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Abstract

Most minimax theorems in critical point theory require one to solve a

two-level global optimization problem and therefore are not for algorithm

implementation. The objective of this research is to develop numerical

algorithms and corresponding mathematical theory for �nding multiple saddle

points in a stable way. In this paper, inspired by the numerical works of Choi-

McKenna and Ding-Costa-Chen, and the idea to de�ne a solution submanifold,

some local minimax theorems are established, which require to solve only a

two-level local optimization problem. Based on the local theory, a new local

numerical minimax method for �nding multiple saddle points is developed. The

local theory is applied and the numerical method is implemented successfully

to solve a class of semilinear elliptic boundary value problems for multiple

solutions on some non-convex, non star-shaped and multi-connected domains.

Numerical solutions are illustrated by their graphics for visualization. In a

subsequent paper [20], we establish some convergence results for the algorithm.

Keywords. Multiple saddle point, Morse index, Local minimax, Semilinear PDE

AMS(MOS) subject classi�cations. 58E05, 58E30,35A40,35A65

Abbreviated titles. A Local Minimax Method for Multiple Critical Points

1 Introduction

Multiple solutions with di�erent performance and instability indices exist in many

nonlinear problems in natural and social sciences. [33, 30, 24, 36, 23]. When cases

are variational, the problems can be reduced to solving the Euler-Lagrange equation

J 0(u) = 0;(1.1)

where J , called a generic energy functional, is a C1-functional on a Banach space

H and J 0 or rJ its Frechet derivative. A solution to the Euler-Lagrange equation

(1.1) is called a critical point of J . The �rst candidates for critical points are the

local maxima and minima to which the classical critical point theory was devoted

�
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in calculus of variation. Traditional numerical methods focus on �nding such stable

solutions. Critical points that are not local extrema are called saddle points, that is,

critical points u� of J , for which any neighborhood of u� in H contains points v; w

s.t. J(v) < J(u�) < J(w). In physical systems, saddle points appear as unstable

equilibria or transient excited states. Note that this de�nition is di�erent from and

much more general than the saddle point in optimization and game theory in which

a splitting structure for the space H is required to be known in advance and which

is therefore not used in critical point theory.

A number c 2 R is a critical value of J if J(û) = c for some critical point û. For

a critical value c, the set J�1(c) is called a critical level. When the second Frechet

derivative J 00 exists at a critical point û, then û is said to be nondegenerate if J 00(û)

is invertible. Otherwise û is said to be degenerate.

Stability is one of the main concerns in control and system design. On the other

hand, in many applications, higher maneuverability and performance are desirable, in

particular in system design for emergency or combat machineries. Unstable solutions

may have much higher maneuverability and performance indices.

Can one �nd a way to provide a choice or balance between instability and

maneuverability or performance indices? Thus one needs to solve for multiple

solutions and then study their individual properties.

Numerically �nding such unstable solutions in a stable way is very challenging.

So far, there is virtually no theory existing in the literature to devise such a feasible

numerical algorithm. The objective of this research project is to systematically

develop e�ective numerical algorithms and corresponding mathematical theory for

�nding multiple saddle points in a stable way. To do so, we need to know local

mathematical structure of a critical point and its connection to a critical point at the

next critical level. We do not intend to establish new existence theorems.

Structure and behavior of critical points have attracted the attention of many

researchers. In 1925, Morse proved that if û is a nondegenerate critical point of a

real function J of n variables, then there exists a neighborhood N (û) of û and a local

homeomorphism h from N (û) into H s.t.

J(h(u)) = J(û) +
1

2
hJ 00(û)u; ui 8u 2 N (û):

That is to say, J behaves locally like a quadratic function around a nondegenerate

critical point. This result, called Morse Lemma, has been extended to a real-valued

in�nite-dimensional functional ([10]). Therefore critical levels with a local minimum,

if it exists, at the bottom can be imagined.

The Morse Index (MI) of a critical point û of a real-valued functional J is the

maximal dimension of a subspace of H on which the operator J 00(û) is negative

de�nite; the nullity of a critical point û is the dimension of the null-space of J 00(û).

Thus for a nondegenerate critical point, if its MI = 0, then it is a local minimizer and

a stable solution, and if its MI > 0, then it is a saddle point, an unstable solution.

Definition 1.1. A point v 2 H is called a descent (ascent) direction of J at a

critical point û, if there exists � > 0 s.t.

J(û+ tv) < (>) J(û) 80 < jtj < �:
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Thus J has at least k linearly independent descent directions at a critical point with

MI = k.

Many boundary value problems (BVP) are equivalent to solving [33]

A(u) = 0(1.2)

for a solution u 2 H and an operator A : H ! H�. When the problem is variational,

there exists J : H ! R s.t.

hA(u); vi = hJ 0(u); vi = lim
t!0

J(u+ tv)� J(u)

t
8v 2 H;(1.3)

or A(u) = J 0(u). Thus û is a (weak) solution to (1.2) if and only if û is a critical

point of J .

The following semilinear BVP is our model problem in this paper; it is known that

this model has originated from many applications in physics, engineering, biology,

ecology, geometry, etc. Consider

�u(x)� `u(x) + f(x; u(x)) = 0 x 2 
(1.4)

for u 2 H with either the zero Dirichlet boundary condition (B.C.) or the zero

Neumann B.C., where 
 is a bounded open domain in R
N , and f is a nonlinear

function of (x; u(x)) with u 2 H. For the zero Dirichlet B.C., we let H = H1

0
(
)

and ` � 0; for the zero Neumann B.C., we let H = H1(
) and ` > 0, where H1(
)

is the Sobolev space W 1;2(
) and H1

0
(
) = fv 2 H1 : v(x) = 0; x 2 @
g [1]. The

associated variational functional is the energy

J(u) =

Z



f
1

2
jru(x)j2 +

1

2
`u2(x)� F (x; u(x))g dx;(1.5)

where F (x; t) =
R t
0
f(x; �)d� satis�es the assumptions (h1) - (h5) as stated in Section

4 and u 2 H. Then a direct computation shows that a point û 2 H is a critical

point of J in H if and only if û is a weak solution to the BVP (1.4) and, therefore, a

classical solution to (1.4) by a standard elliptic regularity argument.

Since Ljusternik-Shnirelman (1934), under a deformation assumption, proved the

existence of a saddle point as a minimax solution, i.e., a solution to a two-level

optimization problem

min
A2A

max
v2A

J(v)(1.6)

for some collectionA of subsets A inH, minimax principle becomes the most popular

approach in critical point theory. Note that there is another minimax approach in

multi-level optimization and game theory, which is a two-level optimization of the

form

min
x2X

max
y2Y

J(x; y)

where H = X � Y for some subspaces X and Y . Due to its splitting structure,

this minimax approach prevents from turning-around in a search for a critical point.

Although it is known that if J 00(û) is self-adjoint and Fredholm, H has such a splitting
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structure around a nondegenerate critical point û according to the Morse theory. But

such a splitting structure depends on û and is not known until one �nds û. Thus this

minimax approach does not help in searching for a critical point and is not used in

critical point theory.

It is the Mountain Pass Lemma proved in 1973 by Ambrosetti-Rabinowitz [3]

by constructing a deformation, that sets a milestone in nonlinear analysis. Since

then minimax theorems have gained great popularity in the study of nonlinear

PDE and dynamic systems. Various minimax theorems, such as linking and

saddle point theorems, have been successfully established to prove existence of

multiple solutions to various nonlinear PDE's and dynamic systems [5,8,10,13,14,16,

22,23,24,27,30,31,33, 34,36]. For example, for a semilinear elliptic equation �u +

f(u) = 0 with the zero Dirichlet B.C., when f(u) is superlinear, it is known that if f

is odd, then in�nitely many solutions exist; otherwise a third sign-changing solution

(MI = 2) exists [34, 5, 9] in addition to a positive and a negative solutions.

When multiple solutions exist in a nonlinear system, some of which are stable

and the others are unstable. A stable solution (MI= 0) can be found through local

minimization techniques or a monotone iterative scheme (see, e.g., [7], [11], [15], [18],

[19], [28] and [29]); However, relatively little is known in the literature on constructing

algorithms to compute such unstable saddle points in a numerically stable way. One

might mention Newton's method. Note that zeros and critical points are di�erent

concepts. Without knowing or using the local structure of a (degenerate) critical

point, the usual Newton's method will not be e�ective or stable. When a local

minimization is involved in a quasi-Newton method, it will lead to a local minimum,

in case of (1.4), the zero.

Most minimax theorems in the literature mainly focus on the existence issue.

They require one to solve a two-level global optimization problem, i.e., (constrained)

global maximizations at the �rst level and a global minimization at the second level,

and therefore are not for algorithm implementation.

By studying the mountain pass lemma and using an idea from Aubin-Ekeland

[4], in 1993 Choi-McKenna [12] proposed a numerical minimax algorithm, called a

mountain pass method, to solve the model problem basically for a solution with

MI = 1. The algorithm opens a brand new door to numerically compute unstable

solutions. The algorithm has been modi�ed in [17] and further revised in [11]. Since

the function J in [12] has only one maximum along each direction, whether or not

it is a local or global maximum at the �rst level is not a concern there. The merit

of this algorithm is that (a) at the �rst level, a maximization is taken over an a�ne

line starting from 0 and, (b) a steepest descent direction is used to search for a

local minimum at the second level. In contrast, the mountain pass lemma requires a

maximization on every continuous path connecting 0 and a given point v at the �rst

level and then a global minimization at the second level. Thus the method in [12]

can not be justi�ed by the mountain pass lemma. An earlier result of Ding-Ni [27],

which proved for the model problem the existence of a saddle point as a minimax

solution that requires a unique maximization on each a�ne line starting from 0 at

the �rst level and a global minimization at the second level, can only be viewed as a

partial justi�cation.
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In [11], for a class of functionals, a very simple scheme, called a scaling iterative

method is designed to �nd a solution with MI= 1. That approach is not based on

functional analysis. A partial justi�cation of that algorithm is also given there.

A high linking theorem for the existence of a third solution (MI = 2) is proved

in [34] by constructing a \local link" at a mountain pass solution. Motivated by this

idea, a numerical high linking method is proposed in [17] by Ding-Costa-Chen to solve

the model problem for a sign-changing solution (MI = 2). The basic idea is that,

assume a mountain pass solution w1 has been found, by using an ascent direction and

a descent direction at w1, one can form a triangle as a \local linking". Then one can

proceed to �nd a maximum on this triangle. If the maximum is inside the triangle,

go to the next step, otherwise, deform the triangle so as to contain this point as an

interior point and continue to search for an interior maximum. This method uses

constrained maximizations at the �rst level and a local minimization at the second

level. Since in the original version of the high linking theorem, the argument never

left a mountain pass solution, and a global minimization is required at the second

level, the theorem itself can not serve as a justi�cation of that algorithm. Accordingly,

the theoretical justi�cation of that algorithm will be very di�cult. The problem is

that once an iterate has departed a mountain pass solution, the triangle is no longer

a \local linking"; the triangle may degenerate. However, this is the �rst time in the

literature that the idea of a \local linking" is used to �nd solutions basically with MI

= 2.

Inspired by the above numerical works, we developed a new minimax method for

�nding multiple saddle points. Many numerical results including those presented in

Section 5 were obtained in the summer of 1997 and appeared to be very promising.

Then we decided to try to establish some mathematical justi�cation for the algorithm

and to �nd out why and under what conditions the algorithm works. This may

eventually help us improve the algorithm. This has been soon proved to be a much

more challenging task. Since we try to set a general framework and same time

always keep some model problems in mind, every time a new model problem is solved

numerically, new interesting mathematical questions can be asked. We try to answer

a question in a more general way.

For the purpose of mathematical justi�cation, let us adopt another approach.

In studying a dynamic system, Nehari [25] introduced the concept of a solution

submanifold M, and proved that a global minimizer of the energy functional on M

is a solution to the dynamic system with MI = 1. Ding-Ni used Nehari's idea to

study the model problem with the zero Dirichlet B.C. and ` = 0. They de�ned a

solution submanifold

M =

�
v 2 H1

0
(
)jv 6= 0;

Z



�
jrvj2 � vf(v)

�
dx = 0

�
:(1.7)

Under the condition that f 0(t) >
f(t)

t
; t 6= 0, Ding-Ni [27] proved that a global

minimizer of the energy function J on M is a solution with MI = 1 to the model

problem.

Our basic idea to design an algorithm for �nding multiple saddle points consists

of three main elements:
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(1) First de�ne a solution (stable) submanifold M s.t. a local minimum point of

J(u) on M yields a critical point. Thus the problem becomes a minimization of J

on the submanifold M and a saddle point becomes stable on the submanifold M.

If a monotone decreasing search is used in the minimization process, the algorithm

will be stable. At a point on M, we can apply, e.g., a steepest descent search to

approximate a local minimizer of J on M.

(2) There must be a return rule. As a steepest descent search usually leaves the

submanifoldM, for the algorithm to continue to iterate, we need to design a return

rule for the search to return to M.

(3) There must be a strategy to avoid degeneracy. Since we are searching for a saddle

point at a higher critical level, at least, for a new solution, a simple minimization may

cause degeneracy to a (old) saddle point at a lower critical level. Thus a strategy to

avoid degeneracy is crucial to guarantee that the new critical point found is di�erent

from the old ones. This strategy may also be incorporated in the de�nition of the

solution submanifold. It can be seen that:

(1) Choi-McKenna's algorithm has a return rule and a strategy to avoid a degeneracy

to the zero with MI = 0. We will provide a mathematical justi�cation for their

algorithm in Section 2, see Theorem 2.1 with L = f0g or Theorem 4.2;

(2) Ding-Costa-Chen's algorithm has a return rule and a strategy to avoid a

degeneracy to a solution with MI = 1. We will modify their algorithm and

then provide a mathematical justi�cation, see Theorem 2.1 with L = fw1g.

The organization of this paper is as follows. In Section 2, we �rst prove an important

technical lemma. Then we establish a local minimax characterization of a saddle

point, which can be used to design a numerical minimax algorithm for �nding multiple

saddle points. An existence theorem is also proved in this section. Section 3 is to

present our numerical minimax algorithm in detail and some convergence related

properties. In Section 4, we apply our minimax method to solve a class of semilinear

elliptic equations and present some related analysis. Finally, in Section 5, we exhibit

some numerical examples for multiple solutions and their graphics to illustrate the

algorithm and theory.

We do not intend to prove any new existence theorem. Our objective is to develop

numerical algorithms and corresponding mathematical theory for �nding multiple

critical points. It is understood that many critical points can not be approximated.

Only those with \nice properties" can be numerically approximated. We try to

classify those \nice" saddle points through mathematical analysis. It is reasonable

that the hypotheses in our local minimax characterization of saddle points in this

paper are stronger than that in those existence theorems. Our hypotheses will be

gradually localized and generalized as research advances. Methods to check those

hypotheses will also be developed in subsequent papers.

2 Local Min-Max Theorems

Let H be a Hilbert space with inner product h; i and norm k k, and J be a

real C1-generic energy functional on H. For any subspace H 0 � H, denote SH0 =
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fvjv 2 H 0; kvk = 1g the unit sphere in H 0. Let L be a closed subspace in H, called

a base subspace, and H = L� L? be the orthogonal decomposition where L? is the

orthogonal complement of L inH. For each v 2 SL? let [L; v] = ftv+wjw 2 L; t � 0g

be the closed half subspace. L can be either �nite or in�nite dimensional.

Definition 2.1. A set-valued mapping P :SL? ! 2H is called the peak mapping

of J w.r.t. H = L � L? if for any v 2 SL?, P (v) is the set of all local maximum

points of J in [L; v]. A single-valued mapping p:SL? ! H is a peak selection of J

w.r.t. L if

p(v) 2 P (v) 8v 2 SL?:

For a given v 2 SL?, we say that J has a local peak selection w.r.t. L at v if there is

a neighborhood N (v) of v and a function p:N (v) \ SL? ! H s.t.

p(u) 2 P (u) 8u 2 N (v) \ SL?:

A special case when L = f0g, the peak mapping P (v) is the set of all local maximum

points of J along the direction v, for any point v 2 S.

Most minimax theorems in critical point theory used a (constrained) global

maximization (on a compact set) at the �rst level. Thus a solution at the �rst

level always exists. For algorithm implementation, existence is not enough, we

want an approximation scheme to a solution. Therefore we use unconstrained local

maximization at the �rst level. Numerically this is great. However, it then raises

three major problems in analysis: (a) for some v 2 SL?, P (v) may contain multiple

local maxima in [L; v]. In particular, P may contain multiple branches, even U-turn

or bifurcation points; (b) p may not be de�ned at some points in SL?; (c) the limit

of a sequence of local maximum points may not be a local maximum point. Thus the

analysis involved becomes much more complicated. Although it is well known that

the energy function (1.5) of our model problem goes to negative in�nity uniformly in

any �nitely dimensional subspace (See [30]). Thus in any �nite-dimensional subspace,

there must be at least one maximum point, i.e., P (v) 6= ;. That is, Problem (b) will

not happen. Problem (a) is not concerned in the numerical works of Choi-McKenna

and Ding-Costa-Chen. However for more general settings, all those three problems

have to be resolved. As for (a), we use a selection p to choose one branch from others.

Numerically it is done by following certain negative gradient ow and developing

some consistent strategies to avoid jumps between di�erent branches. For (b), we

only need p to exist locally around a point v along a negative gradient ow. We are

currently working on an min-orthogonal algorithm where p(v) need only be a local

sub-orthogonal point. This will further resolve Problem (b). When P contains some

U-turn or bifurcation points, if a saddle point happens to be a U-turn or bifurcation

point of P , a local minimax search at either one of the branches connecting to the

point will follow the negative gradient ow to the saddle point. If a saddle point is

not a U-turn or bifurcation point of P , when a local minimax search is at the same

branch of P as the saddle point, according to our local characterization results, it

is not a problem; In case when a local minimax search is at a di�erent branch of P

connecting to the U-turn or bifurcation point, we will develop a technique to allow the

search to pass through a U-turn or bifurcation point. We will address this technique
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in a future article. As for Problem (c), more analysis is required. One of the reasons

for Problem (c) to take place is that under the de�nition of a peak selection p(v), the

solution submanifold M = fp(v) : v 2 SL?g is not closed. In a future paper, we will

de�ne a more general local (orthogonal) selection p(v) with which the new solution

submanifold is closed and contains the current solution submanifold as a subset.

Then we prove that a local minimum point of J on the new solution submanifold

also yields a saddle point and the implicit function theorem can be used to check

if p is continuous (di�erentiable) at a given point v, a condition required by all the

results we proved in this paper. This study leads to a complete di�erent approach

and will be addressed in a future paper.

The following technical lemma plays a crucial role in this paper. It describes the

relation between the gradient of J and the variation of a peak selection.

Lemma 2.1. For v� 2 SL?, if there is a local peak selection p of J w.r.t. L at v�
s.t. (i) p is continuous at v�, (ii) d(p(v�); L) > � > 0 and (iii) krJ(p(v�))k > � > 0,

then there exists " > 0, s.t.

J(p(v(s)))� J(p(v�)) < ���kv(s)� v�k80 < s < "

and

v(s) =
v� + sw

kv� + swk
; w = �

rJ(p(v�))

krJ(p(v�))k
:

Proof. Let N (v�) be a neighborhood of v� for the local peak selection p. By (iii),

hrJ(p(v�)); wi < ��:

Since p(v�) 2 [L; v�], p(v�) = x� + t�v�, where x� 2 L and t� 2 R, we have t� > �.

p(v�) is a local maximum point of J(p(x)) on [L; v�]. so it is clear that w 2 L?

and w?v�. Due to the continuity, there exist positive numbers "1, "2, t1 and t2
with 0 < t1 < t� < t2 and open balls B"1;L = fxjx 2 L; kx � x�k < "1g and

B"2;L? = fxjx 2 L?; kx� t�v�k < "2g s.t.

a) p(v�) is a maximum point of J on [t1; t2]� v� +B"1;L,

b) hrJ(x1 + x2); wi < ��; 8x1 2 B"1;L; x2 2 B"2;L?;

c) tv� + sw 2 B"2;L? for any t 2 [t1; t2] and s, 0 < s < "2
2
.

For any x1 2 B"1;L, and t 2 [t1; t2], by the mean value theorem,

J(tv� + x1 + sw)� J(tv� + x1) = hrJ(tv� + x1 + �w); swi < �s�:(2.1)

By a), J(tv� + x1) � J(p(v�)), so we have J(tv� + x1 + sw) � J(p(v�)) < �s�.

Since w?v�,

lim
s!0+

k
1

s
(
t�v� + sw

kt�v� + swk
� v�)k =

1

t�
<

1

�
:(2.2)

Thus without loss of generality, we can assume that for s > 0 small

k
t�v� + sw

kt�v� + swk
� v�k <

s

�
:(2.3)
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By our notation

v(
s

t�
) =

t�v� + sw

kt�v� + swk
;

so we have, for su�cient small s,

�kv(
s

t�
)� v�k < s:(2.4)

Combine (2.1) and (2.4), we can �nd "3 > 0, s.t.

J(tv�+x1+sw)�J(p(v�)) < ���kv(
s

t�
)�v�k; 8t 2 [t1; t2]; x1 2 B"1;L; 0 < s < "3:

Denote D = ftv� + x1 + swjs < "3; t 2 (t1; t2); x1 2 B"1;Lg. Then D is an

open neighborhood of p(v�) = t�v� + x� in the subspace spanned by L, v� and w.

By the continuity of p at v�, there exists positive ", s.t. v( s
t�
) 2 SL? \ N (v�) and

p(v( s
t�
)) 2 D, 8 s

t�
< ". Besides, since p(v( s

t�
)) 2 [L; v( s

t�
)], p(v( s

t�
)) = ct�v�+x1+ csw

uniquely for some constant number c and x1 2 B"1;L with t1 < ct� < t2 and cs < "3.

Thus

J(p(v(
s

t�
)))� J(p(v�)) = J(ct�v� + x1 + csw)� J(p(v�))

< ���kv(
cs

ct�
)� v�k = ���kv(

s

t�
)� v�k:

The following theorem characterizes a saddle point as a local minimax solution

and serves as a mathematical justi�cation for our algorithm to be proposed.

Theorem 2.1. Let v0 2 SL?. If J has a local peak selection p w.r.t. L at v0 s.t.

(i) p is continuous at v0, (ii) d(p(v0); L) > 0 and (iii) v0 is a local minimum point of

J(p(v)) on SL?, then p(v0) is a critical point of J.

Proof. Suppose that p(v0) is not a critical point of J . By Lemma 1, for a su�cient

small positive s, set

w = �
rJ(p(v0))

krJ(p(v0))k
; v(s) =

v� + sw

kv� + swk
;(2.5)

we have

J(p(v(s)))� J(p(v0)) � �
1

2
krJ(p(v0))kkv(s)� v0kd(p(v0); L) < 0

It contradicts the fact that v0 is a local minimum point of J(p(v)) on SL?. Thus

p(v0) must be a critical point of J .

Remark 2.1. Condition (i) is required for a numerical algorithm to be stable

and convergent. Condition (ii) is a separation condition posed by almost all minimax

theorems to have a new critical point. Condition (iii) replaces a global minimization,

used in most minimax theorems in the literature, by a local minimization. Due to the

local nature of the above characterization and (2.5), it is clear that SL? in Condition

(iii) can be localized to be any subset containing v(s) for small s � 0.
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To establish an existence result, the following PS condition is used to replace the

usual compactness condition.

Definition 2.2. A function J 2 C1(H) is said to satisfy the Palais-Smale (PS)

condition, if any sequence fung 2 H with J(un) bounded and J 0(un) ! 0 has a

convergent subsequence.

Theorem 2.2. Let J be C1 and satisfy (PS) condition. If there is a peak selection

p of J w.r.t. L, s.t. (i) p is continuous, (ii) d(p(v); L) � �, for some positive � and

for any v 2 SL?, (iii)] infv2SL? J(p(v)) > �1, then there exists v0 2 SL? s.t. p(v0)

is a critical point of J, and

J(p(v0)) = min
v2S

L?

J(p(v)):

Proof. Since SL? is a closed metrical subspace, J(p(v)) is a continuous function on

SL?, bounded from below, by Ekeland's variational principle, for any integer n, there

exists vn 2 SL? s.t.

J(p(vn)) � inf
v2S

L?

J(p(v)) +
1

n
(2.6)

and for any v 2 SL?; v 6= vn,

J(p(v))� J(p(vn)) � �
1

n
kv � vnk:

From Lemma 2.1, for some v in SL? and close to vn,

J(p(v))� J(p(vn)) � �
1

2
kv � vnkkrJ(p(vn))kd(p(vn); L):

Thus

krJ(p(vn))k �
2

nd(p(vn); L)
<

2

n�
:(2.7)

By (PS) condition, fp(vn)g has a subsequence, denoted again by fp(vn)g, converging

to some point u0 2 H. Note that p(vn) = tnvn + xn for some scalar tn > 0, vn 2 SL?

and xn 2 L. It follows from kp(vn) � p(vm)k
2 = ktnvn � tmvmk

2 + kxn � xmk
2 that

ftnvng is a Cauchy sequence as well. Since kvnk = 1, ktnvnk = tn ! t0. By our

assumption (ii), t0 � � > 0. Thus vn ! v0 2 SL?. By the continuity, we have

u0 = p(v0). Then by (2.7), p(v0) is a critical point of J and moreover, (2.6) leads to

J(p(v0)) = min
v2S

L?

J(p(v)):

The following corollary is a special case of Theorem 2.2 with L = f0g, which can

be viewed as a mathematical justi�cation of the modi�ed Choi-McKenna's algorithm

to �nd a solution with MI= 1.

Corollary 2.1. Let J 2 C1(H) and satisfy (PS) condition. Let S be the unit

sphere of H and p(v) be a local maximum point of J on ftvjt 2 (0;+1)g for each

v 2 S s.t. (i) p is continuous, (ii) kp(v)k � �, for some � > 0 and for any v 2 S,

(iii) infv2S J(p(v)) > �1, then there exists v0 2 S s.t. p(v0) is a critical point of J,

and moreover,

J(p(v0)) = min
v2S

J(p(v)):
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Proof. We can simply apply Theorem 2.2 with L = f0g to draw the conclusion.

Remark 2.2. To apply Ekeland's variational principle, a function must be

bounded from below. In general, J is not bounded from below. However J(p(v))

has a much better chance to be bounded from below. Therefore we use Condition

(iii) in Theorem 2.2. This condition is satis�ed automatically by our model problem,

see Section 4.

3 A Minimax Algorithm For Finding Critical Points

If we de�ne a solution submanifold by

M = fp(v) : v 2 SL?g ;

then by Theorem 2.1, a local minimum point p(v0) of J on M is a critical point of

J . Numerically, a local minimum point can be approximated by the steepest descent

search. When the steepest descent search leavesM to a point v, a local maximization

on [L; v] yields p(v), a point returned to M. Thus our algorithm can continue to

iterate. Since J 0(p(v(s))) ? L, the search will not degenerate to L which contains

previously found solutions.

The Flow Chart of a Minimax Algorithm

Step 1: Let n�1 critical points w1; w2; : : : ; wn�1 of J be previously found and wn�1

have the highest critical value. Set the base space L = span fw1; w2; : : : ; wn�1g.

Let v0 2 L? be an ascent direction at wn�1 and ��k > 0 be given;

Step 2: For k = 0, solve

wk � p(v0) � t�
0
v0 + v�L = arg max

u2[L;v0]
J(u);

Step 3: Compute the steepest descent direction dk of J at wk;

Step 4: if kdkk � " then output wn � wk and stop, else goto Step 5;

Step 5: For each 0 < � � ��k, denote vk(�) =
vk � � � dk

kvk � � � dkk
and with the initial

guess u = t�
0
vk(�) + v�L, solve

p(vk(�)) = arg max
u2[L;vk(�)]

J(u);

then solve

wk+1 � p(vk+1) � t�
0
vk(��) + v�L = arg min

0<����k
J(p(vk(�));

Step 6: Update k = k + 1 and goto Step 3.
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Remark 3.1. Let us make some remarks on each step in the above algorithm.

In Step 1, when we start from some known critical points, if the critical point w0

with MI = 0 is not zero, we should add w0 to the base space L. We �rst start from w0

to �nd w1 and so on. As for our model problem, w0 = 0, so L = f0g and according to

the Morse theory, to �nd w1, we may use any direction v0 2 H as an ascent direction

of J at w0.

Now assume w1; w2; : : : ; wn�1 have been found this way and wn�1 is the one with

the highest critical value. The base space L is spanned by w1; w2; : : : ; wn�1. We start

the algorithm with an ascent direction v0 of J at wn�1.

It is clear that the separation condition is quite reasonable to ensure that the

critical point found is not in the base space L spanned by the old critical points,

therefore will be a new one at a higher critical level.

The idea to choose a direction v0 2 L? as an ascent direction is quite useful in

practice. It makes the separation condition easier to satisfy. For example, in Section

4, to choose an ascent direction, we alway use a functional in H1

0
(
) whose peak is

away from the peaks of the known critical points w1; w2; : : : ; wn�1. This idea works

very well.

In Step 2, a simple unconstrained local maximization problem.

In Step 3, to �nd the steepest descent direction dk of J at a point wk is usually

equivalent to solving a linear system. As for the model problem, a direct calculation

shows that the steepest descent direction dk of J at wk can be obtained by solving

the following linear elliptic BVP

8><
>:

�dk(x)� `dk(x) = �wk(x)� `wk(x) + f(x; wk(x)); x 2 


dk(x) = 0; x 2 @
 for the zero Dirichlet B.C.;
@dk(x)

@n
=

@wk(x)

@n
; x 2 @
 for the zero Neumann B.C.

(3.1)

which can be solved numerically by various �nite element, �nite di�erence or

boundary element solvers. Since one important topic in nonlinear analysis is to

study how a variation of the domain a�ects the pro�le of a solution [14] and the

boundary element method can easily handle a complex domain or trace a variation

of the domain, we use a boundary element method. Note that for the zero Neumann

B.C. problem, if we choose an initial ascent direction v0 with @v0

@n
(x)j@
 = 0, then in

every iterate, we have @dk

@n
(x)j@
 = 0 in (3.1).

In Step 4, for our model problem, we can use a norm k�dk� l �dkkL2 < " to control

the error. Note that this an absolute error indicator for our model problem, since

�dk(x)� l � dk(x) = �wk(x)� `wk(x) + f(x; wk(x)):

In Step 5, for each point vk(�) = vk � � � dk in the steepest descent direction,

we can �nd a local maximum p(vk(�)) of J in [L; vk(�)]. We then try to �nd

the point in the steepest descent direction with the smallest such maximum. We

must follow a consistent way to �nd a local maximum point of J so that p(v)

depends on v continuously and is kept away from L. Thus we specify the initial

guess u = t�
0
vk(�) + v�L in searching for a local maximum in [L; vk(�)]. This initial
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guess closely and consistently traces the position of the previous point wk = t�
0
vk+v�L.

This strategy is also to avoid the algorithm from possible oscillating between di�erent

branches of the peak mapping P .

The number �� is to enhance the stability of the algorithm. It controls the step-

size of the search along the steepest descent direction to avoid the search to go too

far, i.e., to leave the solution (stable) submanifold M too far to lose stability of the

algorithm.

The following theorem implies that the local minimax algorithm is strictly descending

and therefore a stable algorithm.

Theorem 3.1. If dk = rJ(wk) 6= 0, wk 62 L and p is continuous at vk, then

J(wk+1) < J(wk):

If p is continuous and d(p(v); L) > � > 0 for all v 2 SL?, then there exist ��k > 0

and d > 0 s.t.

J(wk+1)� J(wk) < �dkrJ(wk)kkvk+1 � vkk 8k = 1; 2; :::;(3.2)

where wk = p(vk) and wk+1 = p(vk+1) are determined in Step 5 of the algorithm.

Proof. We only have to prove (3.2). Using the notation in the algorithm scheme.

Write

vk+1 = vk(��k) =
vk � ��kd

k

kvk � ��kd
kk
:

Take � = kdkk=2, by Lemma 2.1, we can �nd ��k > 0, s.t. if ��k > s > 0 then

J(p(vk(s)))� J(p(vk)) < ���kvk(s)� vkk:

In particular, we choose such ��k in the algorithm and 0 < ��k � �k is satis�ed, with

d = 2�, we have

J(p(vk(��k)))� J(p(vk)) < �dkdkkkvk(�)� vkk;

i.e., (3.2).

Convergence is always a paramount issue for any numerical algorithm. Due to

multiplicity, degeneracy and instability of saddle points, general convergence analysis

will be very di�cult. More profound analysis is required. We will establish some

convergence results of the algorithm in a subsequent paper [20]. Instead, in Section

4, we present some applications of our minimax theorem and method to a class of

semilinear elliptic PDE.

4 Application to Semilinear Elliptic PDE

In this section, we apply our local minimax method to study the model problem.

We use the notations as in [30] with a slight change. 
 is a smooth bounded domain

in Rn . Consider a semilinear elliptic Dirichlet BVP�
�u(x) + f(x; u(x)) = 0; x 2 
;

u(x) = 0; x 2 @
;
(4.1)

where the function f(x; �) satis�es the following standard hypothesis:
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(h1) f(x; �) is locally Lipschitz on �
� R;

(h2) there are positive constants a1 and a2 s.t.

jf(x; �)j � a1 + a2j�j
s(4.2)

where 0 � s < n+2
n�2

for n > 2. If n = 2,

jf(x; �)j � a1 exp �(�)(4.3)

where �(�)��2 ! 0 as j�j ! 1;

(h3) f(x; �) = o(j�j) as � ! 0;

(h4) there are constants � > 2 and r � 0 s.t. for j�j � r,

0 < �F (x; �) � �f(x; �);(4.4)

where F (x; �) =
R �
0
f(x; t)dt.

In our later numerical computation, we solve problems in R2 , where (h2) is not a

substantial restriction. (h4) says that f is superlinear, which implies that there exist

positive numbers a3 and a4 s.t. for all x 2 �
 and � 2 R

F (x; �) � a3j�j
� � a4:(4.5)

The variational functional associated to the Dirichlet problem (4.1) is

J(u) =
1

2

Z



jru(x)j2dx�

Z



F (x; u(x))dx; u 2 H � H1

0
(
);(4.6)

where we use an equivalent norm kuk =
R


jru(x)j2dx for the Sobolev space

H = H1

0
(
).

It is well known [30] that under Conditions (h1) through (h4), J is C1 and satisfy

(PS) condition. A critical point of J is a weak solution, and also a classical solution

of (4.1). 0 is a local minimum point (MI= 0) of J . Moreover, in any �nitely

dimensional subspace of H, J goes to negative in�nity uniformly. Therefore, for

any �nite dimensional subspace L, the peak mapping P of J w.r.t. L is nonempty.

We need one more hypothesis, that is

(h5)
f(x;�)

j�j
is increasing w.r.t. �, or

(h5') f(x; �) is C1 w.r.t. � and f�(x; �)�
f(x;�)

�
> 0.

It is clear that (h5') implies (h5). If f(x; �) is C1 in �, then (h5) and (h5') are

equivalent. All the power functions of the form f(x; �) = j�jk� with k > 0, satis�es

(h1) through (h5'), and so do all the positive linear combinations of such functions.

Under (h5) or (h5'), J has only one local maximum point in any direction, or, the

peak mapping P of J w.r.t. L = f0g has only one selection. In other words, P = p.

The proof can be found in [27] and [14].

Lemma 4.1. Under (h5) or (h5'), for any u 2 H, the function g(t) = J(tu),

t � 0, has a unique local and so global maximum point.
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Let L = f0g and M = fp(v)jv 2 SL? = SHg where p(v) is the unique peak

selection of J w.r.t. L. By the above lemma, it can be easily checked that M is

exactly the solution submanifold (1.7) de�ned by Ding and Ni. Our de�nition displays

the essence why such a solution submanifold works. Also our de�nition is given in a

more general way. It also works for �nding a critical point as a local minimax solution

with a higher MI. Actually, under (h5), the peak selection is not only unique but also

continuous. In other words, M is a topological manifold. The following theorem is

given in a more general form, which mainly states that uniqueness implies continuity.

Theorem 4.1. Under the hypothesis (h1) through (h5), if the peak mapping P

of J w.r.t. a �nitely dimensional subspace L is singleton at v0 2 SL? and for any

v 2 SL? around v0, a peak selection p(v) is a global maximum point of J in [L; v],

then p is continuous at v0.

Proof. (h4) implies (4.5), namely, F (x; �) � a3j�j
�� a4, where a3 and a4 are positive

constants depending on F and 
. It is known that
R


ju(x)j�dx is a positive

continuous functional in H and SH \ [L; v0] is compact, thus we can write

�0 � min
v2SH\[L;v0]

Z



jv(x)j�dx > 0:

Let � =
�0

2
. For each v 2 SH \ [L; v0] there is a neighborhood N (v) of v s.t.

Z



ju(x)j�dx > � 8u 2 N (v):

Since �
SH \ [L; v0]

�
�

[
v2SH\[L;v0]

N (v)

and SH \ [L; v0] is compact, there exist v1; :::; vn 2 SH \ [L; v0] s.t.�
SH \ [L; v0]

�
� [ni=1N (vi) and

Z



ju(x)j�dx > � 8u 2 [ni=1N (vi):

Note that for each v 2 SL? and w 2 SH \ [L; v], we can write w = wl + twv with

wL 2 L and jtwj � 1. Then w0 = wl + twv0 2 SH \ [L; v0] and kw � w0k
2 =

t2wkv � v0k
2 � kv � v0k

2. Thus we can �nd a neighborhood D of v0, s.t.�
SH \ [L; v]

�
� [ni=1N (vi) 8v 2 D \ SL?:

Therefore we haveZ



jwj�dx � �; 8v 2 D \ SL?; w 2 SH \ [L; v]:(4.7)

For any v 2 D \ SL?, p(v) is a maximum point of J in [L; v]. In particular, p(v)

is a maximum point of J on the half line ftp(v)j t 2 R
+g. Set w =

p(v)

kp(v)k
and de�ne

g(t) = J(tw) =
1

2
t2
Z



jrw(x)j2 dx�

Z



F (x; tw(x)) dx:
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Then g is positive and increasing near 0, and goes to �1 as t ! 1. A local

maximum is solved from

0 =
dg

dt
jt=t1 = t1

Z



jrw(x)j2 dx;�

Z



w(x)f(x; t1w(x)) dx

or

0 = kp(v)k

Z



jrwj2dx�

Z



wf(x; kp(v)kw)dx:(4.8)

Since kwk = 1, by using (4.4) and (4.7), we have

1 =
1

kp(v)k2

Z



kp(v)kwf(x; kp(v)kw)dx �
1

kp(v)k2

Z



�F (x; kp(v)kw)dx

�
1

kp(v)k2

Z



�(a3kp(v)k
�jwj� � a4)dx

= a3�kp(v)k
��2

Z



jwj�dx�
1

kp(v)k2

Z



�a4dx

� �a3kp(v)k
��2��

1

kp(v)k2

Z



�a4dx:

Note that � > 2, the right hand side of the last inequality goes to 1 if kp(v)k ! 1

and this violates the the above inequalities. Therefore, there must exist � > 0 s.t.

kp(v)k � �.

Now let fvng � D\SL? be any sequence s.t. vn ! v0. Denote p(vn) = tnvn+xn,

where xn 2 L. Since kp(vn)k � � and vn ? xn, we have tn � � and kxnk � �.

Therefore we can �nd a subsequence fvnkg s.t. tnk and xnk converge, respectively,

to t0 and x0. In other words, p(vnk) goes to t0v0 + x0, which lies in [L; v0]. Since

we assume that p(vnk) is a global maximum point of J in [L; vnk ] for each nk, the

limit point t0v0 + x0 must be a maximum point of J in [L; v0] as well. But by the

assumption, the peak mapping P of J is singleton at v0, so t0v0 + x0 = p(v0). Since

fvng is arbitrary, by the above argument, p is continuous at v0.

As an immediate conclusion of Theorem 4.1, we have the following continuous

result (see Lemma 4.1 in [36]).

Corollary 4.1. Under the hypothesis (h1) through (h5), the only peak selection

p of J w.r.t. L = f0g is continuous.

Proof. By Lemma 4.1, there is only one peak selection p of J w.r.t. L = f0g. In

any direction v, the function g(t) = J(tu) possesses only one local maximum point,

therefore a global maximum point of J over the subset ftvjt 2 R
+g. Thus from

Theorem 4.1, it is continuous at any point.

Moreover, the unique selection p of peak mapping w.r.t. L = f0g satis�es all the

requirements of Theorems 2.1 and 2.2. Thus we can apply Theorems 2.1 and 2.2 to

establish the following existence result

Theorem 4.2. Under the hypothesis of (h1) through (h5), there exists at least

one solution to

local min
x2M

J(x)(4.9)

and any such a solution is a critical point of J, and therefore a solution to problem

(4.1).
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Proof. M is the image of the unique peak selection p of J w.r.t. L = f0g. By

Corollary 4.1, p is continuous. Under the conditions of (h2) through (h4), we know

that (see [30]),

J(u) =
1

2
kuk2 + o(kuk2)

as u ! 0. Thus we can �nd � > 0 s.t. kp(v)k > � for any direction v 2 H. This

is exactly the separation condition in Theorems 2.1 and 2.2. Obviously, J(p(v)) > 0

for each direction v 2 H, thus is bounded from below. Therefore all the conditions

in Theorems 2.1 and 2.2 are satis�ed. Theorem 2.2 states that there is at least one

critical point as a minimax solution and Theorem 2.1 con�rms that any local minimax

solution is a critical point.

By a similar argument as in the proof of the above theorem and taking Lemma 4.1

into account, we can show that for BVP (4.1), for any closed subspace L and any

peak selection p of J w.r.t. L, we have infv2S
L?

J(p(v)) > � > 0.

It is known that for BVP (4.1), solution prefers open space. When the domain has

multiple compartments connected by narrow corridors, such as a dumbbell-shaped

domain in Section 5 for our computational examples, multiple solutions do exist as

local minimax solutions. The one with the smallest energy is the global minimax

solution, i.e., the ground state.

The following results indicates that under Conditions (h1) to (h5'), for L = f0g,

the minimax algorithm is actually a minimization on a di�erentiable submanifoldM.

Theorem 4.3. Assume that Conditions (h1) { (h5') are satis�ed and that there

exist a5 > 0 and a6 > 0 s.t. for s as speci�ed in (h2),

jf�(x; �)j � a5 + a6j�j
s�1:(4.10)

Then the only peak selection p of J w.r.t. L = f0g is C1.

Proof. Set G:SH � R
+ ! R, G(v; t) = t �

R


v(x)f(x; tv(x))dx. Thus under (4.10),

G is C1. Denote M = fp(v)jv 2 SHg where p(v) is the only peak selection of J

w.r.t. L = f0g, i.e., p(v) is the maximum point of J on ftvjt > 0g. As in the proof

of Theorem 4.1, for any v, if p(v) = tv, then we have

0 = t�

Z



v(x)f(x; tv(x))dx

Thus M is essentially the inverse image of G at 0, i.e., M = G�1(0), and kp(v)k, as

a positive number is the solution of t(v) to the equation G(v; t(v)) = 0. On the other

hand
@G

@t
= 1�

Z



v2(x)f�(x; tv(x)) dx:(4.11)

For each v0, at each pair (v0; t0) with G(v0; t0) = 0,

0 = 1�

Z



v2
0
(x)

f(x; t0v0(x))

t0v0(x)
dx > 1�

Z



v2
0
f�(x; t0v0(x)) dx; (by (p5'));

i.e., @G
@t

< 0 at (v0; t0), provided G(v0; t0) = 0. By the implicit function theorem, the

solution t(v) to the equation G(v; t(v)) = 0 exists uniquely in a neighborhood of each

v0 and is C1 in v. Therefore kp(v)k is a C1 function in v, and so is p(v).
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Actually, in the proof, we can see that the solution submanifold, M, is a

di�erentiable manifold, because Lemma 2.1 implies

krJ jMk � �krJk for some � > 0:

Example 4.1. Let us consider the BVP on a smooth bounded domain 
 � R
n

for p > 2 �
�u(x) + ju(x)jp�2u(x) = 0; x 2 
;

u(x) = 0; x 2 @
:
(4.12)

The associated variational functional is

J(u) =
1

2

Z



jruj2 dx�
1

p

Z



ju(x)jp dx; u 2 H = H1

0
(
):

For each v 2 S, let u = tv; t > 0, then

J(tv) =
t2

2

Z



jrvj2 dx�
tp

p

Z



jv(x)jp dx =
t2

2
�
tp

p

Z



jv(x)jp dx:

Thus

0 =
@

@t
J(tv) = t� tp�1

Z



jv(x)jp dx

leads to

tv =

�
1R



jv(x)jp dx

� 1

p�2

> 0:

The peak selection p of J w.r.t. L = f0g is

p(v) = tvv =

�
1R



jv(x)jp dx

� 1

p�2

v; 8v 2 S

a continuously di�erentiable function and the solution manifold

M = f

�
1R



jv(x)jp dx

� 1

p�2

v : v 2 Sg

is a di�erentiable manifold.

5 Computational Examples

We have applied our numerical algorithm to solve many semilinear BVP with zero

Dirichlet B.C. on various domains, such as the Lane-Emden equation, the Henon's

equation and the Chandrasekhar equation on a disk, rectangle, concentric annulus,

nonconcentric annulus, dumbbell-shaped domains and dumbbell-shaped domains

with cavities. Here we present the computational results for the Lane-Emden equation�
�u(x) + u3(x) = 0; x 2 
;

u(x) = 0; x 2 @
;
(5.1)
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where the domain 
 is, respectively, a dumbbell-shaped domain, a dumbbell-shaped

domain with cavities (nonsymmetric) and a concentric annulus (highly degenerate).

Here the solution u(x) represents the density, so we are interested only in positive

solutions. In all examples, we use a cos function to create \mound" shaped function

as an initial ascent direction v0 and a norm k�ûkL2 = k�u+u3kL2 < " to control the

error and terminate the iterate. Some solutions with MI = 1 have been computed

elsewhere, see, e.g., [12], [17], [11] and references therein. It is to the best of our

knowledge that those solutions with higher MI are the �rst time to be computed.

Case 1: On a dumbbell-shaped domain.

−1.5 −1 0 1 2 3
−1

0

1

Fig. 1. A dumbbell-shaped domain.

We use, respectively, the following three \mound" functions as initial ascent

directions.

vi
0
(x) =

8<
: cos(

jx� xij

di

�

2
) if jx� xij � di;

0 otherwise,

where x1 = (2; 0); d1 = 1; x2 = (�1; 0); d2 = 0:5; x3 = (0:25; 0); d3 = 0:2.
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If we use L = [w1

1
; w2] and v0 = v3

0
to search for a solution with MI = 3, the

algorithm yields a solution with positive and negative peaks. This can be explained

as follows. Since a function with a larger energy value becomes less stable and a

solution with a larger MI is also less stable. Note that

J(w1

1
) < J(w2

1
) < J(w3

1
):

When we use L = [w1

1
; w2] and v0 = v3

0
to search for a solution with MI = 3, we start

the process at searching for a peak with lower energy for a solution with a lower MI

and then go to search for a peak with larger energy for a solution with a higher MI.

The process becomes very unstable. Now if we switch the order, we start the process

at searching for a peak with higher energy for a solution with a lower MI and then go

to next stage to search for a peak with lower energy for a solution with a higher MI.

The stability of the process is balanced. Thus when we use L = [w3

1
] and v0 = v2

0
to

�nd a solution w2

2
with MI = 2 and two positive peaks in the left compartment and

the central corridor. Then we use L = [w3

1
; w2

2
] and v0 = v1

0
to search for a positive

solution with MI = 3, we obtain
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Fig. 6. A solution w3 with MI = 3 and its contours. " = 10�3; J = 212:5,

umax = 13:78. This is the only positive solution with MI = 3 we can �nd.

Case 2: On a dumbbell-shaped domain with two cavities.

−1.5 −1 0 1 2 3
−1

0

1

Fig. 7. A dumbbell-shaped domain with two cavities.

We use, respectively, the following four \mound" functions as initial ascent

directions.

vi
0
(x) =

8<
: cos(

jx� xij

di

�

2
) if jx� xij � di;

0 otherwise,

with

x1 = (2;�0:6); d1 = 0:4; x2 = (�0:5; 0); d2 = 0:2;

x3 = (0:25; 0); d3 = 0:2; x4 = (�1:35; 0); d4 = 0:15:
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Case 3: On a concentric annulus with inner radius = 0:7 and outer radius = 1.

The domain is a nice geometric �gure. However, due to the symmetry, any

solution being rotated for any angle is still a solution. Thus each solution belongs

to an one parameter family of solutions. For this case, the existence of non radially

symmetric positive solutions has been established by Co�man [13] and Li [22]. The

number of positive peaks that a solution may have depends on the width of the

annulus. If we utilize the symmetry, we can �nd a radially symmetric solution that

turns out to be a local (global) maximum. Otherwise, this case is highly degenerate.

When the boundary is discretized into a polygon, theoretically the case becomes

nondegenerate. However, when the discretization is �ne, each solution has other

solutions nearby. The computation becomes even tougher. After several iterations,

there are multiple solutions inside a small neighborhood of the numerical solution.

The algorithm may start to wander around. We have used 384 elements on the outer

circle, 192 elements on the inner circle and the following \mound" function as an

initial ascent direction for �i =
(i�1)�

4
,

vi
0
(x) =

(
cos(

jx� 0:85(cos �i; sin �i)j

0:15

�

2
) if jx� 0:85(cos �i; sin �i)j � 0:15;

0 otherwise.
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Fig. 17. A solution w4 with MI = 4 and its contours. L = [w1; w2; w3], v0 = v4
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,

" = 10�3 � 3; J = 1159; umax = 18:12.

Finding multiple saddle points is important for both theory and applications.

However it is very challenging. Little is known in the literature. We try to develop

some numerical algorithms and corresponding mathematical theory for �nding such

saddle points in a stable way. It is known that many saddle points can not be

approximated. One can only numerically approximate those multiple saddle points

with some \nice" properties, e.g., minimax solutions. We classify those saddle

points through mathematical analysis. The results presented in this paper are under

some \reasonably nice" conditions. They provide a mathematical foundation for our

further research. Meanwhile those conditions will be further generalized. Methods

to check those conditions (e.g., the continuity or di�erentiability condition of p) will

be developed as research in this direction progresses.1 So far, the algorithm is still

better than mathematical analysis. It produced many interesting numerical results

that beyond theoretical results. For example, when the pro�les of solutions in Figures

4 and 10 are presented to nonlinear PDE analysts in 1997 and 1998, they generated

warm debates about the existence and the Morse indices of such solutions. We

are pleased to know that some results on the existence of such solutions has been

recently proved (See [35]). Our algorithm can be used to solve for a critical point

which is not a minimax solution, e.g., a Monkey saddle point. However the analysis is

beyond the scope of any minimax principle, more profound approach is required. As

mathematical analysis in this research progresses, the algorithm will be accordingly

modi�ed. Convergence is a paramount issue of any numerical algorithm. The Morse

index of a solution is an important notion that provides understanding of the local

structure of a saddle points and can be used to measure instability of a saddle point.

Although, in the above numerical examples, we have printed the Morse index for each

1
Results in this project have been obtained and will be presented in a future paper.
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numerical solution, it is based on the way we compute the solution in the algorithm,

its mathematical veri�cation has not been established. Due to the limitation to the

length of this paper, results on those issues will be addressed in a subsequent paper

[20] and future papers [21, 37].

Acknowledgement: The authors would like to thank two anonymous referees for

their helpful comments.
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