing sequence and lim §,=0. Both of the
points a, » b, of the interval I,, n=1, 2, -+ converge to x. The last assertion of the lemma
is clear by construction.
Theorem 4.1 A robust set D on the real line is a countable union of disjoint intervals
including possibly a set of singular robust points to D.
Proof. Suppose D=D, UE,, where D, is a countable union of intervals, and each point in
E is singularly robust to D. Each interval on the real line is robust, so is their union D;.
Each point of D, is robust to D;, as well as to D itself. Adding singularly robust points to
D, we have proved each point of D is robust to D. Hence D is robust.

Conversely, suppose D is a nonempty robust set. For each point x & int D, let I(x)
be the largest interval within D containing x. Let

D= U I(a2).

xEint D
Then D, is a union of at most countable many disjoint intervals because the number

(power) of disjoint interval on the real line is, at most, countable. Moreover, int (D\D,)
# . The remaining points in D\ D, are singular; each of the them is neither in any
interval contained in D, nor its end point,

The following example shows that the power of the set of singularly robust points of a
robust set may be uncontable.
Example 4.2 TFrom the interval [0, 1] remove the open interval (1/3, 2/3) and add sets
B,(1/3, 1/2) and B,(1/2, 2/3), where the notations are the same as those of Example
4.1. Next, remove the open intervals (1/9, 2/9) and (7/9, 8/9) from [0, 1/3] and [2/3,
1]; add B,(1/9, 1/6), B, (1/6, 2/9), B,(7/9, 5/6) and B, (5/6, 8/9), and so on. At
each succeeding stage remove the open middle third (a, #) of each remaining closed
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interval like the construction of the Cantor ternary set (see [6]), and add two By —B; —
type robust sets with a and & as their singularly robust points, respectively. If the process
is carried out denumerably many times, the result is the union D=GE, where G is the
union of countable open intervals and E is the Cantor set.

By construction, int D=G and N (x) N G# & for each point x € E and each
neighborhood N(x) of x. Thus, D is robust. Moreover, each point x of G is contained in
[0, 1 \E and can have 1 as its ternary decimal, so does any end point of each interval
contained in G. But each point in E can only have 0 and/or 2 as its ternary decimals. But
any point in E is neither in any interval within D nor its end point, i. e., it is singularly
robust to D. We now have an example with noncountable singular robust points.

Remark 4.1 In a similar way one can construct an example of a robust set on R' with the
property that its set of singularly robust points has a positive Lebesgue measure.

A robust point x in a set D may be the left (or right) end point of an interval within D
but it is the limit of sequence {I,} of disjoint intervals with the property as in Lemma 4. 1.
Even though the point x is not eingular to D, it has also some singularity.

Definition 4. 2 A point x is said to be left (or right) singularly robust to D if x is a
singularly robust point to D[\ (—co, x](or to D[z, o).

In the next subsection we will consider the relation of left or right singularity with the
discontinuity of a robust function.

4.2 Discontinuities of Robust Functions

A robust function may be discontinuous. Moreover, the singularity of robustness can
be utilized to characterize a discontinuity of the second kind.

Theorem 4.2 Suppose [ is robust at x,. 1f there is a real number ¢ such that x, € F.and
xo isleft Corright) singularly robust to F., then x, has a discontinuity of the second kind
of f.

Proof. We only prove the case where x, is left singularly robust to F, for some ¢ such that
20 €F,.. Let {I,=(a,, b,>, n=1, 2, +*+} be a sequence of disjoint intervals within F, such
that a,—>x, and b,—>x, as n—>oo, and [ b,, a,1 () (F.)7%~ J (see Lemma 4. 1). Take a
point 2, €[ b, a,r1] such that 2, € (F.), n=1, 2, *=-. We have z,—>x, and f(z,)=c,
n=1, 2, +-. Hence, lim sup f(x)=c.

2y —0
On the other hand, x, € F. implies f(x¢)c. Let c— f(x,)=2e>0. We still have 2, €
F. ., and x, is robust to F., either. Thus, for 8, v 0, (2o — 6., a0 ](\int F._,#~ .
Taking y, € (xo—8, 20, we have f(y,)<lc—e and y,—>x,. Thus
lim ilef flao)<c—e.

We have proved
lim inf f(x)<<c—e<c<lim sup f(x). 4. 1)

>z, —0 x>z, —0
The left limit of f at x, does not exist. Therefore, f has a discontinuity of the seeond kind

at xy.
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Theorem 4.3  Suppose [ is robust by x,. 1f f has a discontinuity of the second kind at
Xos then there is a real number ¢ such that x, is left Cor right) singularly robust to F ..
Proof. Since f has a discontinuity of the second kind at x,, one of the following
inequalities holds:

lim 1nff(1)<hm sup f(x) or lim 1nf f(2)<lim sup f(). (4.2)

r>x5—0 1910 T+

Say, hm mf f(x) —a<ﬁ—hm sup f(x). Take a real number ¢ such that a<’c<Zf, and let ¢

=min ((/S’—c)/Z, (c— a)/2)>0. We now prove x, €cl F. and x, is robust to F.. Indeed,
since lim inf f(x)=q, for each §,>>0(8, ¥ 0) there is, at least, a point x, such that z,—3,

oy —0
<x,<xy and f(x,)<<ate<lc, i.e., x,EF,. But x,—>x, as x—>co, thus, 2, Ecl F.. Since
f is robust by xy, there is a neighborhood N(x,) of 2, such that N(x,) (] F. is nonempty
and robust. x, is robust to N(xy) (F., so it is also robust to F..

To prove x, is a left singularly robust point of F, we need only prove that (1) for each
70, (o7, 2o JNint F.== &, and (2) x, is not the right end point of an interval within
(—oo, 20 ] F.. Since N(x,) ) F. in nonempty and robust, there is a small positive
number §(<(y) such that (x, —8&, xy +8) 1 F. is robust. The above sequence {x,} is
contained in F.. so x,, € (xy—38, x0) (1 F. when m is large enough. The point x,, is robust
to (xo — &8s x0) [V F.y so there is a neighborhood N, (z,,) (C (xy — &, x0)) such that
Ny (z,) Nint (xy—38 x0) Nint F,=N;(x,,) Nint F.#J. Hence, z,, € (xo =7, x,]()int
F.##. To prove (2), suppose, on the contrary, a, is the right end point of some intervel
(xo—as 20)CF.. Since lim sup f(x)=[>>c, there exists a sequence {y,} such that y,<C

LX)
Zos y,—>x0 and f(y)=c+te, for k=n,, where n; is a large positive integer. Now vy, € (x,
—a, xy), S0 y, & F. when £ large enough. This contradicts f(y,)<Zc. Therefore, x, is
left singularly robust to F..
Corollary 4.1  Suppose | is robust at xo. 1f x, is nonsingular to F, for any real number

¢ such that xo € cl F., then f is continuous at x, or has a discontinuity of the first kind.

5 Relative Robustness

5.1 Relatively Robust Functions
The concept of robust function utilized in considering an unconstrained minimization
problem is not enough in a constrained one since the constrained set may produce some
nonrobust behaviors.
Example 5.1 Let S=(—c0,0]UJ[1,20) and
l—x, x&(—c0,0),
fHlo)= (5.1
xs  x€[0,00),
Even though f is robust on X=R', but if we consider a constrained problem with the

feasible set S, we have a restricted one:
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11—z, x&€(—0c0,0),
f_((x):J 0, x=0, (5.2)
1 x, x€[1,00),
and the function f; is nonrobust at x=0.

Thus, a concept of robustness related to a constrained problem has to be introduced.

This is that of rolative robustness.
Definition 5.1 Let S be a given set in a topological space X, f be a real-valued function
and z,€cl S. The function f is said to be relatively robust at x, if for each real number ¢,
20 EF.={x| f(x)<c} implies a, is robust to F.(\S. If f is relatively robust to S at each
point x in S, then f is called a relatively robust function on S.

The following theorem gives us two sufficient conditions of relative robustness of a
function.

Theorem 5.1 I/ (1) fis robust at xy and x, € int S; or (2) xy is robust to S and [ is
upper semi-continuous (u.s.c. ) at xo, then f is relatively robust to S at x.

Proof. (1) Suppose that for some real ¢, 2, €F,={x| f(x)<c}. Then x, is robust to F.
since f is supposed to be robust. We also have z, €int S; thus, by Theorem 2.2 of [1],
o is a robust point of F.[)S. This proves that f is relatively robust to S at x,.

(2) Suppose x, € F. for some real ¢. Then z, €int F. since f is supposed to be u.s.c.
at x,. But x, is a robust point of S, which implies that x, is also robust to F.(\S. Thus,
f is relatively robust to S at .

Note that these conditions are sufficient.

Example 5.2 Let
S=(—o0, 0JU[1, c=], (5.3)
and
X, x€& (—co, 0),
()= b1, 7€ (0,00, (5.4
f5 is robust at each point of S,
5.2 Inf-Robust Function

A concept of inf-robustness is introduced in [ 2] for minimization problems in
functional spaces.

Definition 5.2 A function f defined on a set S is said to be inf-robust iff for each real
o (>?:j‘r61£f(1)), there is a real ¢(c<C¢<l¢;) such that F.[()S is a robust set.

In [ 2] we only consider the case of continuous objective functions, and the definition
of the inf-robustness is simplified as: A function f defined on a set S is inf-robust iff there
is a real number ¢ such that F.(]S is nonempty and robust.

The following assumption is needed when we consider the optimality conditions or
algorithms;

(R) f is relatively robust to S at a global minimum point.

Theorem 5. 2 shows that the condition of inf-robustness is stronger than that of (R).
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Theorem 5.2 [f the function [ defined on S is inf-robust , then f is relatively robust to
S at each global minimum of [ over S.

Proof. Let F:mei?f(x) and T € S be a global minimum of f over S. For each real number

¢, € F, implies ¢<(¢c. Since f is supposed to be inf-robust, there is ¢;<Cc¢ and ¢, >¢ such
that S(1F,, , is nonempty and robust. But &€ S(F, , thus, Zis a robust point of S(F, .
Therefore, T is also a robust point of S(1F,.. This proves that f is relatively robust to S at
x.

The following example shows that a function which is relatively robust at a global
minimum, is general, is not inf-robust.

Example 5.3 Let X=R'and S=[—1,1]. The objective function f is defined as follows:
—x, if x is a rational number in [ —1,0),
f(x)=J)—2x, if x is an irrational number in [—1, 0), (5.5)
x, il z€[0,1].
We have ¢c=0 and x=0. f is relatively robust to S at x=0. Indeed, 0E F, if ¢>0, and 0
€int S. Thus, 0 is a robust point of F. because the intersection of each neighborhood of
the origin and int F. is nonempty for ¢=>0. But for any ¢=>0, F. is nonrobust.

However, for some problems the set of global minima may be empty. In this case we
can utilize inf-robust condition to characteriza and find the infimum of f over S. See the
following example.

5.3 Robust Sets and Functions with Relative Topology

Let S be a robust set in a topological space (X, 7), where r is the topology of X. We
can introduce a relative topology z, and obtain a new topological space (S, z,), where ¢,
consists of the following neighborhoods:

. ={N, () |IN,(x)=N()NS, €S, N(x}E7}. (5.6)
In this new topological space, we also have concepts of robust sets and functions.
Theorem 5. 3 below establishes the relation between the robustness with the relative
topology and relative robustness. Before proving this theorem, we prove a lemma first.
Lemma 5.1 Let S be a robust set in a topological space X s G be an open set in X. Suppose
GNS#J. (5.7)
Then we have
Gint S#J. (5.8)
Proof. Since G(1S# <, we can take a point € G()S. The intersection G\ S is also a
robust set, so x is a robust point of G(1S. Thus, for each neighborhood N(z) of x,
N(x)Nint (GONS)#J. (5.9
or
N(x)NGNint S#J. (5.10)
This proves (5. 8).
Theorem 5.3 Suppose f is a real-valued function defined on a robust set. The function

[ is relatively robust to S at x €S if and only if [ is robust at x with relative topology on S.
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Proof. Suppose f is relatively robust to S at x. If for some real number ¢. zE€F.={z|f
(x)<<c}, then x is a robust point of F. (1S, i.e., for each neighborhood N(x) of z,
we have
N Nint (F.NS)#J, (5.1D)
or N(x) N int S(int F.= & and N(x) (1S int S7= . Since N(x) is an arbitrary
neighborhood of x, thus, for each neighborhood N,(x) €z,
Ns(2) Nint F.#£ . (5.12)
This proves that z is a robust point of F. and f is robust at x with the relative topology on S.
Conversely, if f is robust at x with relative topology on S, then & F. for some real ¢
implies that for each neighborhood Ng(x) of x we have
Ns(2)Nint F.#J. (5.13)
or
N()NSNint F.£J. (5.1
N(x)Nint F, is a nonompty open set and S is a robust set, their intersection is nonempty.

Thus, by the lemma 5.1, we have

N(x)Nint F.NintS#J , (5.15)
or for each neighborhood N(x) in z,
N(x)Nint (F.NS)#J. (5.16)

This implies x is robust to F.(]S and proves that f is relatively robust to S at x.
5.4 Robustness of Combinatorial Minimization Problems
As an example we consider the following combinatorial optimization problem. Let
7" ={z=(z', =+, ) |2 is a nonnegative integer, i=1, *+, n}, (5.17)
S be finite set Z% and f:S— R’ be a function on S. Let f(2) = f(2', =+, 2"). The

problem is to find the minimum value of f over S;

Z:rlneiglf(z) (5.18)
and the set of minima:
H={x€S| f(x)=¢)}. (5.19)
In this case H is nonempty.
We define
D={x=(' =, 2DER"|([2'+0.5], =+, [2"+0.5]DES} (5.20)
and
F(x)=f([2'+0.5], =+, [22+0.5]) (5.2D)

where [a] denotes the integer part of the real number a. D is a union of cubes, they are
robust in R”. For each real number ¢, the set {x|F(x)<c¢} is also a union of cubes (or
empty). Thus, D is a robust set and F is a robust function in R”. Let x be a global
minimum point of F over D, i.e.,
F(Z)=minF(2). (5.22)
x€D
Then & int D (or one can find a point x; in the same cube with T such that x; € int D).
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Therefore, the assumption (R) is satisfied.

6 Robustiztion

6.1 Robustized Function

We are considering a minimization problem whose objective function is supposed to be
robust and L.s.c.. A function without such properties can be robustized to be one with
such properties. The process to obtain such a function is called a robustization procedure.

Suppose we have a function f defined on a topological space X with its epigraph
epi( /). Let

R,=cl(int epi( /), (6.1
where closure and interior operations are taken in the product space X X R'. Even though
epi( /) may be nonclosed and nonrobust, R, is closed and robust, i. e.,

Proposition 6. 1 R, is closed and robust in the product space X X R'.

The set R, is generated from the epigraph of f. As an epigraph epi( /) of a function f
it has a property that (x¢, ¢,) Eepi( f) implies (xy, ¢1) Eepi( f), for each ¢;=c,. The set
R, in (6. 1) preserves this property.

Proposition 6.2 1f (20, ¢) ER;, then (x4, ¢ )ER; for all ¢'>>c,.
Proof. Suppose (x4, ¢o) €R;. For each neighborhood N, (x4), let N(axq, ¢o) =Ny (o) X
(co—e, co—e) (we take 0<e<<¢'—¢,). By (6.1), we have
N, ¢o)NintCepi (H)FD. (6. 2)
Since N (x¢, ¢,) and int Cepi ( f)) are open, there is at least a point (x;, ¢;) with
neighborhood N, (x1) X (¢; —¢, ¢;+e1) such that
N, (1) X (c;—¢e1» ¢ Fe)Cintlepi( /) Tepi( £, (6.3)
where N, (21)C Ny (xg)and (c; —e1» ¢ te) T (co—es o Te). From(6. 3) and by the
property of an epigraph, we have
f(o)<cite<cote<cd’s, YxEN (2, (6. 4)
which implies that
Ny () X (" =8, ' +8) Cepi( ) (6.5)
with small $>0. Thus,
Ny (2)) X (=85 +8) =int(N, (x;) X (' =8, ¢ +&)Tintepi( ). (6.6)
Since N; (x;)C N, (x,) s we have
Ny () X (=8, ¢+ Nintlepi( H))FAD. (6.7)
We then conclude that (z,, ¢’) Ecl intepi( ) =R,.

We are now ready to define a robustization of a function.

Definition 6.1 A function f, defined on X is said to be the robustization of f iff
fr(x)=inf{c|(x, )ER,}. (6.8)

From Definition 6. 1 and the closedness of R,, we can easily prove

Proposition 6.3 (x,, f.(x)) ER,.

256



Proof. We first prove that, for each ¢>>f,(x,), (20, ¢) €ER,. Suppose the statement is
not true, there is a real number ¢; (> f, (x,)) such that (xy, ¢;) is not in R;. Then, by
Proposition 6. 2, for all c<Ce;s (29, ¢) is not in R;. This implies f, (xy) =c;. Now we
have a contradiction;

frlxo) = <[, (x0). (6.9
Thus (o, ¢) ER;, for all c>>f,(x2,). which implies, by the closefness of R,, that (x,
fr(x0)) €ERy.

We now prove that R,=epi(f,), which is expected.

Theorem 6.1 With the De finitions 6.1 and (6. 8), we have

R,=epi(f,)). (6. 10)
Proof. For each point (xy, ¢;) €ER;
fr (o) =inf{c|(xy, ) ER;}<co. (6.1
This implies (xq, ¢;) €epi(f,), i. €., we have proved that
R,Cepi(f,). (6.12)

Conversely, for each point (o, ¢) Eepi( f,), we have f,(xy)<<c,. By Proposition
6.3, (xo» f,(x0))€ER;, and then (xy, ¢;) €R, by Proposition 6. 2. Therefore,
epi( f,)CRy. (6.13)
From (6. 12) and (6. 13) we conclude R,=epi(f,).
Since R, is robust, so f, is robust (see Corollary 3. 1). The lower semi-continuity of
[ is from the closedness of R;. Indeed, from
epi (f)={(x, O|f ()<}, (6.14)
we have
H ={z|f (x)<c} (6.15)
is closed for each ¢. This implies f, is L.s.c.. Hence, we have proved
Theorem 6.2 The robustization f,of a function f is robust and l.s.c. .
6.2 A Function and Its Robustization
In this subsection we will prove that if a function f is robust and l.s.c. at a point then
the function value of f and that of its robustization f, is equal. We first prove
Proposition 6.4 I f is robust at x, then (xo, f(x,)) ER;.
Proof. Tke a neighborhhod N(x, f(a0))=N,(xe) X (f(x0)—d, f(xy)+d) of (xy, f
(x0)) and let ¢= f(xy)+d/2. We have (z,, ¢) is robust to epi () because if f is robust
at x, then for each ¢ f(z,), (x0, ¢) is robust to epi( f). Thus,

No(xg) X (e—d/2, c+d/2)int epi( f)FD. (6.16)
But (c—d/2, ct+d/2)C(f(xy)—d, f(xy)+d). Hence,
N(I()’ f(l'()))ﬂint epl(f)?é@/, (6. 17)

which means that
(205 f(x0))Eclint (epi( /) =R,.
Applying Proposition 6. 4, we can easily prove

Proposition 6.5 [ [ is robust at x,, then
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fr(xo) < f(x0). (6.18)
Proof. It f is robust at xy, then (xy, f(xy)) € R;. Thus, (x,, ¢) € Ry, for each
c=f(x,). Hence,
flxo)=inf{c| (20, ODER,}=Ff.(x).
Proposition 6.6 I/ [ is l.s.c. at xo, then

fz(fo>>f(-1”o) (6.19)
Proof. Suppose, on the contrary, f,(x,)<f(ax,). Then there are a, and a, such that
fr(Io)<ao<d1<f(Io). (6.20)

f(xy)>a; and the lower semi-continuity of f at x, imply that there is a neighborhood
N(xy) of x, such that

S >a, V& No(xy). (6.21)
And thus for each point of Ny (xy) X (ay—d, ay+d) (0<<d<a, —a,) which could not be in
epi(f), 1. e,

Ny (x0) X (ag—d s ap+d) Nepi( H =, (6. 22)
we then have
Ny (x0) X (ag—d» ay+d) Nint(epi( ) =T, (6.23)
or
(x0s ay) ER,. (6. 24)

But (x, f.(x9)) € R, which implies (xy, ay) € R;. This contradiction shows that (6. 12)
is valid.
Combining Proposition 6. 5 and Proposition 6. 6, we have
Theorem 6.3 I/ [ is robust and [.s.c. at x, then
f(xo)=f(xo).
The following example shows a robustization process.

Example 6.1 Let

Oy C<Oa
Jl s O<1<1 0
()=

0, 1<zx<2,
—1, x=2,
‘O, x>2.

We then have
(1) epi(fH=(—oo, 0]X[0, e>) U0, 1]X[1, e=JU 1, 2
X[0, coJU{2} X[—1, e=]U (2, =) X[0, o=].
(2) int epi( /) =(—co, 0) X (0, co)J (0, 1) X (1, co)U (1, o) X (0, o0).
(3) clint(epi(/))=(—co, 0]X[0, c2) U0, 1) X[1, co)U[1, o0) X (1, o0),
We finally obtain the robustization f, of the function f:

0, <0,
fr(e)=21, 0<<xa<1,
0, x=1.
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6.3 Reltive Robustization
We are now considering a constrained minimization problem:
c=inf f(2). (6.25)
<€5
The constrained set S may be nonrobust. We first make the set S to be robust and
closed:
S,=cl intS, (6. 26)
and then construct a relative robustization of f over S.
Example 6.2 Consider an inequality constrained minimization problem in R”;
min f(x) (6.27)
s.t. gi(0)<<0, i=1, -, L
The constrained set G={x | g;(x)<{0, i=1, **+, [} may be nonrobust even though
gi(x), i=1, ++, [ are continuous. Let
G,=clint G (6. 28)
or let
G,=cl G, (6.29)
where G, ={x|g;(x)<<0, i=1, *++, l}. Since g;, i=1, **+, [ are continuous, so the set G,
is open.
Note that if the problem (6. 27) is such that the minimum is not attained at points in
G, , then there would be no access to the minima. Therefore, we assume that S is a closed
and robust set, i.e., S=S,.
We now consider a minimization problem in the topological space (S, zs) with the
relative topology zs, and make the objective function to be robustized with respect to the
relative topology in the space (S, zs). All of the propositions and theorems in subsections

6.1 and 6. 2 are valid, i.e., we obtain a relative robustization.

References

[ 1] Zheng Quan. Robust Analysis and Global Minimiztion of a Class of Discontinuous Functions (ID).
preprint.

[ 2 ] E. Galperin, Q. Zheng. Integral Global Optimization Methods for Differential Games with Application
to Pursuit-evasion Games [ J]. Computers Math. Applic. , 18:1—3(1989), 209—243.

[ 3] X Pan, S. Wang, H. Lui, Q Zheng. The Optimum Design for the Arrangement of Needles on the Needle
Board of Pre-needling Machine [J]. Jowrnal of China Textile University, 12:6(1986), 79—84.

[ 4 ] L Zang. Discontinuous Optimization by Smoothing [ J]. Mathematics of Operations Research, 6;1
(1981), 140—152.

[ 5] L V. Mayurova, R. G. Strongin. Minimization of Multi-extremum Function with a Discontinuity []].
USSR Computational Mathematics and Mathematical Physics, 24:6(1984), 21—126.

[ 6 ] V.D. Batuchtin, L. A. Mauboroda, Optimization of Discontinuous Functions [ J ], Nauka,
Moskow, 1984.

[ 71 J.]. Benedetto. Real Variable and Integration. B. G. Teubner Stuttgart, 1976.

[ 81 R. T. Rockafellar. Convex Analysis [ M]. Princeton University Press, 1970.

259



[ 9] Zheng Quan. A Class of Discontinuous Functions and Its Global Optimization Problems, Numericc
Mathematics [J], A Jowrnal of Chinese Universities, 7:1(1985),31—43.

[10] Zheng Quen. Global Optimization of a Class of Discontinuous Functions [J]. Journal of Applied
Sciences, 4:1(1986),93—94.

260



Robust Analysis and Global Minimization of A

Class of Discontinuous Functions (II) *

Abstract; In this paper we continue to investigate global minimization problems. An
integral approach is applied to treat a global minimization problem of a discontinuous
function. With the help of the theory of measure (Q-measure) and integration, optimality
conditions of a robust function over a robust set are derived. Algorithms and their
implementations for finding global minima are proposed. Numerical tests and applications

show that the algorithms are effective.
7 (-measure Spaces and (-convergence of Measures

7.1 (-measure Spaces

In order to consider minimization problems with an integral approach, a special class
of measure spaces should be investigated. These are the so-called Q-measure spaces.

Let X be a Hausdorff space, 2 a o-field of subsets of X, and y a measure on (.
Definition 7.1 A measure space (X, 2,p) is called a Q measure space iff

(M1) Each open set is measurable;

(M2) The measure of each nonempty open set is positive;

(M3) The measure of each compact set is finite.

Since the interior of each robust set D is nonempty this implies the following
theorem:

Theorem 7.1 If D is a measurable nonempty robust set and y satisfies (M2), then (D)
=0.

The Lebesgue measure space (R”, Q, p) is a Qmeasure space; a nondegenerate
Gaussian measure g on a separable Hilbert space H with Borel sets as measurable sets
consists a Q measure space (H, Q, p), see [6]. A specific optimization problem is related
to a specific @ measure space which is suitable for consideration. For instance, an optimal
control problem was considered in [ 3]. The control u(¢) is taken in the space L*[t,, T]
with the restriction |u(t) | <M, for fE[ty, T ], where M>>0 is a given bound of the
control. With the topology in L?[#,, T, the interior of the set

Uun=A{u()EL 4, T lu() | <M, t€[1,, T]) (7.1

% Reprinted from Acta Mathematics Applicatae Sinica, 1990, 6((4).:317—337.
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is empty. To circumvent this difficulty, a special metric and measure were constructed
with the properties (M1), (M2) and (M3). The process of constructing this Q measure is
quite involved, This happens especially in infinite-dimensional spaces. In the next
subsection we will consider the problem for constructing a Q measure on a compact convex
set in an infinite-dimensional space.
7.2 Construction of @-measure on Compact Convex Sets
Definition 7.2 A convex subset K of a linear topological space is said to be a Keller space
iff K is affinely homeomorphic to an infinite-dimensional compact convex set in the Hilbert
space [,.

The following propositions are known [4 ];
Proposition 7. 1  Every infinite-dimensional compact convex subset of an arbitrary
Frechet space is a Keller space. Every Keller space K is homeomorphic to the Hilbert
cube HQ.

Recall that the Hilbert cube HQ=1, which can be regarded as a subset of the Frechet
space R, where I=[—1, 1].

In [ 2] we have constructed a @ measure on the Hilbert cube HQ with the properties
(M1) ~(M3).
7.3 (-convergence of Measures

We are familiar with the concept of weak convergence of measures in the theory of
probability and stochastic process. Recall that a sequence of measures {y,} on the Borel

sets of a metric space X is said to be weakly convegent to a measure . iff
J Sdu, »J fdu, for all bounded continuous function f: X — R (7.2)
X X

(see [7]). This convergence concept does not fit the usage in the following consideration;
a new concept of convergence of measures is required.

Suppose that X is a compact Hausdorff space and p,» n=1,2, +-+ and p are measures
on the Borel sets of X.
Definition 7.3 A sequence {s,} of measures is said to be Q convergent to a Q measure p

iff for each open set G in X,

1 (G (G). (7.3)
Remark 7.1 Since the space X itself is open, we have, automatically,
12 (XD (XD, (7.4

Remark 7.2 Since p is a Q measure and X is compact, thus x(X)<Z+42o and so u, (X)<<T
oo, for n=n,. Moreover, for each nonempty open set G, x(G)=>0, so p,(G) >0 for n=n,
(n; may depend on G). Therefore, even though we only assume that » is a Q measure, in
the following consideration we will suppose that the measures u,, n=1, 2, -+ in the
sequence are Q-measures.

The concept of Q-convergence is stronger than that of weak convergence. The

following theorem gives us several equivalent conditions of @Q-convergence.
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Theorem 7.2  Let pys ***s s *** and p be Q-measures on the Borel sets of a compact
Hausdor f f space X. Then the following conditions are equivalent :

@)) J Sdu, »J fdus for all bounded l.s.c. function f:X — R;
X X

(2) fod/m _’fod#, for all bounded u.s.c. functions f: X — R;
(3) limﬂ”(G)ﬂ,u(G) s forall open sets G in X i.e., {u,} is Qconvergent to y;
4 lirp;m(F)-’;z(F) , forall closed sets F in X.

Proof. If —fis L.s.c. then f is u.s.c. and vice versa, so

| rd | pdum—| | s (7.5
Thus, (1) and (2) are equivalent.
If F is closed then X\F is open; if G is open then X\G is closed. We have, for each
closed set F,
10 CF) = 1, (X\G) = 1, (X) — 11, (G) > (XD — p(G) = (X\G) = pu(F) (7.6)
i.e., (3)=(4). We can prove (4)=(3) similarly.
(1)=(3). If G is open, then the indicator I; of G is bounded and l.s.c. , and we now

have
10, (G) = JXIGd#,, »JXIGd,l — (6. 7.7

(4)=(1). Denote
D= {x|e;,<<f(x)<ciy1 ) =H. —H:, c1>¢, (7.8)
where H, = {X| f(x)<c;} is a level set, which is closed because f is l.s.c. We have, for
each c;11>¢;
41 (D=, (Hoy —H,)
= (H 14 )_y(H(], )9;1(H‘.1 . )_#(Hﬁ )
=p(Hyn—H. =p(Dp). (7.9
Construct a partition of [ —M, M], where M=>0 is the bound of f:—M=c¢,<lc,<-+*
<¢,,=M. Then we have

Hx‘fdﬂn 7Jde#
m—1 m—1 m—1

< ‘fod/l_zé'i ’p,,(D,‘)‘+ ‘ EC, 'Iu,,(D,)—ZC,- '/,L(D,-)

=0 =0 =0

m—1

>le ~#<D,->—fod#’:11+12+13. (7.10)

=0

+

The first term on the right can be estimated, for small €0, as

m—1 .
Il - ‘ ZC,‘ '/,L(D,)ijnfd/j‘
i=0 ?

m—1

- ‘ZJ (c— fGa)dpm
i—o¥ Di
< maX](Ci+1 — ), (X) <e/3, (7.1D

O0=i<m—
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if we choose the partition such that max 1(Ci+] —¢;) is small enough and y, (X) is bounded
0==i==m—
becuse y, (X)—p(X)<co. Similarly, we can obtain
I,<e/3, for such a partition. (7.12)

The second term I, approaches 0 as n—>co from (7. 10). These prove (1).

8 Optimality Conditions for Global Minimization

8.1 Sufficient conditions for Global Minima
We are now in a position to investigate the optimality conditions for global
minimization. Let X be a topological space, S be a subset of X, f:S—>R be a real-valued
function and
E:j‘relgf(x). (8.1
To investigate the optimality condition by an integral-measure approach, some of the
following assumptions are required:
(A) S is compact and [ is Ls.c. ;
(M) (X, Q, p) is a Qmeasure space;
(R) There is a global minimum point & S such that f is relatively robust to S at x;
(A") S is a measurable robust set and f is a measurable function;
M) (X, Q, ) is a Qi-measure space, i.e., (M1) and (M2) hold;
(R") fis inf-robust to S.
The following theorem gives us sufficient conditions for global minimality.
Theorem 8. 1  Suppose that the conditions (A), (M) and (R) hold, and S(\H.# &,
where H. ={z| f(x)<c} is the level set of f. If
#(H.NS)=0, (8.2)
then c¢ is the global minimum value and H.(\S is the set of all global minima.
Proof. Suppose, on the contrary, that ¢ is not the globsl minimum value of f over S, and
it is ¢<Zc. Let 2a=c¢—¢>>0, and € S be the global minimum at which f is relatively
robust to S. So F: ,={z| f(x)<¢é—a} is nonempty, x € F. , and £ is a robust point of
SN F.-,. Thus, for each neighborhood N(z) of =,

N(z)Nint (SNF—)F#J. (8.3)
Now we have
N(z)Nint (SONF.)Cint(SOF.-.)CSNH.,. (8.4)
which implies by the assumption (M') that
(SN H)Z=p(int(SOFe ) >0. (8.5)

This contradicts (8. 2).
When (A) does not hold, the set of global minima may be empty, but, we have a
similar result,

Theorem 8.2 Suppose that the conditions (M), (A") and (R') hold, and S H. =30}
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forci>c. If

n(H.NS)=0, (8.6)
then ¢ is the infimum of [ over S.
Proof. Suppose é(<Z¢) is the infimum of f over S. By inf-robustness assumption (R'),

there exists a ¢;» ¢<Cci1<<c such that SﬂEl is robust and nonempty. Now we have

P#SNH, CSMH. (8.7)
which implies by assumptions (M) and (A") that
p(SNHHZ=p(SH,, )>0. (8.8

This contradicts (8. 6).

Remarks 8.1 (1) The condition x(H,(1S) =0 is a sufficient condition. For instance,
suppose f=c on S and x(S)>0. Then x(H.(1S)>>0. But, c is the global minimum value of
f over S.

(2) From Theorem 8.1 or Theorem 8. 2, under the assumptions of one of them, if
C>E:i1él£‘f(1) then x(H, (1S)>0.

(3) For simplicity, in the following discussion we will only observe the theorem and
algorithms under the assumptions (A), (M) and (R). We have a similar result under the
assumptions (A", (M") and (R").

8.2 Mean Value, Variance and Higher Moments

We now proceed to define concepts of mean value, variance and higher moments of f
over its level set S as in [8,9]. These concepts are closely related to optimal conditions
and algorithms for finding global minima.

Definition 8. 1 Suppose that the assumptions (A), (M) and (R) hold, and
c>c=min [ (2).
<€S
We define the mean value, variance, modified variance and the »-th moment (centered at

a) of the function f ovewr its level set H,. and constrained set S, respectively, as follows:

M(f ¢; S) = mjsm&ﬂx)dﬂ, (8.9
V(fres S) = mjim Fa) —MCfs es $)7dus (8.10)
Vi(fres S) = mjw Fa) — ) dun (8.11)
and
M, (s ¢ a5 S) = mjw P — @ e m = 12 24 e, (8.12)

The function f is measurable, S\ H, is a subset of the compact set S and (S H,)>0,
by Remark 8. 1(2). They are well defined. It is easy to prove the properties of mean
value:

(1) e<MC(f, ¢; S)<c, for c>?:min f(x);

€S

(2) M(fv C13 S)<M(f’ c25 Sy for ;=020



(3) IimMC(f, czs SY=M(f, ¢ ;S), if c>c.

Lk¢(

When ¢=¢, x(S(NH:) may be equal to zero, Definition 8. 1 has to be extended by a limit
process.

Definition 8. 2 Under the assumptions of Definition 8. 1, we extend the definitions of
mean value, variance, modified variance and the m-th moment of f over S H. for c=¢,

respectively, as follows:

. )_}}ijsn Fdus (8.13)
V(fie; S) = luinwj (FG) —Mfr cs S)%dpn (8.14)
Vi(fses S) = }Algnmjw (f(a) — ) du (8.15)
and
M, (f+cs a5 S) = }klgr}mj @ @ e = 12 (816)

Since {M(f, ¢35 S)} is a decreasing sequence and bounded below by ¢, the limit of
(8. 13) exists and is independent of the choice of {c,}. The extended concept of mean value
is well defined and consistent with (8. 9) (see the property (3) of mean value). Moreover,
these properties are still valid for the extended mean value. Similar to those in [8,9], we
can prove that (8. 14), (8.15) and (8. 16) are well defined and consistent.
8.3 Optimality Conditions

With the concepts introduced in the last subsection, we characterize the global
optimality as follows.
Theorem 8.3 Under the assumptions (A), (M) and (R), the following statements are
equivalent .

(1) TE S is a global minimum point of f over S and ¢ = f(T) isthe global minimum
values

(2) M(f, ¢c; S)=c;

(3) V(f, ¢c; S)=0;

4 Vi(f, c; S)=0;

(5) M, (f, c; ¢; S)=0, for some positive integer m=1,2, -,
Proof. We only prove the equivalence between (1) and (5).

Suppose ¢ is the global minimum value of f over S. Then ( f(x)—¢)" =0 for all x &
S. Thus for ¢>>¢, we have

. ~e e :; 5 __=\m
ML s 8 8) = e H(.)Jsm{_ fa) —or"du = 0. (8.17)

Therefore, we have
M, (f,c;5¢; S) =0. (8.18)
Whe now prove that (5) holds. Suppose, on the contrary, M, (f, ¢; ¢; S) =2e>0,
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strictly. By Definition 8. 2, for a given decreasing sequence {c,} having a limit ¢, there

exists a positive integer £ such that

1 ~ _\m
mjsm% (f(x) —o"du > e > 0. (8.19)

However we have c<{ f(x)<{¢, on S() H, . and thus (f(x) —¢)"<<(¢; —¢)". Hence,

we obtain

O U — L F() —O"du > e > 0. (8. 20)

Letting #—>c< in the above inequalities, we obtain a contradiction
0=e>>0. (8.21)
Conversely, suppose M,,((f, ¢; ¢; S)=0, but ¢ is not the global minmum value of f
over S and ¢= f(2)<¢, where 7 is the global minimum at which f is relatively robust to
S. Let 2e=¢—¢>0. Now both (S H:-.) (S H:) are positive by Theorem 8. 1.
Moreover, f(x)<c—e for all xt&S(\H;_.. So when m is odd we have

(f(o)—om<—e", for €S He. (8.22)
and
(f(x)—o)"<0, for x€ S H-. (8.23)
Therefore,
e e 1 oy
0= MU e s §) = e ds H(Jw[\sm D oy
; . _ \m
—5—#(5 A HE)LHHH(]‘(‘I) )" du
_ m/’t(s n H?*(*)
<—e¢ (S H) <0, (8.24)
which is a contradiction. When m is even, we have
0=M(f, 3 ¢ Hzer » LSOO (8.25)

n(SMH)
which is also a contradiction.
Remark 8.2 Instead of assumptions (A), (M) and (R) in Theorem 8. 3, we suppose that
(A", (M) and (R") hold. In this case the set of global minma may be empty. Then the
following statement is equivalent to one of (2),(3),(4) and (5) in the theorem:

(1) ¢ is the infimum of f over S.
9 An Integral Minimization Algorithm

9.1 Description of the Algorithm

An integral algorithm is proposed in this section for finding the global minimum value
and the set of global minima of a robust function f over a robust set S under the
assumptions (A), (M) and (R) in Section 8.

We now describe M — L Algorithm (mean value-level set algorithm) with some
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propositions useful for understanding the algorithm.

Take a point 2, € S. If ¢, :f(xo):E:mei?f(x) , then ¢, is the global minimum value

and S(1H,, is the set of global minima. The algorithm terminates. We usually have

co>¢ 9. D
and by Theorem 8. 1,
n(SMH. )>0.
Let a=M(f, co; S). (9.2)
Then <1 <co. (9. 3)
In general, let
1 =MUfy a5 Sy B=0,1, 2, ---. (9. 4

The following lemma and proposition insure that the iterative process (9. 4) is well
defined.

Lemma 9.1 Under the assumptions (A), (M) and (R), if (S H. )>0, then p (SN
H,, ) >o0.

Proof. 1f ¢;=c¢, then S(1H., :SﬂHqJ and (S H,, ):,u(SﬂH[O )>0. So we need only

consider the case where ¢;<(c,. Suppose, on the contrary, that

/u(SmH(.l )=0.
Then ¢, is the global minimum value and S(1H,, is the set of global minima, i. e.,
f(x)=c,, forall x€S. (9.5)
Let
G,={zxlcit(co—c)/n+D<f()<cobs n=1, 2, *+. (9.6)

{G,} is an increasing sequence of sets and
lim G,= UG, =H. \H.,. 9.7
n=1

n—co

We have
1SN (U Goy=puSNH)—u(S A H) = u(SAH) >0, (9.8

and it implies, by the continuity of the measure p, that

lig{/x(SﬂGﬂ):p(SﬂH{U)>O. (9.9
Thus, there is a positive number n, such that
n(SNG,)H=>0, for n=ny. (9.10)
Let e=(co—c1)/(ny+1), and denote
G, ={x|c; Te<f(2)<co ). (9.11)
We then have ¢(S(1G,)>>0. From (9.5) and (9. 10), we obtain
o =M(f\ o5 S) ——#(E;F%}{%)Jsmﬁbj(x)dﬂ

- mU.SDH{O\smr;ef(I)d#jLJsﬂ(;kf(I)dﬂ]

= (u(S N H,) —p(S N G /(S N H.,)
(i +u(S N GH/u(S N HD
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=cateepu(SNGH/p(SN H,) > cr. (9.12)
This is a contradiction.

¢ is taken to replace ¢,. Then we obtain (S H.,)>>0, and so on. That is, we have
proved the following proposition.

Proposition 9.1 Under the assumptions (A), (M) and (R), if p(S(VH,)>>0, then (S
ﬂH(.k )>0, fork=1, 2, *--.

If the objective function f is not constant on S() H, for some k£, then the mean value
cp+1 1s always strictly less then ¢, we then obtain a strictly decreasing sequence {c, },
which will be shown with a limit ¢ as the global minimum value.

Proposition 9.2 Under the assumptions (A), (M) and (R), if there is an integer k in

the iterative process such that the mean value of f over S|) H.,, is equal to ¢y itself, i.e.,
MCf, 5 S)=c» (9.13)

then ¢, =¢ is the global minimum value and f is constant on the set S(1H.,.

Proof. By the mean value condition in Theorem 8. 3, (9. 13) implies that ¢, is the global

minimum value and H=S[1H,, is obviously the set of global minima. f is constant on H.

If (9.13) happens the algorithm will be terminated and the minimization problem has
been sloved in a finite number of iterations. In [ 10 ] we mentioned that the iterative
process will not be terminated in a finite steps for the case where X=R", f is continuous
and S is a (conected) domain in R", unless f is constant on S. This result can be
generalized if f is continuous and S is a robust and connecled set in a Hausdor{f space X
(see Proposition 9. 3). The finitely terminated case does happen when we consider a
minimization problem of a robust function over a robust set S.

Example 9.1 Let S=[—1, 1] and
0, —1<<x<<0,
1, 0<<a<{l.
Take ¢c,=2. Then ¢;=1/2, ¢,=0 and ¢c; =M(f, ¢33 S)=0=c,.

Example 9.2 Let s=[—1, 0]U[1, 2]and

0, —1<a<0,
Jx, 0<<x<1, (9.15)
11 , 1<a<2.

In this example, f is continuous, but S is disconnected. Take ¢,=2. Then ¢, =1/2,

flo)= (9.1

flo)=

c;=0, and we also have c;=M(f, c;3 S)=c;.
Proposition 9. 3  Suppose [ is continuous on a robust and connected constrained set S.
With the same assumptions as in Proposition 9.1, we have

ar1<<c, and SOH,, #SNH, ., k=0, 1,2, - (9.16)
in the algorithm unless f is constant on S| ) HL.().

41

Proof. U ¢;+1=cx» then ¢, is the global minimum value of f and f(x)=¢, on S(1H,,.
This would imply that f is constant on S(1H. . Suppose
(‘1371>C;C =¢ with R>1, 9.17)
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Let ¢;—1 —c,=4e>0. By the continuity of f and connectedness of S, there is a point x, &€
S such that f(xy)=c,+2e. Thus, the set G={x|c+e<f(x)<c+3e} is a nonempty open
set with a nonempty intersection with S: G(1S#J, i.e., £(SS)>0. Now, we have

1
WSO H, 1)Jsmu% Sy

i —

I | -
(SN H(kl)UsﬂHH\sﬂ(;f(x)d/l +JsﬂGf (ﬂd@

>W@(#(S NH, )—u(SNG+@+e) e u(SNG)]
:EJre/:/(“‘S(Sﬂﬂ—HG))>E. (9.18)

This is a contradiction. Hence, ¢;-1 =¢ and H,  =H, , and f(x)=¢ 1 =¢ on H
With the same process, we prove that ¢, =c,=c,— =+**=c¢, and f(x)=c,—¢ for all x&

H, NS.
9.2 The Algorithm and Its Convergence

Ge—1 e—1-

Combining with the modified variance condition, we propose the algorithm (see [ 3,
4] as follows:

Step 0: Take a point 20 €S and e>0; k:=0; ¢o: = f(x0);

Sﬂ Hfo Hia {I ‘ f(JC><Co } ﬂS;

Step 1: ¢ : =M(fs 5 S5 SONH,, = {x| f()<ci1 N Ss

Step 2: V.=V, (f, ¢35 S; If V=¢ then k; =Fk+1; and go to Step 1; otherwise, go
to Step 3;

Step 3: c<=cp1 3 HES(H,

Here >0 is the accuracy given in advance. Let e=0 in the above algorithm. It may

Stop.

Gy ?

be stopped in a finits number of steps, as the above examples show., or we obtain a

decreasing sequence

Co>C) 2 >0 >0 >0 =0 (9.9
and a monotone sequence of sets
SN H,DSNH,D---DSNH, DSNH, A D (9.20)
The limits exist. Let
Z:}Lrn Ch (9.21)
and
Hlim SNH, = (SNH,). (9.22)

Theorem 9.1 Under the assumptions (A), (M) and (R), cis the global minimum value
and H is the set of global minima of f over S.

Proof. 1f the algorithm is terminated in a finite number of iterations, and ¢=¢;, for some
positive integer k,, then we have c=M(f, ¢; S). When the algorithm is not stopped in a
finite number of iterations, then from c,o;y =MC(f, ¢35 S), we also obtain, by letting

k—co,
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c=MC(f, ¢c; S). (9.23)

In both cases, with the mean value condition, ¢ is the global minimum value of f over S.

Let x€ H. Then for each k£ (or £=>k,) we have f(x)< c,. Letting k—>co (or setting k=
ko), we obtain

S <. (9. 24)

But f(z)=¢ for all z€ S. Hence H={x| f(x)=¢, €S, i.e., H is the set of global

minima,
Note that the errors at each iteration in the algorithm are not accumulated. Suppose
we calculate ¢, =M(f, ¢,; S) with an error A, and obtain d; =c| +A; ; then calculate ¢; =

M(f, dy; S) with an error A, , and obtain d, =c;+A;, and so on. In general, we have

C;Z:M(f, d/zfl; S) and Ak:d/z_f/,39 k:ly 27 b (9. 25)
and obtain a decreasing sequence {d,}. Let
d:}im d,. (9. 26)

Theorem 9.2 Under the assumptions of Theorem 9.1, d is the global minimum value of
fif and only if
}LIEA"’:O' (9.27)
Proof. The condition (9. 27) is equivalent to
lim ¢, =lim d, =d. (9. 28)

oo ——

Letting £/—>co in (9. 25), we obtain
d=M(f, d; S). (9.29
This is also the mean value condition which insures d to be the global minimum value of f

over S.

10 A Variable Measure Method

10.1 Mean Value, Variance and Higher Moments Depending on Measure

In order to utilize more information adaptively, a variable measure method is proposed
in this section. We begin with introducing concepts of mean value, variance and higher
moments depending on measure, which are the generalization of those in [5, 6].
Definition 10. 1 Suppose f is a l.s.c. function defined on a robust compact set S, pis a Q

measure, ¢ >c¢=min f (x), and f is relatively robust to S at a minimum point x & S,
€S

We call

M(f, ¢ S p) = F(@)du (10. D

STED)
#(S N HOJsnn

V(fsc; S; ) = (f(x) —MC(fs c; S p))*dus (10. 2)

)
#(S N HoJsnm,

Vi(fs es Sip) = (f(2) —)?dy (10.3)

1 J
/l(s 1 ]() Sﬂ[—[{
and
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M, (fs c; a3 S; ) = (flx) —a)"dy, m =1, 2, --- (10.4)

1
n(SN H()JSHH‘
to be the mean value, variance, modified variance and the »th moment centered at a of
the function f over the constrained level set S() H, with respect to the measure p,
respectively.

These definitions can be extended with a limit process to ¢==¢ as in Section 8. For

instance,

. o = | ;
MC(f, ¢; S5 ) }:?}_#(S N H[k)JsmH

Definitions (10. 1) ~(10. 5) are well defined and the extended definitions are consistent

f (o d. (10. 5)

with the original ones. All of the proofs are similar to those in Section 8.

Suppose we have a sequence {y} of Qmeasures and a Q measure ; defined on a
measurable space (X, ), where X is a compact Hausdorff space and (2 is the Borel field
on X. We assume:

(VM) {u} is Qconvergent to x and the function f is bounded.

Remark 10. 1  Since we consider the minimization problem over a compact set, the
assumption of compactness of X is not a restriction. Furthermore, as we are considering a
minimization problem, the minimum is attained and the upper bound of the function is not
essential for a minimization problem.

The following theorem is essential to the variable measure method.

Theorem 10.1 Suppose <‘>Z:rrleig1f‘(;r), cr v c(b—>0), and prs k=1, 2, ==+ and yu are
Q-measures. Under the assumptions (A), (R), (M) and (VM) , we have

lim M(f. cs S5 ) =M(f+ 3 Ss s (10. 6)
ImV(fs s S m)=V(fs c5 Si g (10. 7
EmViCfs cs S5 ) =Vi(fs 5 S s (10. 8)
lim M, (s cis a3 S5 ) =M, (f ¢5 a5 S 0 k=1, 2, -, (10. 9

Proof. Suppose c>>c. We first prove that
}}ij&ﬂk(SﬂH(.’q):/x(SﬂH{). (10. 10)
Since H.CH,, , then pk(SﬂH% =>uSH.), k=1, 2, +--. From Theorem 7. 3 and S(1 H.

being a closed set, we have

lim inf e, (SN H, ) =lim inf 1 (S0 HO =lim e (SNHO=p(SNHO. - (101D
We now fix j and let k==j. Then we have p, (S Hl»j )=pu(SH,). We can obtain,

similarly,

lir{l sup w (SO H., )<}ir}} (SN H, ):/J(SHH(-J_ ). (10.12)
We then let j—>co, lim (SN H(j):/j(SﬂH(.>; thus,
e
lin/:I S}Jp/xk(SﬂH(»k)<;1(SﬂH(»). (10.13)

Combining (10. 11) and (10. 13), we have proved that the limit in (10, 10) exists and
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(10. 10) holds.
We now have

MCfs s S5 ) —MOfs ¢5 S5 )

_ (,lk(s (}1 H) xS (}1 8 )JsﬁHwﬂx)dﬁ

+m dsmH(_kf(x>d/1k _JSDH(_fU:)dm)
+(S;(J\ f<1‘>d#wﬁ f(@)dy)
#(S )V Ho Wsn SNH.
IR (10. 14)
Since
US””« f@du |[<A SN H) <A p(SNHD, (10.15)

where A is the bound of | f(x) |, and also s, (S H.)—>p (S H,) by Theorem 7. 3,
thus, the integral in (10. 15) is bounded. Under the assumptions and ¢<Z¢ and x(S(1H,)
>0, 1/ (SONH, )—>1/u(S(VH.). These prove that J,—0 as &>, Next, we have

S S

Jsm (H, \H,) fla)dpu

< (SN H,)) —u(SN H,

A
u(SONH) ™

which tends to zero as k—>co because

lim 1, (SO H, ) =p(S(VH) =lim 2, (SN H). (10. 16)
- f>oo
Finally, we have
1 . B .
| Js | < (SN HD Jsrm{f (2)du JSHH{][ (.T)d/j‘

1 " }
— m ‘ JXISOH‘f(I)d# 7JXISﬂHﬁ‘f (T)d/,(

b

where Isnn, denotes the indicator of the set S() H,. The function Isnn [ (2) is l.s.c. on
X. From Theorem 7. 3, again, |J;| tends to zero as k—>co. We complete the proof for the
case c>c of (10. 6).

When ¢=¢, we have, with the properties of mean value,

L | f@du<a. (10.17)

MU s Sep) = S ATH D s

Letting /oo, we obtain
}er}M(f, crs S ) =Cc. (10. 18)

But when ¢=¢, from the optimality condition in Section 8, we also have M(f, ¢; S; p)=
¢, because u is a Qmeasure. These prove that (10. 6) holds for all c=c.

We can prove (10, 7) ~(10. 9) similarly.

The following theorem is concluded from Theorem 8. 3 and Theorem 10. 1.
Theorem 10. 2 Under the assumptions (A), (M), (R) and (VM), the following
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statements are equivalent .
(1) & Sis a global minimum point and ¢= f(x) is the global minimum value of f
over S;

2) hIT_lM(f, i S /,gk):f;

o Ve

(3) limV(f, s S pk)ZO;

v e

€Y l_irf_l_Vl(fa crs Si o) =0;
(5) lirpM,,,(f; crs s S ) =0, for some m=1, 2, ---.

v e

Remark 10.2 It is easy to prove that the above statement (5) is equivalent to
(5") imM.,, (f3 3 ¢5 S5 ) =0.

P
10.2 A Variable Measure Method

A variable measure method for finding global minimum value and the set of global
minima is proposed in this subsection under the assumptions (A), (M), (R) and (VM)
by utilizing Theorem 10. 1 and Theorem 10. 2, and the Propositions 9. 1.

Step 0: Take a point x, €S and e>0 (the accuracy); k:=0; co: = f(x0); SﬂH(.O .=
{x] flr)=<eo} NS5

Step 1: Calculate ¢xiy: =MC(fs ¢35 S; ) and SOVH,, - =S {x| f()<ci1 3

Step 2: Calculate V.=V, (f, ¢5 S; ) s If V=¢ then k: =£k+1; and go to Step 1;
otherwise go to Step 3;

Step 3: ¢<=c,113 H=H, _ ; Stop.

Let e=0 in the algorithm. It may be stopped in a finite number of steps, or we obtain

a decreasing sequence

Co =01 =22 >0 > Cprg >0 >0 s (10. 19
and a sequence of monotone sets
SAH,DSNH, D:+DSMNH, DSMNH,, D (10. 20)
The limits exist because they are all monotone and bounded:
E:klig} Cr (10. 2D
and
H=lim SN H, =SN(N H,). (10. 22)

Theorem 10.3  Under the assumptions (A), (R), (M) and (VM), ¢ is the global
minimum value and H is the set of global minima of f over S.
Proof. The proof is similar to that of Theorem 9. 1. We have

i =MCfs ey Sy ) k=1, 2, -, (10. 23)
When the algorithm is stopped or is not stopped in a finite number of steps, we
always have

c=MC(f,c; S; s (10. 24)

where ¢=c¢,=¢;, 1, =+++or c=lim ¢,. This proves that ¢ is the global minimum value and H
is the set of global minima.
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The argument on the problem of error accumulation is also valid as in subsection 9. 2,

and the same theorem as Theorem 9. 2 holds. We omit them here.

11 Adaptive Change of Search Sets

11.1 A Simple Model

In order to lessen the amount of computation associated with too large an initial search
set, in this section we consider a model of adaptive change of search sets. This model was
described briefly in [ 14 ] for a continuous objective function and with search domains
without proof. We now extend it to a robust function and robust sets, and go into detail.
The change-of-set techniue allows an initial choice of a computationally manageable set S,
and then move on to better performing sets while still holding down their “sizes”. This
achieves, in some sense, a more judicial use of computationally generated information.

Let ¢, be a real number and S, be an initial compact robust search set where p(H. ()
S)>0 (see Lemma 7.1). Let

¢ =M(fr o5 Sy) = fmj%n% FC)du (1.1
Then
602012222161?][(1). (11.2)
Take a robust search set S; S such that
So(NVH, CS,, (11.3)
which implies that
SoMH,CS NH., . 1. o

where S is a given compact set in the Hausdorff space X we considered. Not that (11. 3)
and (11. 4) do not require SyCS; but S, ﬂH(.l SN H, » and we have

w(SIMH. ) =p(S, (N H,, )>0, (11.5)
where p(S, ﬂHL.l )=>>0 because of p(S,(VH, )>>0 and Proposition 9. 1. Let
CZZM(fa Cis Sl) (116)

In general, we require that
SicNH, CSi, k=0, 1, 2, =+, (11.7)
f is relatively robust to S, at a minimum point of f over S; and S,CS, for k=0, 1, 2, +--.

k41

Let
1 =MCUfs a3 Sy B=0, 1, 2, ==, (11. 8
In this manner we have constructed a sequence of robust search sets and obtain the
following two sequences:
CoZ=C1 =0 =0 > Cpp ) =000 11. 9
and

H.,DH, D+DH, DH, D (11.10)

1
Denote



oo

SL: U Sk and GL:CI SL. (11. 11)

Proposition 11. 1 Gy is a compact and robust set.
Proof. Since S; is the union of robust sets S;, S,, *:+, it is robust and so is its closure
Gr. S,CS, k=0, 1, 2, -+ imply that ¢l S;CS. This proves G, is compact.

A further assumption is required so that the structure of sets S;, £#=0, 1, - we take
may not be too complicated:

(SMD) n(S)=plcd S,
i. e.. we would not choose such a kind of pathological robust set S, like that in Example
4.2 of [ 1.
11.2 Convergence

Let

Z:}Lm Cr (11.12)

and

oo

H=lim H,=H,.

. ko=

Theorem 11. 1 Under the assumptions (A), (M) and (SM) , suppose that f is relatively

(11.13)

robust at a minimum point of [ over G, Then the limit ¢ is the global minimnm value
and H Gy is the set of corresponding global minima of f over G.

Proof. From (11.7) and the mean value property, we have

Héignf(x)gckﬂ , k=1, 2, +, (11.14)
T »k
so that
rrelinf(x)gcw] , k=1, 2, -, (11. 15
a IL
Hence,
nginf(x)é?. (11.16)
T 114

We proceed to prove the opposite inequality. If, on the contrary,

¢=min f(x2)<,

€6,
then from (11.16),

GLNH:#J; (11.17)
£ is relatively robust to G, at a minimum point = such that ¢= f(z). Let e=(c—¢)/2>0
and F. ,={x| f(x)<<¢c—e}. Then *E€F- , and x is robust to G, (N F._,. This implies that
int (G, F:-)# D and then p (G, (1F:,)>0. On the other hand, from the assumption
(SM), we also have

#(S. NF: ) >0. (11.18)
Hence, there is, at least, one set S; such that
1(S; N F:-.)>0. (11. 19

Otherwise, we would have p(S; [1F:,) =0 by the countable additivity of the measure p.

From (11.18), we now have
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2(S; N H: ) =0, (11. 20)

We now fix j. Moreover, we can prove that

#(S,NH:--.)>>0, for all n=j. (11. 2D
Indeed, from the construction of the model (11.6),
S{H,, CSeNH,  » k=0,1,2, (11.22)
and
S{NH, NH-.CSeNH, NHe., k=0, 1, 2, -, (11.23)
i.e.,
SsNHe . CSii NHeos k=0, 1, 2, -+, (11. 24
since H.- . CH:.CH,  , k=0, 1, 2, =--. Hence, if k=j, we have
y(SnﬂHp P)E/z(sj-mPI; ) =>0. (11. 25)
Taking n—=;j., we have
p(S, N H.) +coy = JSQHC”f(I)d/,L
- J(S”ﬂHL,” )\(sanH>f(I)d/l _'_Js”nHHf(I)d#
=c,» (u(S, N H.,)—p(S, N He)) +(—e) » p(S, | Heo.
(11. 26)

Rearranging the terms, we obtain

(Snanfe)> . (SJ ﬂije)
#(S,NH. )~ " 4W(G.NH)’ (11.2D

where 4 (G, (VH, ) =p(S, N H, ), for all n and p(S; (N H:—.) for n==j. Letting n—>°o in
(11. 27), we have

Cn ™ Cpt >€ ¢

—=r—7T =y e pAj e/
O0=¢ c=e (GL ﬂ H(.O ) >O (11. 28)

which is a contradiction. Therefore, ¢ is the global minmum value of f over G,. The proof
of G (N1 H being the corresponding set of global minima of f over G is similar to that of
Theorem 9. 1.
11.3 Optimality Conditions

Optimality conditions of our change-of-set model can also be given. Since the search
sets are changed step by step, the optimality conditions are described in limit forms.

Suppose {¢;} is a decreasing sequence which tends to ¢, and {S,} is a sequence of
robust sets such that

S.CSand S, H,, S5 k=0, 1, 2, -+, (11.29)

where S is a given compact set. Let

G.=cl(U Si). (11.30)

Theorem 11. 2 Under the assumptions of Theorem 11. 1, the following statements are
equivalent ;

(1) ¢is the global minimum value of f over Gy ;
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(2) th Jsmu. @ dp = ¢;

(3) ILH)WJS, (f(x)*?)‘dlu:();
1 _ m — < 1 —
4) IILIPWLMH (f(x) —c)"du = 0, for some integer m = 1, 2,

The proof is left to the reader.

12 Monte Carlo Implementation and Numerical Tests

From Section 9, we realize that the method for finding global minima requires the
computation of a sequence of mean values and a sequence of level sets. Finding a mean
value is tantamount to computing an integral of a function with several variables; the
determination of a level set is, in general, more involved. But accuracy at early steps is not
generally required by Theorem 9. 2. This suggests that a Monte Carlo based technique for

finding global minima is appropriate. The error by Monte Carlo method is proportional to

oAlts where t is the number of samples and ¢” is the variance of sample distribution. Since
o’ will tend to zero as the mean value goes to the global minimum value (the variance
condition), the Monte Carlo approximation will become more accurate near global
minimum value even though the number 7 of random samples is not very large.

12.1 Monte Carlo Implementation of a Simple Model

Consider a box constrained minimization problem in R”;

r;réigf'(x) (12. D
with a unique global minimum point x, where
D={x=(x', =+, )| <2<V, i=1, **+, n}. (12.2)
Let D, be the smallest cuboid which contains the level set D(VH., for /=1, 2, ---. Denote
D, ={x=(zt, =, 2 |ai<<a'<chs i=1, *=+, n}. (12.3)
Then we have
= r;nggf(r)—flg}%f(x) (12. D

and it is easy to see that
H={z)= Di. (12.5)
Instead of M(f, ¢;; D) and V| (f, ¢;3 D) in the algorithm of subsection 9. 2 we take
MCf, c;s Dy) and Vi (f, ¢;3 D) at each iteration.
(1) Approximation H. and M(f, c¢,; D):
Let £&=(&', -+, &) be an independent #-multiple random number which is nuiformly
distributed on [0,1]". Let
r=d+'—a) &, i=1, -, n (12.6)
Then x=(z', ++-, 2") is uniformly distributed on D.
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Take km samples and compute function valuse f(x;), j=1, 2, *+-, km. Comparing
the values of the function f at each point, we obtain a set W of sample points
corresponding to the ¢ smallest function values FV[j ], j=1, 2, +-+, ¢ ordered by their
values, 1. e.,

FV[1]=FV[2]=--=FV[¢]. 2.7
The set W is called the acceptance set which can be regarded as an approximation to the level set
H., with co=FV[1], the largest value of {FV[j]}. Clearly, f(x)<lc, for all zt€W. Also, the
mean value of f over H, can be approximated by the mean value of {FV[;]}:
a=M(f, co)=(FV[ 1]+--+FV[t]D/z. (12.8)
(2) Generating a new cuboid by W
The new cuboid domain of dimension n
D ={x=(zt, =, 2|t <a<bi, i=1, *+, n} (12.9)
can be generated statistically. The following procedure is proposed. Suppose that the
random samples in W are 7, ***, 7,. Let
oh=min(zl, =+, 7)) and o =max(z, ==+, ), i=1, =+, n, (12.10)
where ¢;=(z}, **+, /), j=1, =+, 1. We use
a'=c,— (61 —0,)/(t—1) and f=ci + (ci —0i)/(t—1) (12.1D
as estimators to generate a} and b, i=1, *+, n.
(3) Continuing the iterative process:
The samples are now taken in the new domaind D;. Consider a random point x=(z',
, 2*), where
d=ait+Wi—a}) &, i=1, =, n
Compute f(x). If f(x)=FV[1], then drop it; otherwise, reconstruct {FV[j]} and W
such that the new {FV[j]} is made up of the ¢ best function values obtained so far. The
acceptance set W is modified accordingly. Repeating this procedure until FV[1]<lc,, we
obtain new FV and W,

(4) Tterative solution:

At each iteration, the smallest value FV[¢] in the set {F'V[;]} and the corresponding
point in W can be regarded as an iterative solution.

(5) Convergence criterion;

The modified variance V| of {FV]j ]}, which is given by

Vi = L S GVET— VI, (12.12)
=2

can be regarded as an approximation to V, (f, ¢). If V; is less than the given precision e
then the iterative process terminates, and the current iteration in (4) would serve as an
estimate of the global minimum value and the global minimum point.

Under suitable assumptions we can prove (see [ 3])
Theorem 12,1 The number N, of computation of the function f for capturing the global

minimum point in a small cuboid of volume §" from an initial cuboid of unit volume has the
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following asymptotic bound
N,;<c, In(1/8") * In In (1/6) (12.13)
as 0 goes to zero, where ¢, is a constant independent of §.
12.2 Numerical Tests and Applications
Two examples show that the algorithm is effective. The numerical tests are performed
by IBM-PC with Basic implementation.
Example 12, 1 Mizlér[l;lize JAES)

where

f)=glx)—[glx)]/n, (12.14)

g(x) = nt/n« {sin(xx’) + 2 (' —1.00% « (1 +sin(xzx™)) + (2" —1.0)%}
=1
D={x=(z", *+, 2)— 102’10, i=1, ***, n}, (12.15)

and [y ] denotes the integer part of y The function is discontinuous with jumps and local
minima. It has a unique global minimum point at = (1, -+, 1), Table 1 gives the
numbers of iteration N;, the amounts of function computation N, and In V, —1In V.
corresponding variable n=5, 10, 20, 50, where V, and V, are the volumes of the initial

and final search domain, respectively.

Table 1
n 5 5 20 50
N 43 85 155 395
N/ 1917 4251 9565 46623
InVo—InV, 74. 66405 146. 3872 295. 5860 731. 6480

The function value in each case is about 107" (=0. 0).
Example 12, 2 Minér[l)qizef(x) )

where

Jl—l—n. {,Z”; | 2 |—0—sgn[sin(1/(i; | 2 \)*0.5)]}, x#0,

10, x =0,

and D is the same as in (12. 14). The function has an infinite number of discontinuous

fo) = (12.16)

hypersurfaces. Its unique global minimum point is at the origin which has a discontinuity

of the second kind. Table 2 gives the data of this example.

Table 2
n 5 10 20 50
N 68 144 261 609
Ny 3027 7375 22481 71426
InVi—InV, 105. 4427 244.0189 456. 3860 1211. 395

The algorithm has been successfully applied
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to industrial problems such as the



optimum design in the arrangement of needles on a needle board of a pre-needling machine

[15].
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Minimax Methods for Open-loop Equilibra
in N-person Differential Games
Part II1: Duality and Penalty Finite Element Methods "

Abstract; The equilibrium strategy for N-person differential games can be obtained from a
min-max problem subject to differential constraints. The differential constraints can be
treated by the duality and penalty methods and then an unconstrained problem can be
obtained. In this paper we develop methods applying the finite element methods to
compuite solutions of linear-quadratic N-person games using duality and penalty
formulations.

The calculations are efficient and accurate. When a (4, 1)-system of Hermite cubic
splines are used, our numerical results agree well with the theoretical predicted rate of

convergence for the Lagrangian. Graphs and numerical data are included for illustration.
1 Introduction

As in Part I and Part II, we consider an N-person differential game with the following
dynamics;
N
(DEY=% (1) —AWx(®)— >, B:.(Du;(t)— f()=0, on [0,T],
=1
x(0)=x,€ R". (1. D
The matrix and vector functions A(z), f (), B, (t)su; (t),i=1,++, N, satisfy the same
conditions as in Part I and II ([ 6] and [7]). Each player wants to minimize his cost
.]i(l'ﬂ/l):.][(faul7"'7“3\!)51.:17"'7]\]. (1.2)
Let

F(l‘su;Xv'U):F(l'vul ""9”3\];11 9"'31~N77)1 9"'77}3\])
N
= > iz —J:, o) ], (1.3
i=1

where X=(x!, .2, v'=Cuy s+ stti 12V stti11+**suy) and each z' is the solution of

(DE),;=2"(0)—AWx' (1) — Z B, (Ou; () =B, (v, (t)— f()=0, on[0,T],
JFI

\lJ(O):.T()a i:19"'5N. (1. 4)

% In collaboration with Gong Chen, Wendell H. Miies, Wan-Hua Shaw. Reprinted from Journal of Computational
Mathematics, 1992, 10(4) . 321-338.
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Following [ 6] and [ 7], we consider the primal and dual problems:
(P) inf sup{F(x,u; X,v) | (x,u) € H: XU subject to (1. 1), (X,v) E[ H N XU

xou X.v
subject to (1. 4),i=1,+-,N}
(D) sup inf ,L<Po 9])) » where L(Po v])):L(Po s 1 a'“vPN):inf ?{QPL([)O shixsu;

po L’ pelL? N

X,v) with the Lagrangian L: L?2[ L* N X HY XU X[ H} ]V XU defined by

N
L (Po ,j);.r,u;X,”U)EF(‘T,u;X,"U)"— <Po,1.'*AI — ZBjuj *f>
j=1

N
+ 20 (piod’ —Ar' = XIB,U, — B, — f) (1.5)
i=1 i

for x, X satisfying x(0) =20, X (0) =X, = (29, ***» 2o). We inherit the notations U

= H IV:I U, with U;L%(0,T) from Part I, and the notations of L* and Sobolev spaces H*,

Hj and H, are the same as in [6] and [7]. We sometimes denote L*=L*(0,T) without
mention of dimensions.

In this paper, we consider the linear quadratic problem whose cost functionals are
given by

I =5 | TG0 =2 e MOy e (1L6)
i=1,---,N, (x,w feasible

just as in [ 6 ],[ 7]; here we assume that C;(¢) and M, (¢) are matrix-valued functions of
appropriate sizes and smoothness, and z; (¢) is a vector-valued function, Furthermore,
M. (¢) induces a linear operator M, ; L'2”, —>L,2,,] which is positive definite:
;’ »  1<U=<XN, for some x=>0. (1.7

(Miu; 7ui>L§,i = | u;

In Section 2, we formally derive the matrix Riccati equation from the duality point of
view. Section 3 is devoted to error estimates and numerical computations. We prove sharp
error bounds using the Aubin-Nitche trick. We finally present in Section 4 some numerical
results obtained by dualty and penalty scheme briefly. These results agree well with the

theoretical estimates.

2 The Dual Max-min Problem for Linear Quadratic Games

In this section, we give a formal derivation of the dual functional L (p,, p). This
formal derivation will be justified later by assumptions (A3), (A4), and the Primal-Dual
Equivalence Theorem.

Let the Lagrangian L be defined as in (1.5), using (1. 6). We first study

sup {L (pospsaxsu; X,v) | for (X,v) such that X (0)=X,}.
For given po, pryxsu, L (pos psxsu; X, v) is strictly concave in v, and concave in X.
Assume that this maximization problem has a solution (X.9) . which depends on (py, ps;

x,u). By a simple variational analysis on 2, we have, necessarily,
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—(Cr(Cd =2y )2+ oy —Ay' )2 =0.C" =adjoint of C. 2.1
for all y€ H; ,i=1,--,N. The above has a solution X if and only if p satisfies

pelH; M. (2.2)
Indeed, (2,2) is a necessary and suffcient condition for
sup L(pyspsxsus Xev)=L (pospsxsu; Xsv). (2.3)

X=X,
(2.1) and (2. 2) yield
—C/ (Cx'—z)F+p:+A* pisy'y=0,0=1,-+,N.
Hence
pi=—Axp,—C/ (Ca’—2). 2.4
Similar variational analysis on v, gives
— (M3 yw;)—{p: s Baw;) =0, Yw €L, ,

or

A

"U,‘:MTIB,’*p,‘y i:19°"sN. (2. 5)
Note that (X,0) is independent of (x,u).
Next, we consider inf L (po,ps;xsu; Xsv). For given p, L%, pE[ HY 1V, using

(xyu)
(D) =x,

the same reasoning as before, we can show that
inf L (po,p;x,u;X,z?):L(po ,p;xA ,'L? ;X,“(?)

(ryu)
2(0)=2x,

for some (x,u) if and only if

po€ Hi,» (2.6)
N
]).oziA*Po"f— Z Cr (Ciléiz,')9 (2.7
i=1
N
w; =M,'B; (Po + ZP]' ) = M;'B; (pot+p—pi)sp, = 2 b (2.8)
71 =

Let L(py,p) be as defined in Seetion 1. If the problem sup, inf, L (p,,p) attains its
maxmin at (po,p), p, and p satisfy (2. 6), (2.7), (2.3) and (2. 4). Therefore, we
obtain X,0 .2 st s posp as the solution to the following two-point boundary problem:
Theorem 2.1  Assume that max, er? minge2 N L (po, p) is attained by (posp). Then
(posh)€H, X[ H, N,

L(pysp)=max min L(pop)=maxminL (po. pszus Xo0)
0

2 2-N
py€LnpelL N

=maxmin min max Lipospsxsu; X,v)
PP ao€eH) XU XwelH, INxu
(0 =2z, X=X,

and x s X=(x' s+, 2N), po and p=(p1,+*+, px) are coupled through
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A 0 A S S Six
x
A:N' O O A SN S\ll S\/\]
d7 |
de | p, pPexe 0 0 —A* 0 0
A i=1
P‘l 0 —Cr G 0 0 —A 0
PNl 0 —CiCy 0 0 — A" |
B
N f
o]
x|t v 2.9
bo E;\:lci Zi
PAI Ci =
_ﬁ N L Cz&x}zz\’ i
2=z () ==V =2y, po(T=p (T)=+=p\(T)=0,

and u s 0 satisfy
L?,-:MTIB,-* (po—Q—p_‘*p,-)y Q;Z*MiilB/*Pia
with
N
S= > BM;'B;, S;= >)BM;'B;,
=1 i
S, =S—1—8§,)BM;'B; —B,M,'B; , & =Kronecker’s §. (2.10)

We now study the dual problem. Henceforth, for simplicity, we denote the operators

N N
C/C; and Z C; C;(induced by the matrices C; (z)C; (¢) and Z Cr ()G (1)) in L% as
i=1 i=1

C,(1<G<KN) and C,, respectively.
Several assumptions are needed as we proceed. First, we assume
(A3) each operator C;(1<<CN) is strictly positive definite in L*.
From (2.4), we get
2=—C; (po+A pi—Clz). (2.1D)
By (A3), C, is also strictly poitive definite. By (2.7), we get

N
T=Cy' (po+A"po+ D2IC ). (2.12)
i=1

We now substitute (2. 11), (2. 12), (2. 5) and (2. 8) into (1. 5). Integrating by parts
with respect to p, and p; (1<(i<CN) once, using the end conditions p; (T)=0,0<i<N,

and simplifying, we get



AN

L(po,p>:L<po,p;x;u;)2,6>:—%<p'+A*po,q:o1<p'+A*po>>

_|_

N

S (B A P CIGHA D) =1 (bt b St b))

1

o [—

i

+ (4o +px,iBiMrlepi> — (P +A" pos a:alic;ﬂ
i=1 i—1

|
1=

(p+A"pinC'Crzi) — (ot ponf) — (0(O) + p,(0) sy

i=1
1 N N 1 10
—7<@gl(2cj:*zj),2cj:*zj>+7||z|\2z_§:,Ti, (2.13)
= J= =

where || 2| 2= Zl\zl || z: || %2, and p, is defined as in (2. 8).

It is easy to see that L(p,,p) is strictly concave in p, for any given p. However, for
any given po, L(p,.p) is not necessarily convex in p because of the negative sign in front
of Ty. This causes a severe handicap for the duality approach; see Remark 2. 1, below. To
circumvent this, we need the following important assumption;

(A4) The positive definite operators C; ' (1<G<CN) in L? are large enough so that

N
% 2 (pi+A pCl G +A"p)) —%<px,pr>

N N
+{p s DBMIB p) =0 I 51l (2.14)
i=1 i=1
for some v=>0, and for all p&[ H}, V.

We remark that, even if C; ', 1<(G<{N, are not large enough, the above assumption
can still be valid provided that T is chosen sufficiently small, because in this case the first
positive definite quadratic form in (2. 14) will have a large coercivity coefficient to absorb
L?-norm, when the interval [0, T ] is small. This is consistent with the assumption that
t, —t, is sufficiently small in [13].

Another special case where (A4) holds without requiring C; ', 1<{i<{N, be large
is when

N=2, U,=U,, B M;'B =B;M;'B; =B, for some B=0.

It is easily seen that now
2

AD=5 D (p+A pCHGAA p)) —22(pBp.) + (b Bp.)

=1

2
— S B+ A b € B A P 2.1%

=1
so (A4) holds.
Remark 2. 1 The fact that an assumption like (A2) in [ 7] is indispensable for the
tractahility of the dual problem can be observed as follows: If C; ', i=1,++, N, are not
large enough in comparison with B.M;'B;, i=1,++, N, so as to cause the existence of
some p €[ HL, |V satisfying
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N . .
D BAA B O GHA PO = B SEL)
i=1

N
+ (F.. 2 BM'B/ ) <0, (2.16)
i=1
then for any given p, € H{,, we deduce from (2. 15) that
gir;}L(po ,kp)=—co and inf L(po s p)=—00

perHl N

for any given p, € H},. Therefore, the dual problem is rendered completely worthless. A
situation like (2. 16) should be avoided to ensure mathematical tractability. For the
computational purpose we will need the uniqueness of p. Thus we take a step further to
assume coercivity and strict convexity of p in L(p,,p) in hypothesis (A4) to achieve this
goal.

Let us list the above and other usefull properties in the following, which is readily
verifiable.
Lemma 2.1 Assume (A3) and (A4); then

(i) For each given po € Hi, s L(py,p) is strictly convex in p for all p €[ H, N and ,
foreach given pE [ Hy, 1Ny L(py,p) is strictly concave in p, forall p, & Hi,.

(i1) The following coercivity conditions are satisfied :

hm L(p()yp):Oos VP06H<1>719

ol [Hl ]N -

lim L(po,p>— ,  VpelHLN. 2.17)

I 2o I -
Using the above lemma and the minimax theorem, we conclude
Proposition 2. 1 Under (A3) and (A4), the dual problem sup, inf, L (po,p) hasa
unique solution (p,,p) satisfying
L(po.p)= sup inf L(po,p)f max min L(p,,p)= min maxL(po,;b)

po € Hy, p€LHY, T by € Hy, pE LHY, TV pelHy, W py € Hy,
Theorem 2.2 (Primal-Dual Equivalence Theorem) Let C;(¢),%,(¢t),i=1,-, N, f(1)
and Co'y C;'yi=1, =+, N, be sufficiently smooth (as functions and operators,
respectively). Let F(x,u;X,v) bedefined as in (1.3). Assume that there exists (x,u) €
H.XU>(x,v) €[ H N XU such that

inf bupF(I,u X,x)=min maxF(x,u; X,'v)—f(x,u,X,v)<OO (2.18)

(rou)  (X,0) (o) (X,0)
feasible feasible feasible feasible
and that (A2) in [7] is also satisfied, i. e.,
P(xsu) =supF(x,u; X,0) (2.19)
(X,v)
feasilL)/le

is convex in (x,u) forall (x,u) € HLXU,x(0)=ux,. Assume that (A3) and (A4) hold
and let (po+p) be the solution in Proposition 2. 4. Then
(i) L(po,p)= max min L(po,p)

py € Hol, re FHoﬂ

—max min min max L (pospsxsusaxsv)
po€HY, pelH) TV e H XU (XowelH), 1N
2(0)=x, X= X()
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A
= min maxF (z,u; X,0)=f(Lu ,Xs0); (2.20)
(xo)  (X,0)
feasible  feasible

A

(i) (£.43X,0) is related to (posp) through

N

2=Cy' (poF+A po+ D) Crz), (2.21)
i=1

0. =M "'B; (po+p.—p), i=1,,N, (2.22)

S=—C,; " (p,+A p,—Ciz), i=1,,N, (2.23)

ﬁi:—Mi lBi*])/\,'y i::ly"'yN (2. 24)

and (2, ;)2,73) satis fies di [ ferential equations (1. 1) and (1. 4).
Proof. Because all the assumptions are satisfied, we can apply Theorem 2. 1 of [7]
(particularly (2.17) in the proof) to conclude (i). Note that all the sup’s and inf’s can be
replaced by max’s and min’s due to the quadratic nature of the problem.

(2.21)~(2. 24) are verified in a straightforward way as in (2. 8), (2.5) and as in
(2.11) and (2.12), but now every procedure is justified.

To show that (£ .43 X.0) satisfies differential equations (1. 1) and (1. 4), we can

make a variational analysis on L(p,,p). Because

L(pos pI<L(pos p)<L(hposp)s Y (posp)€EH, X[H, N,

we get
dJ
L (posp) =0, (2.25
dp pob p=F )
This yields the Euler-Lagrange equations
— . N N
%C?l(ﬁ;+A*ﬁi)—AC?l(pAI-+A“pA,-)+S(ﬁo+pﬁ)— SBM,'B; §,
ji=1
—BM;'B; (p,+p,) +AC'C;z; —%W?Cﬁzﬂ +f=0, (2.26)
P,(T) — 09
CHOHO+A (Op (D] =—a,4 CHOC (02,(0), for i = 1,-+,N.

From the assumption that C;,C;,z;, f are sufficiently smooth, and that (2. 20) ~ (2. 24)
hold, we see that the above equations agree with (1. 4). Similarly, from
d
dpo
we can also show that (1. 1) is satisfied by (2. 21) (2. 22).

Note that for a linear-quadratic differential game, ¢(x,u) in (2.19) can be calculated

Lposp)|y-p, =0, (2.27)

expticitly and is equal to

N
pCre=maxF (o Xoo)= 3 1[I Co =2 |7 + (Ma o)

=1

feasible
—1C@Cozo+ D) Lou; +Lnva ) —= | ?
j#i
+ <Li%ci% [Ci(;ol‘o + 2 L u; JF;NH][)_Z,]’

JFEL
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(M +TL ’;X' Cl—x— CI —\L,I)*l L I* CI* [C, (i/ oo + 2 Ljuj _‘_I“erf‘)— z,‘] > } . (2. 28)
JF

The reader should refer to Part I, Seetion 2, for the notations and derivation of the above.
Corollary 2.1 Consider the linear-quadratic di f ferential game (1.1), (1.6). Assume

(A0’ {nlr)l max F(x,u; X,v)=0 holds, sothe dif ferential game has a solution (x,u);
f(:;:;illlslc f(‘as’if)/l('
(A2)’ ¢(x,w) given in (2. 28) is convex in (xsu) for (x,u) € H., XU, 2(0)=ux,;
and assume also (A3) and (A4). Then there exists a unique (po,p) € Hy, X[ HL, N such
that (2. 20) holds and the solution (x,u) of the dif ferential game can be obtained from

(posp) via
N
X:CJI(IQO“FAX IS()+ 2 Gz,
i—1

0;=M, "B’ (p,+tp.—p). i=1,2,--,N,
as given in (2.12) and (2. 8).
Remark 2.2 Many evidences seem to suggest that assumption (A2)' in Corollary 2. 1

is redundant because of (A4). Nevertheless, we are still unalbe to prove or disprove this.
3 The Dual Variational Problem and Finite Element Approximations

In this section we devote ourselves to the study of the finite element numerical method
for differential games. It is fair to say that the methods of solution for N-person
differential games are still very incomplete. More efforts are needed to develop good
analytic and approximation methods to solve them. The finite etement method is a
rigorously established, highly accurate numerical method which is becoming increasing
popularly in recent years. Due to the special minimax structure of differential games, we
are able to apply and generalize the existing theory of finite element analysis to our own
problem to establish rigorous error bounds and to obtain numerical solutions.

The unique solution (p,, p) of the max-min problem satisfies (2. 25) and (2. 27).

From (2.13), by a simple calculation, we obtain

. N
HPOL(]%“DA). r:—<pAo+A'X pA(), Coﬁl(7’+A‘ r)>—<ﬁo+ﬁx,8r>+ <7’, ZB,MTIB xpl>

N
— (FHA T CI DG w) — i ) —(H0)sz) =0, Yr € Hi,»
1
(3.1

apL(ﬁo,ﬁ).s:i<1§,-+A'“‘ﬁ,-,([3,-](§+A*‘ 50) — <;§O+ﬁ§,sﬁ)5,>
1 1

+ (5o +ﬁ”iB,‘MTIBfS,> +(D)sis iBiMrleM
1 1

N

<5.i+A*517([:71ci%zi> * <i\isf> - <25i(0)’10> =0,
1

1

N
1

|
M=
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V.S':(Sl ,"'953\\')6|:H(1),,]N. (392)
The above two relations induce a bilinear form on Hi, X[ H}, |V : for ' ,7* € H}, and s'
:(é} 95%"'95}\]} ’ 52:(5% 9"'751‘2\/) e [H(I)H:IN ’

N

a ([r;}[rj}): <f1+A*rl,C31(r2+A*r2)> - <r1+25}’s”2>

S S =1

+ <r2,iB,M71B,*.s}> Dy (STHASLCH G HA D) — (P + O ,sﬁ]ﬁ}
1 i j=1 j=1

N

+ (' + is} , iB,M?B,’*s?> + (>, ZV]B,erlB,*s} ) (3.3)
1 1 1

1

and a linear form 0. for r€ H}, and s=(s1,+=+,sy) €[ HL, Vs
N N i}

6([1): <7’+ 2«8’j9f> + <r(0) + E_gj(o),xo> + <;;+A,x. r Gl chz,>
s - 1 l

N
= D HA s, CIC ). (3.4
1

Thus, (3.1) and (3. 2) are equivalent to
aqp”}[r})—@([r}), Y (rus) € Hb, XCHS, Y. (3.5)
P N N
We are now in a position to compute (p,, ) be the finite element method. Asin[1],
we say that S;CH2 (0,T) is a (¢, ,t,)-system (¢, ,¢, are nonnegative integers) if, for all v
€ H% (0,T), there exists v, €S, such that
H VT U, || H,k. <Khm || % || H’l{’”’ ’ V O</€<mm(ko ,lz) ’ IQGN, (3. 6)
where m=min(t—%,k,—k) and K0 is independent of & and w.
Let S,CH., be a (¢,1)-system. We consider
max min L (p,,p). (3.7

P ES, pers, IV
It is casy to see that under (A4), there exists a unique saddle point (po,,p,) €S, X[S, [V
such that
L(ﬁohvﬁh):max mlnL(po 9?).

P ES, pe LS, i

This point (pg, s pn) is characterized as the solution to the variational equation

a([p“”}[”D—e([”’}), Y () €8, XS, Y. (3.8)
ph Sh Sh

If {$' )= {¢) ] are basis for S;,,[S, ]V, respectively, then (3. 8) is a matrix equation
M,7,=0,, where the entries of M, and 0, are

— 1 _ ¥ re o

I:M1]zj_a(|:¢i}’[¢/:|>a 1<17]<(N+1)_]7

(@,J,-—e([m), 1<j<(N+DJ.

Proposition 3. 1 Under (A4), the bilinear form a( <, =) satisfies
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1

a(m,[:j})\m, 3.9

inf up

IC-1071-

and the space {S,}, satisfies

, T
inf sup a“ 1}[ z” =v,>y>0, (3.10)
Sh Sh

rZ Y‘l
h h
HIEINIE
\'2 ‘1
“h °h
for some y=>0, Y h=>0.
Proof. In (3.3), for any given (+*,s*) € Hi, X[ H}, [N, with norm 1, let
1 2 12

r—"r, N \

Then the norm of (+',s") in Hi, X[ H, [N is also equal to 1, and

rl rZ 77_2 rZ
(LD 1L
=(r*+A P, Co ' PFA A+ GEL S

N N N
+ <Zs?,ZBiM71st,2> -+ 2 ($FFA* S, Co ' (A sE))
i=1 im1 =1

= i

N N N

—(2.8208) +2(.

N
=1 =1 7 =

S D) BM; B/ s7)

1 =1

N
=G, FAT L CO GERAT D HGELSE 2 D) sl e (by(Ad))
i=1

fj }

2

s 1 19N
11()11 X [11071]

for some p'>>0. So (3. 9) also follows in exactly the same way.
Theorem 3.1 Let (po,»py) bethe solution of (3.7) and let S, be a (ts1)-system. Assume
that C;(t),z;(¢t),i=1,+,N, are sufficiently smooth. Under (A3), (Ad), we have
I po—bo w1 b6—bull g »<Kr" | pollwr + 115 vy,  (3.1D)
| po—pu ezt 1 p—pul [LZ]"VgKh’”H( I 5o |l w1 vl (Y ) (3.12)
provided (ﬁo ,ﬁ YE[H,NH, X[ HL,NH, Y, wherem=min(t—i,r—1) and K>0 isa
constant independent of (po,p). Consequently,
|LChosp)—LChoys p) <Ko Cll po [ 5+ 6 |l Fer (3.13)
holds for some K,>>0 independent of (po.p).
Proof. Because (po, s py) satisfies (3.8) and (p,,p) satisfies (3.5), we get
[pf_’f“’lH”’H—o, Y (s €5, XS, N,
P~ b Sh
Therefore'’, by Proposition 3. 1, we get
o —bowsp =D |l ut rmt, N

<(1+L) inf V([ | po—r |l ué”+ | 6—s |l (e, 1)

(5,0 €S, XLS&J

4 4

=

a

for some ¢>>0 independent of h. Using (3. 6), we obtain (3. 11).
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To prove (3.12) we use Nitsh’s trick ([8],[15]). By Proposition 3.1 and [ 1], for

any g€ L2 X[ L*]V, we have a unique w(g) € H}, X[ H}, ]V such that

alw( @) y) ={gsy)izen2N s ¥ y€ Hy, X[H;, Y.
Furthermore, we have w(g) €[ Hi, (H: X[ Hi, N H%]Y, provided that C;(¢) and 2;(¢), ¢
=1, 2, -+, N, are sufficiently smooth (this w (g) can be obtained explicitly from
integration by parts). It is not difficult to verify that

| w(g) || 113x[11ij-“\"<K/ g I 2spizo s
where K is independent of g. By the very same proof of the Aubin-Nitsche lemma'™,
which remains valid under Proposition 3. 1, we get
1 p0 —pon 21 2 —=pu 2y <<Ch"Cll po i T 1 A Il ety
« sup A/ [gll inf (=g . (3.14)

gel? <12 g,€5,%[s,7T
But, by (3. 6)7

1 . 1 ,
inf [ w(g—& | <”—g”K/h | w(g) | ng

| 9 ” 6, €85, %<[s, "

1
Tgll
for some K”>>0 independent of ¢ and w(g). Using the above in (3.14), we get (3.12).

To show (3.13), we note that

K//hK/ H g H :K/K//h’

A

Lharp—L(pop)=2]a [{“pr’fﬂ 0 [pf’l_]io}
p PP br—p
+a [ﬁim_éo}’ [ﬁ/(\)h_p:o} .
pPr—Pp PP
The first term on the right above is zero because of (3.5). The second term on the right
can be estimated by using (3. 11). Hence we get (3. 13).
Corollary 3.1 Let

N

2 =Cy" (b +A" po+ 2 Ci =), (3.15)
N i=1
=M 'B; (;50,1+Z;ﬁ,,,]—ﬁ,,,,-), i=1,,N, (3.16)
=
2i=—Ci " (putA . —Ciz), i=1,-,N, (3.17)
Vi=—M;'B{ psis i=1,.N (3.18)
and
Xo=(Ehes @)y 00=(DnrssOun) s @n=Clnrsostinn).
Then

la—ay |24 To—ou | 2N <Kk Cll po L+ 16 ) s (3.19
| &=l | X=X | ae <Kk Cl o g+ 105 oo (3,20

for some K;>>0 independent of & st ,)2,7? s po and p.
The convergence rate (3. 19) is the sharpest possible® '/ The rate (3. 20) is not
optimal. To obtain a faster rate of convergence for = and X, we can use «; and v, in (DE)

=0 and (DE);=0,i=1,---,N, and integrate to solve for more accurate x and X.
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4 Examples and Computation Results

In this section, we apply the finite element method and the penalty method to some
examples and present our numerical results.
Example 4.1 We consider the following two-person non-zero-sum game:
2=z +u (D+2u,(D+1, t€[0,T], T=x/4,
x(0)=0,

Jlu,u):j'j [ () Ceost-1/2) |21/2 w, (o) |2 ]de,

0
]z(x,u):JO [l 2() —sine|? 2] uy (0) |2 ]dbr. 4.

The Lagrangian L in (2. 13) corresponding to this problem is
L(posprs p)=—1/2{potpo-1/2(po+p))T1/2[{p1+pi+p1+p1>
T ot pos ot p) 1=1/2¢po+pr o d(po+pi+p2))
Hpotpitpos2piH2p) —(potpos1/2[ (cost+1/2) +sint])
—[{p1+tprscostt1/2)+{py+ pyssint) |—(pot+pr+ps 1)
—1/2(1/2[ — (cost+1/2)+sint ], — (cost+1/2) +sint)
+1/2[ <(cost+1/2,cost+1/2)+{sint,sinz) . (4. 2)
In order to apply the theory and analysis in Section 3 to this example, we need to
verify that assumptions (A2), (A3) and (A4) are satisfied, and

(A0)" minmax F(x,u;X,v)=0 holds so that the differential game has a solution (z ,u).
(zyu) (X,0)
feasiblefeasible

Instead of checking (A0)" directly, we show that the “decision operator” D as defined
in (2. 6) in Part I'* is invertible so that the differential game has a unique solution, so
(A0)' is satisfied. But here

T*—[Ml+;f CrC Ly LG G L, J_[I/ZIJr; F L 2L L,
LG G Ly M+L;GGL, 2L L, 214 L7 L,
because L,=2 L ,and Ly =21, and C,=C,=1, C; =C; =1, where

} (4.3)

L. U=H!(0,t), L, u= J e u(s)ds.
0

We easily see that D in (4. 3) above is symmetric and strictly positive denfinite, so [ is
invertible. Hence (A0)' is satisfied.
To check (A2), we write out ¢(x,u) explicitly:
P =1/2{ || x@®+(cost+1/2) | *+1/2 [ w, (O || *+ || 2(®) —sint [ *+2 || o (D) || *

— [ Loxo+L ey +L s f—sint | ?— | Loxe+2 1L yup +1L 5 f4 (cost+1/2) || 2
AL (Loao 2L yus+L s f+ (cost+1/2)),(1/2I+L L )DL (Loa
+2 L yuy+1L s f+Ccost+1/2))) <2 L7 (Loxot+L uy+1L;f—sint),
QIF4LL D' 2L (Loxy+L ug +1Ls f—sint)), 4.4

where we have used L, =2 1L ,,L,;=2L;,C,=C,=1I,C;{ =C; =1 and
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Lozo=ezy, ngf et £ () ds.
0

In (4. 4), it is easy to see that ¢(x,u) is convex with respect to x because ¢(x,u) has | x| * as
the only quadratic term involving x. The quadratic terms involving u; and u, are
/2 {[1/21—L L +H4L Ly QIF4L L ) 'L F Ly Juy su)
A ([2I—4 L F L 4L L (/21 FL LD 'L f Ly Jus )}
=1/2{¢QI+AL LD '[1/21+4 L L H)—QI+4L L DL L,
HAL L D@L D Jusu)HRIF4AL Ly 221 +4 L7 L)
—4QIF4L L DL Ly H16CL L)L) Jus sus) )
=1/2{CQIF4L L D) uy s ) HACQRIFAL 7L D) g yus ) b

The above is a strictly positive definite quadratic form in u; and w,;. Therefore,
¢(xsu) is also convex with respect to u= (u;su;). In fact, in this example, ¢(x,u) is
strictly convex with respect to x and u.

It is easy to see that (A3) is satisfied, so only (A4) remains. This can be done
straight forwardly from (4. 2) with little work. Hence all assumptions have been verified
and by Theorem 2.5 (z,u) is the solution.

We choose a (4. 1)-system of Hermite cubic splines as in [15]. The interval [0,T] is
divided into N equal subintervals, each with mesh length h=T/N. The matrix M, is a
(6N+3) X (6N-+3) matrix. We use the IMSL high accuracy subroutine LEQ2S to solve
the matrix equation M,7, = 6, with double precision on an IBM370/model 3033 at
Pennsylvania State University.

In Table 1, we list some values of w0 suss2 2" s2%s posp1 and p, at certain selected
nodal points. For this example, there is no known closed form exact solutions to compare.
Therefore, the only way to show that our numerical scheme works is to check the rate of
convergence (3. 13) by a different method; see Example 4. 1. Using the data, we have
plotted the logarithmic error graph. The asymptotic rate of convergence, which is
indicated by the slope of line segment is O(h*?) which is extremely close to the predicted
rate O(h%) in (3.13). Note here that m=4—1=3, so 2m=26 in (3. 13), provided that
(posp) is at least H} X[ H} J* regular.

Example 4.2 We consider the following 2-person non-zero-sum game:
2 (1) =x () +costu; (1) +sintu, (1) +1,0<t< 2,
x(0)=0,

Ty () = Jf [12( -+ Cost+1/2) |2 4+1/32 (0 1dr,

Jo(xsu)= JOT [|x(t)—0.9sint|*+u, () ]dz.

It is not clear to us as to whether conditions (A0)', (A2), (A3) and (A4) are satisfied.
The numerical evidence below suggests that the rate of convergence of L to 0 is not close
to O(h®), thus it is likely that Corollaries 2. 1 and 3. 1 do not hold for this example. Thus
we believe at least one of the conditions (A0)', (A2), (A3), and (A4) is violated.
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Using the computational scheme in Section 3, we obtain
L=1.493X107",
L=1.267X107%,
L=1.1755X10"2,

hZZT(/4;

h=2xn/16;L=1.771X10 *,

h=2x/64.

L=4.646X10 7,

h=2x/8;
hZZTt/SZ;

The logarithmic error is also plotted. Here we find that the rate of convergence is O(h"**)
at best, which is way off the predicted rate O(h°).

1

A
—

w

s

Table 1.  Numerical Values of u; s uys x5 2's 2%, Py, Pi and P, at t= T TRV and
% for Example 1.
3t

h:f/w h:%/SZ h:%/64 h:%/m h:f /32 h:%/64
w0 —2.020419 | —2.078747 | —2.078747 | —1.239453 | —1.239453 | —1.239453
us 0. 441072 0. 441072 0. 441072 0. 285282 0. 285282 0. 285282
x —0. 125895 | —0.125896 | —0.125896 | —0.136733 | —0.136733 | —0.136733
z! —0.125895 | —0.125896 | —0.125896 | —0.136733 | —0.136733 | —0.136733
22 | —0.125895 | —0.125896 —0125896 —0.136733 | —0.136733 | —0.136733
P, | —0.598302 | —0.598302 | —0.598302 | —0.334444 | —0.334444 —0. 334444
P 1. 039374 1. 039374 1. 039374 0.619726 0. 619726 0. 619726
P, | —0.441072 | —0.441072 | —0.441072 | —0.285282 | —0.285282 | —0. 285282

= X =E=T

h:f/les h:%/gz h:%/64 h,:%/l(i hf% /32 h:%/GéL
w0 —0.562914 | —0.562913 | —0.562913 0.0 0.0 0.0
us 0. 131964 0. 131964 0. 131964 0.0 0.0 0.0
x —0.053732 | —0.053732 | —0.053732 0. 118645 0. 118645 0. 118646
21 | —0.053731 | —0.053732 | —0.053732 0. 118645 0. 118646 0. 118646
22 | —0.053732 | —0.053732 | —0.053732 0. 118644 0. 118645 0. 118646
P, | —0.149492 | —0.149492 | —0. 149492 0.0 0.0 0.0
P 0. 281457 0. 281457 0. 281457 0.0 0.0 0.0
P, | —0.131964 | —0.131964 | —0.131964 0.0 —0.0 —0.0
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Remark 4.1 The numerical values of v, , v, are identical, respectively, with u;, u,. All

«!lyy

entries above are rounded off figures with six decimal place accuracy. entries have the
same values as the one immediately above.

The penalty method developed in Section 3 can also be combined with finite elements

to do numerical calculations. Analysis of error can be found in [5]. The penalty-finite
element scheme seems to be less stable than the duality-finite element as given in Section
3, and its error estimates are hard to verify experimentally. We have successfully
computed Example 4. 1 by the penalty-finite element scheme, as shown below.
Example 4.3 We consider the very same example as in (4. 1). F,(x,u;X,v) is given as
in [7]. We choose for x, 2' and 2* approximation spaces Sj which are a (3,1)-system of
quadratic splines, and use a (2,0)-system of piecewise linear elements as approximation
spaces S} for u; s us» v and vs.

Numerical data for @1, «» and = at selected points are given in Table 2 below, with

h={(x/4)/32, uniform meshes for S}, and S}, e, =e, =e,.
They compare very well with the duality-finite element solutions, which use (4,1)-cubics
and h=_(x/4)/32.

Note that numerical solutions of 2',22,9, and v, also satisfy

'=XPEr . 0=, 0s=us.
For more numerical examples and detailed discussions, see [7].
Table 2. P, : penalty solution with e, =e; =e, =10 *.
P, ; penalty solution with ¢, =e; =e, =10"".

D: duality solution.

1= (n/4)/4 (n/4)/2 (/4 (3/D) n/4=T
P, —2.077473 —1. 238577 —0.562432 0. 000086
w P, —2.078433 —1. 239262 —0.562789 —0. 004539
D —2.078747 —1. 239453 —0. 562913 0.0
P, 0. 440848 0. 285103 0. 131847 —0. 000053
us P, 0. 441103 0. 285264 0. 131923 —0. 002366
D 0. 441072 0. 285282 0. 131964 0.0
P, —0.125946 —0. 136808 —0.053823 0. 118535
u, p, —0. 125870 —0. 136707 —0. 053713 0. 118661
D —0. 125896 —0.136733 —0.053732 —0. 118645
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A Method for Approximating Solutions of Multicriterial
Nonlinear Optimization Problems*

Abstract: An algorithm for approximating solutions of multicriterial nonlinear optimization
problems of a class of discontinuous objective functions with disconnected constraint set is
proposed in the framework of integral based optimization theory under some weak general

assumptions. Numerical examples are given to illustrate the effectiveness of the algorithm.
1 Introduction

Let X be a topological space, f: X—>R" a mapping and S a nonempty subset of X.
Consider the following multicriterial optimization problem:
f(z) :}gf; f(x) (1. D
Let C be a pointed cone of R” to define the order of points in this space. Especially,
we may take
C=0={y=", =+, yDTER":y =0, i=1, =+, n}, (1.2
the nonnegative orthant of R”
Definition 1.1 An element & S is called a minimal point of f over S if
{E@)—O NS = {1 ).
An element x €S is called a weakly minimal element of f over S if
(@) —int O NS =.
Note that instead of the orthant O of (1. 2), we may use another pointed cone C in R”
to define the order.
In this work we will study the problem of determining the solution set M of (1. 1) and
the set f(M). For the case n=2, Polak (1976) proposed a spline approximation to f(M),
Jahn and Merker (1992) proposed a piecewise linear approximation to f(M). They use the
following algorithm.
(1) Determine an interval [a, ] on y' —axis, where

a:=min f' (2,
J s (1.3)
lb.=f(4), with S =min f* ().

% In collaboration with Kostreva M M, Zhuang D M. Reprinted from Optimization Methods and Software, 1995, 5:
209—226.
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(2) Discretize the interval [a, ] by m—+1 points;
yis=atk(b—a)/m, for k=0, 1, =+, m
where m is a given positive integer. For each point yi, #=0, 1, :-, m solve the following

minimization problem:
min  f2(2). (1. 4)

€S, flw=y
Then we obtain a minimizer x; and y,=f(x;).
(3) Select a decreasing sequence
Vi, Yk, Yk
so that the set {xkl s Ty, s ***s 2y ) 1s an approximation of the set M of minimizers.

(4) 1If the set f(M) is connected, Polak uses splines to connect the points f(xkj) and
Jahn and Merker use piecewise straight lines.

To solve a minimization problem (1. 4), a global minimization problem with
constraints, a tunneling technique (see [5]) is applied.

Note that the above algorithm can only be applied to approximate f(M) of bicriterial
objective function. We also note that the tunneling technique is combining with a local
minimization algorithm which is usuall gradient-based. If the objective function in (1. 4) is
nonsmooth, then this approach is not valid.

Scalarization of multicriterial nonlinear optimization problems is a widely used tool for
finding their solutions numerically; see, for instance, [ 6] and [ 7]. There are still other
approaches without using scalarized objective function, see [1] and [2]. In this research,
we popose a method for approximating f(M) by using scalarization and simplices. The
multicriterial problem is turned into a set of constrained scalar global minimization
problems. We use the integral global optimization (see [13—15]) to solve these scalar
minimization problems.

In this paper, we first review basic concepts of robust sets, functions and mappings in
Section 2, which are useful in the remaining consideration. In Section 3, we consider a
general scalarization procedure for an upper robust mapping and study optimality
conditions of the scalarized problem. We propose an algorithm for approximating solutions
of multicriteral optimization problems in Section 4; these problems may have discontinuous
objective functions with disconnected constraint set. Numerical examples are given in

Section 5 to illustrate the algorithm. In Section 6, some concluding remarks are given.

2 Integral Global Minimization

In this section we will summarize several concepts and properties of the integral global
minimization of robust discontinuous functions, which will be utilized in the following
sections. For more details, see [13—15].

2.1 Robust Sets, Functions and Mappings
Let X be a topological space, a set D in X is said to be robust if
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cl D=cl int D, 2. D
where cl D denotes the closure of the set D and int D the interior of D.

A robust set consists of robust points of the set. A point x&cl D is said to be robust
to D (or a robust point of D if x& D), if for each neighbourhood N(x) of x, N(x) ()
int D7 . A set D is robust if and only if each point of D is robust to D. If x is a robust
point of a set D, then D is called a semineighborhood of x. A point x& D is a robust point
of D if and only if there exists a net {x;} D int D such that x;—x.

An open set G is robust since G=int G. The empty set is a trivial robust set. A closed
set may be robust or nonrobust. The concept of the robustness of a set is closely related to
a topological structure of the space X. For instance, the set D={1,2} is nonrobust in R'
but it is robust in Z={set of all integers with the discrete topology}.

The interior of a nonempty robust set is nonempty. A union of robust sets is robust.
An intersection of two robust sets may be nonrobust; but the intersection of an open set
and a robust set is robust. If A is robust in X and B is robust in Y, then AXB is robust in
X XY with the product topology. A convex set D in a topological vector space is robust if
and only if the interior of D is nonempty. A set D is robust if and only if D=2 int D,
where dD=cl D\int D denotes the boundary of the set D. A robust set can be represented
as a union of an open set and a nowhere dense set.

A function f; X—R is said to be upper robust if the set

F.={x: f(x)<c} (2.2)
is robust for each real number c.

An upper semicontinuous (u.s.c.) function is upper robust since (2. 2) is open for
each ¢; so is a probability function of R*. The infimum of a family of upper robust
functions is upper robust. A sum or a product of two upper robust functions may be non
upper robust; but the sum of an upper robust function and an u.s.c. (for the product case
nonnegativity is required) function is upper robust. If X is a complete metric space, then
the set of points of discontinuity (continuity) of an upper robust function is of first
(second) category.

A function [ is upper robust if and only if it is upper robust at each point; f is upper
robust at a pont x if x& F, implies x is a robust point of F.. An example of a non upper
robust function on R’ is

i (0, x=0,
FO=1, s
f is not upper robust at x=0.

Let S be a robust set in a topological space (X, 7), where r is the topology of X. We
can introduce a relative topology 75 and obtain a new topological space (S, rs). In this new
topological space, we also have concepts of robust set and upper robust function with this
relative topology. Then we have oncepts of relative robust set and relative upper robust
function.

In [9,10], robust and approximatable mapping and set-valued mapping are studied.
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Let X and Y be topological spaces. A mapping f: X—Y is said to be robust if for each
open set GCY, f '(G) is a robust set in X,

Suppose C is the set of points of continuity of f. f is said to be approximatable iff C
is dense in X and for each € X, there exists a net {x, } CC such that

limx,= and lim f(z,)=f(Z)

An approximatable mapping is robust. If X is a Baire space and satisfies the second
axiom of countability, then a mapping is robust if and only if it is approximatable.
2.2 (Measure Spaces and Integration

In order to investigate a minimization problem with an integral approach, special class
of measure spaces, which are called Q measure spaces, should be examined.

Let X be a topological space, Q a ¢field of subsets of X and ;2 a measure on Q. A
triple (X, Q, p) is called a Q measure space iff

(1) Each open set in X is measurable;

(i1) The measure x(G) of each nonempty open set G in X is positive: p(G)=>0;

(iii) The measure p(K) of a compact set K in X is finite.

The ndimensional Lebesgue measure space (R", 2, x) is a Qmeasure space; a
nondegenerate Gaussian measure y on a separable Hilbert space H with Borel sets as mea-
surable sets constitutes an infinite dimensional Q-measure space. A specific optimization
problem is related to a specific @ measure space which is suitable for consideration in this
approach.

Once a measure space is given we can define integration in a conventional way.

Since the interior if a nonempty open set is nonempty, the Q measure of a measurable
set containing a nonempty robust set is always positive. This is an essential property we
need in the integral approach of minimization. Hence the following assumptions are
usually required:

(A): fis lower semicontinuous and there is a real number b such thet {z€ S f(x)<C
b} is a nonempty compact set.

(R): f is upper robust on S.

(M): (X, 2, ) is a Qmeasure space.

2.3 Integral Optimality Conditions for Global Minimization

We now proceed to defined the concepts of mean value, variance and higher moments
of f over its level set. These concepts are closely related to optimality conditions and
algorithms for global minimization.

Suppose that the assumptions (A), (M) and (R) hold, and ¢>¢* =min,cs f (x). We
define the mean value, variance, modified variance and »-th moment (centered at a),
respectively, as follows:

1
n(H, N S)Jul ns flaydp,

| @ =M e ) dus
H.NS

M(f, ¢; S =

1

V(fsc; S :#7(1{(‘ )
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I S 95— )2
Vilfs s § =g SJﬁﬂg(fm ) dp,s

I S
p(H, ns

They are well defined. These definitions can be extended to the case cZ=c¢* by a limit

M, (f, c; a; S) = J (flx) —a)"dyus m =1, 2, -
H.NS

process. For instance,

— 1
M, (fs cs a3 S) = }:YJ}#(H% S

The limits exist and are independent of the choice of {¢;}. The extended concepts are well

J (flx) —a)"dyus m =1, 2, -+
H, NS

defined and consistent with the above definitions.

With these concepts we characterize the global optimality as follows:
Theorem 2.1 Under the assumptions (A), (M) and (R), the following statements are
equivalent .

(1) x* €Sisa global minimizer of f over S and ¢* = f(x") isthe global minimum
value;

(1) M(f, ¢* 3 S)=c" (the mean value condition) ;

(i) V(f, ¢35 S)=0 (the variance condition) ;

Gv) Vi(J, ¢*; S)=0 (the modified variance condition) ;

v) M, (f, ¢* 5 ¢" 3 S)=0 forone of the positive integers m=1, 2, ++» (the higher
moment conditions).
2.4 An Integral Algorithm

An integral global minimization algorithm for finding the global minimum value and
the set of global minimizers of an upper robust function over a robust constraint set is
given as follows;
Step 1: Take co>c* and e>0; k. =0;
Step 2: Cer1: =My s S5 v =V (fy a5 S5 H
Step 3:  If v,-1—=¢ then k:=k+1; go to Step 2;
Step4: ¢ " <c3s H'<H,  ; Stop.

Get1?

::{xGS:f(.r)écm};

“+1

If we take ¢ =0, the algorithm may stop in a finite number of iterations; and we
obtain the global minimum value with the set of global minimizers. Or, we obtain two

monotone sequences;

and

H.,DH, D+>DH, DH, D

Ce+1

Let
¢ =limc¢, and H* =) H,, ,
k—>co k=1 -
then ¢* is the global minimum value of f over S, and H" is the set of global minimizers.

The algorithm has been implemented by a properly designed Monte-Carlo method.

The numerical tests show that the algorithm is competitive with other algorithms.

302



3 Upper Robust Mappings and Their Scalarization

3.1 Upper Robust Mappings

We will mainly consider a multicriterial optimization problem of an upper robust
mapping which is defined as follows. Let X be a topological space and f; X - R" a
mapping.

Definition 3.1 A mapping f is said to be upper robust at x iff for each vector ¢ in R",

rEF.={z€X.: f[ ()<, i=1, =, n} 3. D
implies x is a robust point of F.. A mapping f is upper robust if it is upper robust at each
point of & X, or F. is a robust set in X for each ¢€ R".

If each of f': X—R', i=1,++,n is upper robust then f=(f*,+, )T may be not
upper robust. If one of its components is upper robust and the remaining ones are upper
semicontinuous, then f is and upper robust mapping. In particular, a robust piecewise
continuous mapping f: X—R" is upper robust.

Definition 3.2 ILet X and Y be two topological spaces. A mapping f: X—Y is said to be
robust piecewise continuous iff there exists a robust partition of X, i.e.,

X:ALGJAVA and Ya7#), V.NV, =, (3.2)
where for any A, V, is robust in X, and for any A € A, the restriction of f to V, is
continuous.

A robust piecewise continuous mapping is robust. If in the above definition the
partition of X is not required to be robust, a piecewise continuous mapping may not be
robust. Suppose that X is a complete metric space, f: X—R" is a mapping and C is the set
of points of continuity. Then f is upper robust at a minimal point x* if and only if there
exists a sequence {x,}CC such that

x,—>x" and lirl{q sup Sia)=f ("), ¥,=1, =, n (3.3

Example 3. 1 A multicriterial integer programming problem can be converted as a
problem of a robust piecewise continuous mapping (see [ 4 ] Example 3. 1).
For more details on upper robust mapping, also see [4].
3.2 Scalarization of an Upper Robust Mapping
Definition 3.3 Let D be a nonempty subset of a partially ordered real linear topological
space Y with an ordering cone C and y, & D.
y<z&y €{z)—OND.
y<z& y e{z}—int OO D.
Definition 3.4 Let G:SCR">R'. G is said to be monotonic if
y<2=> G(Y<G(x) and y<z = G(1)<G(2).
Theorem 3.1 Suppose £: X—R"is a mapping defined on a topological space and G:R”
—R' is a monotonic real-valued function. Then

(1) A point x* is an optimal solution if
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G(f(x" H<G(f(x)), YxES, x5#x".
(2) A point x* is a weakly optimal solution if
G(f(x" N<G(f(x)), YxES.
Proof. Suppose x* €S is not an minimal solution. Then there is a point &€ S such that f
(®F#f(x") and
S@e fa)—ONfS).
This implies
(@ <f(z") and G(f(@THG(f(xz")),
which is a contradiction.
Suppose x* €S is not weakly minimal solution. Then
(f(x*)—int O f(SHFD.
Thus, there is a point &€ S, such that
f@E f(xz*)—int O f(S).
This implies
@O <f(z*) and G(f(@TNH<<G(f(x")),
which is also a contradiction.
The composed function G(f(x)) in Theorem 3. 1 may be non robust no matter how
well behaved the mapping f would be.
Example 3.2 Let G:R'—>R"' be a strict increasing function defined as
yv—1, if y<0,
G(y):JO, it y=0,
y+1, if y>0
and f:R'>R' be defined as
flo)=2".
Then the composed function is
3 2+1, if x40,
(;(fm)—{o’ o
The function G(f(x)) is non robust.
Theorem 3. 2  Let f: X—>R" be an upper robust mapping on a topological space X.
Suppose G: R"™—>R" is a real-valued function satisfying the following conditions :
(1) G(y', ==, y") isan increasing function with respect to each variable ;
(2) Gis upper semicontionus.
Then the composite real-valued function G(£(x)) is an upper robust function on X.
Proof. For each real number d, we first prove the following set equality:
A={z:G(f" (x), =+, ["(2))<d}=B, (3. 4)
where

B= U {a: 1)<ty oy fr)<<c"). (3.5

Gty e <d
Indeed, let x is a point in B, then x is in one of the sets in the above union (3. 5),

i.e., there is a point (¢!”, *++, ¢") such that
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G(cty ooy )<<d and F'(x)<<c'y e, ()<

Thus, by monotonicity assumption of G, we have

GUf' (x)y ===y aN<G(!, -, C)H<d.

This proves that BCA.

Conversely, suppose x is a point in A and let ¢! = f' (x), =+, "= f"(x). Then
G(c'y =+, ") <d. This implies, by the upper semicontinuity of G that there is ¢ >0
such that

G(c'+e, oy " te)<d and fi(x)=c'<c e
This means that x& B, or ACB. Therefore we obtain the set equality (3. 4).

Now for each given real number d, the set {x:G(f'(x), =+, f"(2))<d} is a union
of sets with the form {x: f' (x)<c', «=+ f"(x)<c"}. Since f is assumed to be an upper
robust mapping, the sets in the union (3. 5) are all robust. As a union of robust sets, the
set A is robust. Hence, G(f(x)) is an upper robust function.

Remark 3.1 For different quantities of sizes, weights, etc. , people may have different
preferences. For instance, prices of potato are a function p(x) of weights x:
20, 0<<x<{5,
J15, 5<x<50,
5, 50<_x<C1000,
12, 221000.

()=

Thus, the cost function c¢(x) is

20,  0<<x<5,
{151‘, 5<x<<50,
S5x, 50<2x<1000,
2z,  x=1000.

It is a discontinuous increasing function. Hence, applying a discontinuous

c(x)=J

scalarization, as we are doing here, is reasonable in physical or/and economical sense,
People usually avoid using this kind of scalarization because it introduces difficulty, which
cannot be handled by gradient-based theory.

Example 3.3 Let d'(y') be an increasing and upper semicontinuous function of variable

v, i=1, -, and let
Gly ey yI=2d (3, (3.6)
The function G defined by (3. 6) is upper semicontinuous and increasing with respect

to each variable. Thus, this function satisfies conditions of Theorem 3. 2. Especially, let

i 1Y — o )i, R : : : : 1 n
A - . 1— \%Y% \% ve W S \%% \Y
d (y ) wy 1 1 s e N lth a given nOnnegatl (& elghtS TW 9y ***y W » e ha (S

G(yl, (XN y”):,g wiyi. (3‘7)
With function (3. 7), we have the weighting problem
min>) w [ (x), (3.8
r€Si=1

By Theorem 3. 2, we have the following corollary:



Corollary 3.1 Suppose X is a topological space, £: X—>R" is an upper robust mapping
and w=(w', =, w)T, here w' =0, i=1, =, n. Then
(w, D=w'f+-tw' f" (3.9
is an up per robust function on S.
Example 3.4 Let d'(y') be an increasing and upper semicontinuous function of variable
y', i=1, +=+, and let
G(y', oo, y”):i:rlr.lgfcind"(y") (3.10)
The function G defined by (3. 10) is upper semicontinuous and increasing with respect
to each variable. Thus, this function satisfies conditions of Theorem 3. 2. Especially, let
d'(y)=w (y —y'), i=1, -=-, n with a given nonnagative weight w', *+-, w", where

A

(y'y ++=, ¥") is a given reference point, then we have

Gy's ey y)= max {w/ (' =3}, (3.1

The function (3. 11) is upper robust. With the function (3. 11). we have an upper
robust objective function

gd(x):Iirlr’lgf(’”{w"(f’(x)*g?’)}. (3.12)

Remark 3.2 Recall the concept of the reference point as follows.
Definition 3.5 Let f: X—>R" be a mapping. A point y € R" is called a reference point y’
<Ff(), Yx€EX and j=1, =+, n

For instance, let

y<ldnf f(x), j=1, =+, n

and y* =(y*', «, y*")7T, then y" is a reference point.

With a reference point y , we may also consider a scalarization as follows. Let
ga( =3 wd (', f1(2)). (3.13)
where w'>0, j=1, -+, n are weights and &’ (. ,.), j=1, *+, n are increasing upper
semicontinuous functions with &/ (y/,y/)=0,j=1,+,n.
&y, =) —y, (3.14)
then
g,rdu,-):é1 w‘(ff<x>—§f>:]§u/ff<x>—j§w§f:<w, £ —(w, ¥).
With the metrics (3.14), we have a problem which is equivalent to the weighted
scalarization.
Definition 3.6 A solution z of the minimization problem
mi? g4(2)

KA

n

is called a reference-point solution corresponding to reference point y , metrics d', -+, d
and weights w', =+, w".
Corollary 3.2 Let X be a topological space, f;: X—R" an upper robust mapping , w =
0, j=1, =+, na given weights and y a given reference point. Suppose that for each j .
d'(y7, ) is a nonnegative increasing upper semicontinuous function of y' =y’ j =
1, ===y n. Then
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n

gu(x) = D) wd' (97, f(2))
i=1
is an upper robust function.

3.3 Optimdlity Conditions of Vector Optimization

In[4], we study the optimality conditions of a scalarization of an upper robust
mapping. They are special cases of Theorem 3. 3.

Combining Theorem 2. 1 with Theorem 3. 2, we have the following theorem.
Theorem 3.3 Let X be a topological space, £: X—>R" an upper robust mapping G . R"—
R' be a monotonic upper semicontinuous function. Under the assumptions of (A) and
(M) for G (£), the following statements are equivalent :

(D x" € S is a solution of the problem (1.1) and ¢* =G (f (x")) is the
corresponding wvalue ;

(1) MG, ¢* 5 S)=c" (the mean value condition) ;

(i) VG, ¢ 3 S)=0 (the variance condition) ;

Gv) Vi (G, ¢* ;S =0 (the modi fied variance condition)

(v) M, (G, ¢*5 ¢*3 S)=0, forone of the positive integers m =1,2, -+ (the
higher moment conditions).

Corollary 3.3 Let X be a topological space, £: X—R" an upper robust mapping , and w
EW={w.:w' =0} be given. Under the assumptions of (A) and (M), the following
statements are equivalent ;

() x* €Sis a solution of the weightin problem (3.8) and ¢* = (w, £f(x*)) isthe
corresponding value ;

(1) MUw, £, ¢* 3 S)=c” (the mean value condition)

(i) Vw, £), ¢* 3 S)=0 (the variance condition) ;

(v) Viw, £, ¢* 3 S)=0 (the modi fied variance condition) ;

(v) M, w, £), ¢* ;3 ¢ 3 S)=0, forone of the positive integres m =1, 2, =+ (the
higher moment conditions).

Corollary 3.4 For a given ¢ = (c*', =+, ¢"")7T, under the assumptions (A), (M),
(RV), the following statements are equivalent :

(D) A point x* €Sis a reference point solution with ¢* =2"_) wd’(y', f/(x")) as
the corresponding value ;

(i) M(gy, ¢ ; S)=c" (the mean value condition);

(i) V(gy, ¢* 3 S)=0 (the variance condition) ;

Gv) Vi(gys ¢35 S)=0 (the modified variance condition).

(v) M, (gys ¢ 5 ¢c" 3 S)=0 forone of the positive integers m=1, 2, -+ (the higher

moment conditions).
4 An Algorithm

We propose an algorithm for approximating solutions of a multicriterial minimization
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problem of an upper robust mapping by using a scalarization technique. For simplicity, we
describe the algorithm with a reference point method under the assumption that the
objective functions of problems (4. 1) are bounded below. We may use other scalarization
methods to substitute for the reference point method.

Step 1:  Find a reference point. Let

a[:zirel‘l;fi(x), =1, =, n 4. 1D
Take a point (y', +++, y") as a reference point such that
Ay, i=1, =+, n. (4.2)
Step 2: Take a sequence of positive numbers (wj}, =+, w}), k=1, -+, L and minimize
the following scalar proboems:
qleiglgk(x), k=1, -, L, (4. 3)
where, say, we may take
gk(x):’v:r{}e.i}“{w};(f’(x)—y)} 4.0
We obtain a sequence of solutions:
a1y s ar and  f(axy), oo, (2. (4.5)
Step 3:  After obtaining a set of solutions, we use simplices produced by these points to

approximate the solution set f(M).

Remark 4.1 We assume that the objective functions of the multircriterial minimization
problem are bounded below so that the minimum values a', **+, a" of (4. 1) are finite. The
point (a', +*+, a") can be found by using the integral minimization method. We take the
reference point (y', +=-, y") satisfying (4. 2) because it is numerically good for solving
scalar minimization problems (4. 3) with (4. 4).

Remark 4.2 The scalar minimization problems (4. 3), well as (4. 1), are constrained ones.
The objective function might be discontinuous and the constraint set might be disconnected. We
can use penalty function technique to reduce a constrained minimization problem to an

unconstrained (or box constrained) ones. For a constrained minimization problem

ming (x), (4. 6)
€S
let
89 1‘@»89
(x)= (4.7
p(x) 0. zES. )

where ¢=>0 is the penalty parameter, §>0 is a constant. and d(x) is penalty-like function
such that d(x)=0 if and only if x& S consider the penalized problem
min[ g (&) +ap(x)]. (4. 8)
The advantage of using discontinuous penalty function (4. 7) is that it is exact without
constraint qualification requirement. See [ 15] for more details.
Remark 4.3 When n=2, a simplex is a linear segment; and the solutions of a bicriterial
minimization problem is approximated by piecewise straight lines. When n =3, the

solution set can be approximated by its “triangularization”. Let x;, ***y 2,4+ be n+1
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points of the solution set which form an #dimensional simplex, then the set

ntl

{1‘:1’+2 T O<Qj<17 ] =1, -, nJFl)
=1

is the 7-dimensional simplex produced by these points. The solution set is approximated

by this kind of simplices.

S Numerical Examples

Example 5.1 Consider the following multi criteria optimization problem taken from [3].
This example looks easy but its set of solutions is disconnected. For each given weights,
minimizaing a scalarized problem is equivalent to find a distance from a point to a

nonconvex set.

S|
mm( ),

X2

x;—2. 50,

(x1—0.5)—x"—4. 50, . D
s. 1.2 —a —x3<0,

—(+ D (x,+3)2+1<0,

(21, )T E R
Solution Take the point (—10. 0, —10. 0) as the reference point and consider a scalar
minimization problem of an objective function

g(x)=max{w, (x;+10.0); w,(x;+10.0)}

with the same constraints as (5. 1), where w;, and w» , are positive weights. We can take w, as a
constant, say, 1.0 and let w, change. We obtain a sequence of solutions by using the integral
global minimization technique combining with discontinuous penalty function to convert a
constrained problem to a unconstrained one. The following table lists solutions corresponding to
given weights. The stopping criterion in the integral algorithm is the modified variance V, <C

107", The average number of function exaluation for given weights is 1419.

W, f(x)yeM w, fxryeM

2.0 (0. 4999820, —4. 500000) 1. 16 (—0. 7552708, —2.030403)
1.9 (0. 4539958, —4. 497883) 1. 15 (—1.080112,—2.003214)
1. 85 (0. 2715485, —4. 447810) 1.1 (—1.107507,—1.915925)
1.8 (0. 1370919, —4. 368291) 1. 05 (—1.197915,—1. 6717084)
1.75 (0. 02306769, —4. 272535) 1.0 (—1.291287,—1.291287)
1.7 (—0.07936519, —4. 164334) 0.9 (—1.329472,—1.153031)
1.6 (—0.2645885,—3.915404) 0.75 (—1.562502,1. 250007)
1.5 (—0. 3568753, —3.765764) 0.7 (—1.949601,1. 500553)
1.2 (—0.5366086,—2. 113844) 0. 65 (—2.084205,2. 178148)

1. 18 (—0.6393894,—2.067280) 0.5 (—2.145741,2. 499954)
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Remark 5. 1 The advantage of our algorithm is that the decision maker can select
reference points and weights to meet his needs.
Example 5.2 Consider the following multi criteria optimization problem.
X
min= |x, | »

X3
max{l;(x), [,(x)}=0, where
L(x)=1—at—x}—a}, (5. 2)
[;(x)=0.49—(a, +0. 2)* — (2*+0.5)* — 2},
s.t.)—2.5<n<1. 1,
—2. 5, <1.1,
0<<las<<l.1,
(215 295 x)TER?,
Solution Take the point (—10. 0, —10. 0—10. 0) as the reference point and consider a

scalar minimization problem of an objective function

g(x)=max{w, * (x;1+10.0), w; * (x,1+10.0), (w;) * (x5+10.0)}
with the same constraints as (5. 2), where w, , w, and wy are positive weights. We can take
=1.0 as a constant, and let w, and w; change. We obtain a sequence of solutions by using the

integral global minimization technique. The stopping criterion is also taken V,<C17',

Wy Wy f(x)eM
1.0,1.0 (—0. 5813401, —0. 5814602, —0. 5813238)
1.1,1.1 (—0. 0030460, —0. 7071097, —0. 7070885)
1.05,1. 05 (—0. 2236959, —0. 6891872, —0. 6891861)
0.8,0.8 (—0.0000071,—0. 0001145, —0. 0004878)
0.95,0.95 (—0. 8518369, —0. 3703590, —0. 3703766)
1.2,1.0 (—0.1985384,—1.199995,—0. 0016831)
1.05,1.0 (—0.4772033,—0. 9306482, —0.4771791)
0.95,1.0 (—0.6924472,—0. 2025711, —0. 6924456)
0.9,1.0 (—0.7071113,—0. 0001619, —0. 7070919)
1.0,1.2 (—0.0029247,—0. 0018540, —0. 9999909)
1.0,1. 05 (—0. 3828099, —0. 3828046, —0. 8407777)
1.0.0. 95 (—0. 7749711, —0. 7749708, —0. 2894734)
1.0.0.9 (—0. 8216952, —0. 8216965, —0. 0014718)
1.02,0. 97 (—0. 6696085, —0. 8525359, —0. 3810176)
0.97,0. 94 (—0.8461164,—0. 5630351, —0. 2618349)
1. 05,0. 95 (—0. 6090661, —1. 056258, —0.1150661)
1.1,1.05 (—0.2013773,—0. 9590151, —0. 5284872)
0.95,1. 1 (—0.9504571,—0. 0011165, —0. 9954716)
1.05,1.1 (—0. 0016060, —0. 4561081, —0. 8899136)
0.95,1.02 (—0. 6046262, —0. 1101289, —0. 788491)
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6 Conclusions

The theory of vector minimization has not succesfully handled discontinuous
functions, since it has been grounded in the differential calculus, starting with Kuhn and
Tucker. A powerful and widely applicable alternative has recently been developed in the
integral approach. According to the integral approach, and under the assumption that the
objective mapping is upper robust all of the well developed scalarization techniques may be
interpreted in a more general context. Such an interpretation has implications to the theory
and methods of vector minimization, to characterizing globally efficient solutions and to

algorithms which locate these solutions.
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