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1 Introduction

Let B and V be Banach spaces and F : R × B → V be an operator.

Multiple Solution Problem: Given λ ∈ R, find all u ∈ B s.t. F (λ, u) = 0.

Multiple Fixed Point Problem: Find all u ∈ B s.t. F (u) = u.

Nonlinear Eigen Problem: Find all eigensolutions (λ, u) ∈ R × B s.t.

F (λ, u) = 0, (1.1)

λ is an eigenvalue, u is an eigenfunction corresponding to the eigenvalue λ.

An eigenvalue may have multiple eigenfunctions. It leads to

Bifurcation Problem: Find λ0 s.t. its multiplicity changes as λ crosses λ0.

Nonlinear Eigenvalue Problem: Find (λ, u) ∈ R× (B \ {0}) s.t. F (λ)u = 0

where F (λ) : B → V , e.g., the quadratic eigenvalue problem:

F (λ) = λ2A + λB + C.

Nonlinear Eigenfunction Problem: Find (λ, u) ∈ R×B s.t. F (u) = λG(u)

where F and G are some operators from B into V .
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Variational Multiple Solution Problem: find all u ∈ B s.t.

A(u) ≡ J ′(u) = 0 (Euler-Lagrange equation)

for some A : B → B∗, J ∈ C1(B, R) and J ′ its Frechet derivative.

It leads to compute multiple critical points u.

The most well-studied critical points of J are the local extrema.

The classical critical point theory (Calculus of Variations) and

traditional numerical methods focus on solving for such stable solutions.

Critical points u∗ that are not local extrema are called saddle points, i.e.,

for any u∗ ∈ N (u∗) ⊂ B, there exist v, w ∈ N (u∗) such that

J(v) < J(u∗) < J(w).

In physical systems, critical points are equilibrium states and saddles appear

as excited transient equilibrium states, thus unstable solutions.
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Figure 1: A local maximum, a local minimum and two horse saddles (minimax

type) (left) and a monkey saddle (non-minimax type) (right).
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Various Constrained Critical Points:

Let M ⊂ B, F : D(F ) ⊂ B → R. u0 ∈ M is a critical point of F in M ,

if D(F ) contains N (u0) of u0 s.t. (Euler-Lagrange equation)

d

dt
F (u(t))|t=0 = 0, ∀u(t) ∈ M, t ∈ (−ε, ε), u(0) = u0, u′(0) exists.

If M has a tangent space TMu0
at u0, then F ′(u0)h = 0 ∀h ∈ TMu0

.

If M = {u ∈ B|G(u) = 0} where G ∈ C1(B, R), then ∃λ ∈ R s.t.

L′(u0) ≡ F ′(u0) − λG′(u0) = 0, (1.2)

where L(u) ≡ F (u) − λG(u) is the Lagrange functional. If u0 ∈ int(M)

then u0 is called a (free) critical point of F , i.e.,

F ′(u0) = 0. (1.3)

Generalized derivative (in the sense of Clarke): 0 ∈ ∂F (u0).

(Geometric, topological, shape derivatives.)
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An Application. Consider a semilinear Schrodinger equation

iwt + ∆w + κf(|w|)w = 0. (1.4)

To finding the solitary wave solutions w(x, t) = u(x)e−iλt, and the steady-

state solutions w(x, t) = u(x), (1.4) leads to semilinear elliptic PDEs

λu(x) + ∆u(x) + κf(|u(x)|)u(x) = 0, u ∈ W 1,2(Ω); (1.5)

−∆u(x) = κf(|u(x)|)u(x), u ∈ W 1,2(Ω). (1.6)

When a fluid/material is non Darcian/Newtonian, the Darcy’s law is replaced

by others. One is to replace ∆u by ∆pu(x) = ∇ · (|∇u(x)|p−2∇u(x)),

(1.5) and (1.6) are generalized to two quasilinear elliptic PDEs on W 1,p(Ω)

λu(x) + ∆pu(x) + κf(|u(x)|)u(x) = 0; (1.7)

−∆pu(x) = κf(|u(x)|)u(x). (1.8)
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When p = 2, p < 2, p > 2, the fluid/material is called, Darcian/Newtonian,

pseudo-plastic, dilatant, respectively.

People want to know for what values of λ and κ, (1.7) and (1.8) have solutions.

When f(|t|)t = d
dt

F (t) for some function F , (1.7) and (1.8) are the Euler-

Lagrange equations of the (energy) functionals on W 1,p
0 (Ω)

J(u, λ) :=

∫

Ω

[1

p
|∇u(x)|p − κF (u(x)) −

λ

2
(|u(x)|2 − α)

]

dx; (1.9)

J(u) :=

∫

Ω

[1

p
|∇u(x)|p − κF (u(x))

]

dx. (1.10)
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Global Theory and Methods:

Most results in the literature focus mainly on the existence issue (L-S, moun-

tain pass, various linking) and characterize a saddle point as a solution to

a two-level global minimax problem

min
A∈A

max
u∈A

J(u) (1.11)

where A is a collection of certain compact sets A (e.g., a k-D simplex),

max and min are global. Thus not for algorithm implementation.

The Mountain Pass Lemma of Ambrosetti-Rabinowitz (1973) uses global min

in the outer loop and global max along each continuous path connecting two

given points in the inner loop.

A mountain pass solution is the solution characterized by the mountain pass

lemma. Thus finding a mountain pass solution is equivalent to solving a

two-level global optimization problem. So far no such algorithm exists.
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The mountain pass method of Choi-McKenna (1993) uses a 1-D simplex along

each direction in the inner loop and a local min in the outer loop. (MI=1)

The high-linking method of Ding-Costa-Chen (1999) uses a 2-D simplex in

the inner loop and a local min in the outer loop. (MI=1,2)

Though there are gaps in their mathematical justification and no convergence

verifications due to no stepsize rules in their algorithms, they opened new

doors to numerical computations of multiple critical points.

Nehari (1960) proved that a global min of J on the Nehari manifold

N = {tuu : u ∈ H, ‖u‖ = 1, tu > 0, 〈J ′(tuu), u〉 = 0}

yields a saddle point.

Motivated by the above works and the Morse theory, we developed an

algorithm implementable local minimax method for finding multiple critical

points, in which the Nehari manifold N is generalized to a solution set M.
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Basic idea: Let L be a closed subspace of H, called a support, spanned by

trivial/known solutions, from which an algorithm search wants to stay away.

Define a composite function J(p(u)) s.t. p(u) ∈ [L, u] \ L, J ′(p(u))⊥[L, u].

Then design an algorithm to search for u∗ s.t. J ′(p(u∗))⊥L⊥.

Consequently w∗ = p(u∗) is a saddle point not in L.

There are many ways to do so depending on a specific problem, e.g.,

local min/max solutions p(u) of J on [L, u] satisfy J ′(p(u))⊥[L, u],

a solution u∗ ∈ L⊥ of a local min/max of J(p(u)) satisfies J ′(p(u∗))⊥L⊥.

It leads to a two-level local optimization problem: a local minimax method,

a very powerful method and can be modified/generalized in many directions.
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Since all min and max are local, we only need some local structure.

The mountain pass lemma requires a global mountain pass structure:

0 < tu = arg max
t>0

J(tu) < +∞, ∀u ∈ B, ‖u‖ = 1. (1.12)

We need only a local mountain pass structure, i.e., (1.12) holds only in an

open set U ⊂ SB and a barrier forms on ∂U , e.g.,

max
t>0

J(tu) = +∞, ∀u ∈ ∂U.

But analysis becomes much more complicated.
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2 A Local Minimax Method [Li-Zhou, 2001, 2002, SISC]

Let H be a Hilbert space, J ∈ C1(H, R), L ⊂ H a closed subspace.

Denote SL⊥ = {v ∈ L⊥ : ‖v‖ = 1} and [L, v] = span{L, v}, v ∈ SL⊥.

All min and max are in local sense.

Definition 1. The peak mapping P : SL⊥ → 2H s.t.

P (v) :=
{

v∗ := arg max
u∈[L,v]

J(u)
}

, ∀v ∈ SL⊥.

A peak selection p : SL⊥ → H if p(v) ∈ P (v), ∀v ∈ SL⊥.

If p is locally defined, then p is called a local peak selection. (Only local

structure)

Remark 1. We have p(v) = tvv + vL for some tv 6= 0, vL ∈ L if p(v) 6∈ L,

and J ′(p(v))⊥[L, v], J ′(p(v))⊥p(v), ∀v ∈ SL⊥.

In many cases, such a selection p is unique. If it is not unique, then strategies

in an algorithm will be designed to consistently track a peak selection.
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Lemma 1. If p is a local peak selection of J near v0 ∈ SL⊥ s.t.

J ′(p(v0)) 6= 0, p is continuous at v0 and p(v0) = t0v0 + vL
0 6∈ L,

then there is s0 > 0 s.t. when 0 < s < s0,

J(p(v(s))) − J(p(v0)) < −
t0s

2
‖J ′(p(v0))‖

2 (a stepsize rule) (2.1)

where v(s) :=
v0 − sJ ′(p(v0))

‖v0 − sJ ′(p(v0))‖
.

Theorem 1. (A local minimax characterization) If p is a local peak selec-

tion of J near v0 ∈ SL⊥ s.t. p is continuous at v0, p(v0) 6∈ L and

v0 := arg min
v∈S

L⊥

J(p(v)) = arg min
v∈S

L⊥

max
u∈[L,v]

J(u),

then u0 = p(v0) is a saddle point of J .

PS+J(p(·)) bounded below=⇒an existence theorem by Ekeland’s VP.
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Denote a solution set (a generalization of Nehari’s manifold when L = {0})

M := {p(v) : v ∈ SL⊥}.

Then min
u∈M

J(u) yields a saddle u∗ = p(v∗)

that can be approximated by, e.g., a steepest descent method. Inequality

(2.1) defines a stepsize rule in the algorithm (to prove convergence).

2.1 A Local Minimax Algorithm

Let w1, ..., wn−1 be n-1 previously found critical points, L = [w1, ..., wn−1].

Given ε > 0, λ > 0 and v0 ∈ SL⊥ be an ascent-descent direction at wn−1.
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Step 1: Let t00 = 1, v0
L = 0 and set k = 0;

Step 2: Using the initial guess w = tk0v
k + vk

L, solve for

wk ≡ p(vk) = arg max
u∈[L,vk]

J(u), denote tk0v
k + vk

L = wk ≡ p(vk);

Step 3: Compute the steepest descent vector dk := −J ′(wk);

Step 4: If ‖dk‖ ≤ ε then output wn = wk, stop; else goto Step 5;

Step 5: Set vk(s) :=
vk + sdk

‖vk + sdk‖
∈ SL⊥ and find

sk := max
m∈N

{

λ

2m
: 2m > ‖dk‖, J(p(vk(

λ

2m
))) − J(wk) ≤ −

tk0λ

2m+1
‖dk‖2

}

.

Initial guess u = tk0v
k( λ

2m) + vk
L is used to find p(vk( λ

2m))

where tk0 and vk
L are found in Step 2. (track a peak selection)

Step 6: Set vk+1 := vk(sk) and update k = k + 1 then goto Step 2.
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Some remarks for the algorithm.

2.2 Some Numerical Examples

Consider solving the Henon equation
{

−∆u(x) = |x|r|u(x)|q−1u(x) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(2.2)

Set r = 0, q = 3.

Constructing initial guesses v0 for a desired profile is flexible, one may use

sin / cos functions or solve
{

−∆v0(x) = cv(x) x ∈ Ω,

v0(x) = 0 x ∈ ∂Ω

where cv(x) = +/− (1) if we want v0 to be concave up/down at x and

cv(x) = 0 if its concavity at x is not of concern.
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Figure 2: (a) The dumbbell-shaped domain. (b) the ground state with J = 10.90, u
(1)
max = 3.652. (c)

The second one-peak positive solution with J = 42.22, u
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max = 7.037. (d) The third one-peak positive

solution with J = 159.0, u
(3)
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(4)
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Figure 4: The contours of the first 10 solutions to (2.2) with r = 0 and q = 3. The sign ”+/-” represents

a positive/negative peak. The 6th contour plot shows a radial sign-changing solution, where the dashed

circle denotes the ring of negative peaks (a 1-dimensional peak set).
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2.3 Convergence Results

Assume wk = p(vk) be generated by the algorithm and PS condition.

Theorem 2. If (1) p is continuous, (2) d(L, wk) > α > 0 and (3)

infv∈S
L⊥

J(p(v)) > −∞, then

(a) {vk} has a subsequence {vki} s.t. wki = p(vki) → a saddle of J ;

(b) any convergent subsequence of {wk} converges to a saddle of J .

A point-to-set convergence results is also established.

Theorem 3. If v̄ = arg minv∈S
L⊥

J(p(v)) where p is continuous and

p(v̄) 6∈ L is an isolated critical point, then there exists an open set V

in H, v̄ ∈ V ∩ SL⊥, s.t. ∀v0 ∈ V ∩ SL⊥, wk → p(v̄).
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2.4 Instability Analysis of Saddles [Zhou, 2005, Math. Comp.]

Saddle points are unstable. Can we measure their instability?

Morse Index. If J ′′(u∗) is a self-adjoint Fredholm operator at u∗,

H = H− ⊕ H0 ⊕ H+ (2.3)

where H−, H0 and H+ are respectively m.n.d., the null and m.p.d. subspaces

of J ′′(u∗) in H with dim(H0) < ∞.

The Morse index of the critical point u∗ is MI(u∗) = dim(H−).

If u∗ is nondegenerate, i.e., H0 = {0}, then MI(u∗) can be used to measure

local instability of a critical point. But MI is very expensive to compute, not

useful to degenerate cases, and not defined in Banach spaces.
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Order of Saddles is of particular interests in computational chemistry/physics,

since the subspace BD corresponds to the reaction coordinates.

Definition 2. Let J ∈ C1(B, R) and u∗ ∈ B. If B = BI ⊕BD for some

subspaces BI , BD in B and for each u1 ∈ BI and u2 ∈ BD with ‖u1‖ = 1

and ‖u2‖ = 1 there exist r1 > 0 and r2 > 0 s.t.

J(u∗ + tu1) > J(u∗), ∀ 0 < |t| ≤ r1, (2.4)

J(u∗ + tu2) < J(u∗), ∀ 0 < |t| ≤ r2. (2.5)

Then u∗ is a saddle point of J and dim(BD) = order of saddle u∗.

Since (2.4) and (2.5) lack of characterization and robustness, and

are difficult to apply in a Banach space. Thus we replace (2.5) by

J(u∗ + tu2 + o(t)) < J(u∗), ∀ 0 < |t| ≤ r2 (2.6)

and define local saddle index (LSI)=dim(HD).
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Then in a Hilbert space H, we have

dim(L)+1≤MI (u∗)+dim(H0∩[L, v∗])≤MI (u∗)+dim(H0∩HD)=LSI(u∗).

If u∗ is a nondegenerate saddle, then LSI(u∗) =MI(u∗).

But (2.4) and (2.6) do not concern degeneracy and thus are more general.

Theorem 4. If p is a local peak selection differentiable at v∗ ∈ SL⊥,

u∗ = p(v∗) 6∈ L and v∗ = arg min
v∈SL′

J(p(v)), then u∗ is a critical point with

dim(L) + 1 = MI(u∗) + dim(H0 ∩ [L, v∗]); (2.7)

If the max with p is strict, then u∗ is a saddle of LSI=dim(L) + 1.

The number dim(L) + 1 is known before u∗ is computed and

called local minimax index (LMI) of u∗.
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Remark 2. Usually MI(u∗) is computed with two steps. 1st find u∗ then

compute MI(u∗), thus very expensive.

Here we reverse the process, LMM utilizes the geometric and topological

structure of LMI to numerically find a saddle point with such LMI.

Question: How to check if p is continuous?

u∗ = limk→∞ p(vk) need not be a local maximum. On the other hand,

non-minimax saddle points, e.g., the Monkey saddles, do exist.

Minimax principle cannot cover them. Need more general framework.

Note that we have J ′(p(v))⊥[L, v], ∀v ∈ SL⊥.
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2.5 A Local Min-⊥ Method [Zhou, 2004, JMAA]

Definition 3. P : SL⊥ → 2H is an L-⊥ mapping if

P (v) := {u ∈ [L, v] : J ′(u)⊥[L, v]} ∀v ∈ SL⊥.

p : SL⊥ → H is an L-⊥ selection if p(v) ∈ P (v) ∀v ∈ SL⊥.

If p is locally defined then p is a local L-⊥ selection.

p is a peak selection =⇒ p is an L-⊥ selection.

Assume p is an L-⊥ selection. All the previous results remain true.

Lemma 2. If J is C1, then G = {(u, v) : v ∈ SL⊥, u ∈ P (v)} is closed.

Theorem 5. Let p be continuous at v∗ ∈ SL⊥ and p(v∗) 6∈ L, then

u∗ = p(v∗) is a critical point of J iff there is N (v∗) s.t.

J ′(p(v∗))⊥p(v) − p(v∗), ∀v ∈ N (v∗) ∩ SL⊥. (2.8)

Remark 3. No J(·) but only A(·) = J ′(·) is involved. A potentially useful

result to solve non-variational problems A(u) = 0 for multiple solutions.
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For a composite function J (v) = J(p(v)). Design a two-level method:

inner-loop: p(v) /∈ L, J ′(p(v))⊥[L, v], outer-loop: find v∗ s.t. J ′(p(v∗))⊥L⊥

through min or max. LMM is a steepest descent method for a continuous

function J(p(v)) due to the orthogonal properties of p.

2.6 Differentiability of an L-⊥ Selection p

Check if p is differentiable or not. Let L = [w1, w2, .., wn] and v ∈ SL⊥.

By the definition of p, u∗ = t0v + t1w1 + ... + tnwn = p(v) is solved from

(n+1) orthogonal conditions, for j = 1, ..., n,

F0(v, t0, t1, ..., tn) := 〈J ′(t0v + t1w1 + ... + tnwn), v〉 = 0,

Fj(v, t0, t1, ..., tn) := 〈J ′(t0v + t1w1 + ... + tnwn), wj〉 = 0.
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Then we have (n + 1) × (n + 1) terms

∂F0

∂t0
= 〈J ′′(t0v + t1w1 + ... + tnwn)v, v〉,

∂F0

∂ti
= 〈J ′′(t0v + t1w1 + ... + tnwn)wi, v〉, i = 1, 2, ..., n.

∂Fj

∂t0
= 〈J ′′(t0v + t1w1 + ... + tnwn)v, wj〉, j = 1, 2, ..., n.

∂Fj

∂ti
= 〈J ′′(t0v + t1w1 + ... + tnwn)wi, wj〉, i, j = 1, 2, ..., n.

By the implicit function theorem, if the (n + 1) × (n + 1) matrix

Q′′ :=









〈J ′′(u∗)v, v〉, 〈J ′′(u∗)w1, v〉, ... 〈J ′′(u∗)wn, v〉

〈J ′′(u∗)v, w1〉, 〈J ′′(u∗)w1, w1〉, ... 〈J ′′(u∗)wn, w1〉
... ...
〈J ′′(u∗)v, wn〉, 〈J ′′(u∗)w1, wn〉, ... 〈J ′′(u∗)wn, wn〉









(2.9)

is invertible or |Q′′| 6= 0, where u∗ = t0v + t1w1 + ... + tnwn = p(v), then p

is differentiable at and near v. This can be easily and numerically checked.
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2.7 On Symmetry Invariance [Wang-Z,04,05,SINUM,Chen-Z,07,NMPDE]

Newton’s method is fast but does not use the variational structure, cannot

handle degenerate cases, strongly depends on an initial guess. Thus it is blind

to the instability order (may miss the ground states). On the other hand, in

[36, 37], we proved that both LMM and Newton’s methods are invariant to

symmetries. But the LMM’s is sensitive to numerical errors, i.e., when the

numerical errors dominate the magnitude of the gradient, a symmetry may

be broken depending if the support L is sufficient or not. (Haar projection)

The Newton’s is insensitive to numerical errors. It traps a symmetry.

The symmetry of an initial guess must match that of the final solution.

It is good and bad depending on if or not you know the symmetries.

The dependence of LMM is very loose. But only a first order convergence

can be expected. The best way is LMM+Newton method
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Example. The Henon equation, r = 2 in (2.2).

Gidas-Ni-Nirenberg theorem for symmetry does not apply.

Newton or LMM+Newton? ItLMM = 4, 14, 20, or ε < 10−2 (why?).

LMM and Newton’s method are invariant to symmetries. But LMM’s is

sensitive to numerical errors, thus the symmetry may be broken depending

on if or not the errors dominate and/or the support L is sufficient.

The Newton’s is insensitive to numerical errors. It traps a symmetry. Thus

symmetries of an initial guess must match or be less than that of the solution.
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Figure 5: (a) a positive symmetric solution (MI≥ 9) (b) an asymmetric positive solution (MI≥ 2) and

(c) an asymmetric ground state. Positive solutions with more peaks may appear if r increases.
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3 Several Important Directions

(1) Find multiple saddles in Banach spaces: [Yao-Zhou,05,SISC,07,SINUM]

When non Newton/Darcian fluids/materials are considered, Darcian’s law

is replaced by other laws. One of them is to replace ∆ by ∆p (p > 1). Then

solitary wave and steady-state solutions to a ”Schrodinger flow” lead to solve

quasilinear elliptic (Eigen) PDE on W 1,p(Ω)

λu(x) + ∆pu(x) + κf(|u(x)|)u(x) = 0; (3.1)

−∆pu(x) = κf(|u(x)|)u(x). (3.2)

Need a pseudo-gradient to replace the gradient.

Definition 4. Let u ∈ X be a point s.t. J ′(u) 6= 0. For given θ ∈ (0, 1],

a point Ψ(u) ∈ X is a pseudo-gradient of J at u w.r.t. θ if

‖Ψ(u)‖ ≤ 1, 〈J ′(u), Ψ(u)〉 ≥ θ‖J ′(u)‖.
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Pseudo-gradients are used to find a local minimum of a C1 functional in a

Banach space. However, when saddle points are concerned, such pseudo-

gradients do not work, since they will lead to a local minimum.

To prevent such a degeneracy, we need a projected pseudo-gradient.

Thanks to p. A projected pseudo-gradient can be constructed at p(u).

Lemma 3. Let 0 < θ < 1 be given. For v0 ∈ SL′, if p is a local peak

selection of J w.r.t. L at v0 s.t. J ′(p(v0)) 6= 0, then there exists a

projected pseudo-gradient Ψ(p(v0)) of J at p(v0) w.r.t. θ s.t.

(a) Ψ(p(v0)) ∈ L′, 0 < ‖Ψ(p(v0))‖ ≤ M where M ≥ 1 is the bound of the

linear projection P from X to L′;

(b) 〈J ′(p(v0)), Ψ(p(v0))〉 ≥ θ‖J ′(p(v0))‖.
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Lemma 4. ([40]) For v0 ∈ SL′, if there is a local peak selection p of J

w.r.t. L at v0 satisfying (1) p is continuous at v0, (2) d(p(v0), L) > 0

and (3) d = J ′(p(v0)) 6= 0, then there exists s0 > 0 s.t. as 0 < s < s0

J(p(v(s)))−J(p(v0)) < −
sθ|ts|‖d‖

4
≤ −

θd(p(v0), L)‖d‖

8M
‖v(s)−v0‖ (3.3)

where p(v0) = t0v0 + w0, p(vs) = tsvs + ws with t0, ts 6= 0 and w0, ws ∈ L,

v(s) =
v0 − sign(t0)sΨ(p(v0))

‖v0 − sign(t0)sΨ(p(v0))‖

and Ψ(p(v0)) is a projected pseudo-gradient of J at p(v0). Thus if

v∗ = arg minv∈SL′
J(p(v)), then J ′(p(v∗)) = 0.

Brave to use Ψ(p(v)) = −∇J(p(v))
‖∇J(p(v))‖p

and cautious to show it is a PPG if
‖∇J(p(v))‖2

2

‖∇J(p(v))‖p‖∇J(p(v))‖q
> θ > 0. See [40].
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(2) Constrained nonlinear eigen-function problem:

F ′(u) = λG′(u), s.t. G(u) = α.

Case 1. Iso-homogeneous cases m = ℓ. (Yao-Zhou,07,SISC)

Define the Raleigh quotient R(u) =
F (u)

G(u)
(degenerate everywhere).

Then

R′(u) = 0 ⇐⇒ F ′(u) = λG′(u),
(

λ = R(u) =
F (u)

G(u)

)

.

Order of eigenfunctions coincides with order of their LMI=dim(L).
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Case 2. Non iso-hom, non hom cases. (Yao-Zhou,08,SISC)

Its Lagrange functional

L(λ, u) = F (u) − λ(G(u) − α)

may fail to have a mountain-pass structure.

Introduce a new active Lagrange functional

L(λ, u) = F (u) − ℓ(λ)(G(u) − α)

where ℓ(λ) is an active Lagrange multiplier whose selection is to let L(λ, u)

have a mountain-pass structure, e.g., ℓ(λ) = |λ|k, k = 2 and to make the

algorithm converge. See [44].
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Eigenpairs of the p-Laplacian: −∆pu(x) = λ|u(x)|q−2u(x), u ∈ W 1,p
0 (Ω).

Newton’s method cannot be applied due to the quasi-nonlinearity.

Case a. p = q = 1.75 < 2, λ1 = 4.2458, λ2 = 9.3173, λ3 = 9.4078,

λ4 = 14.2805, λ5 = 16.8378, λ6 = 17.2546, λ7 = 23.3660.

Case b. p = q = 2.5 > 2, λ1 = 6.3547, λ2 = 20.2896, λ3 = 20.79854,

λ4 = 35.9448, λ5 = 48.2598, λ6 = 49.6794, λ7 = 51.1048.

Their solutions profiles are listed below. Pay attention to the pattern order

changes of the second-third and the 5-7th solutions to the two cases.
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Figure 6: The first three eigenvalues of −∆p for 1.6 ≤ p ≤ 2.4.

It is interesting to point out that from the above figure we see that repeated

eigenvalues of −∆ can be separated. E.g., the second eigenvalue of −∆ is

doubled and can be separated by changing p = 2 to p 6= 2.
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Gross-Pitaevskii equation in Bose-Einstein condensates: [Yao-Zhou,08,SISC]

iwt = −
1

2
∆w + V (x)w + β|w|2w, t > 0, x ∈ Ω ⊆ R

d, (3.4)

w(x, t) = 0, x ∈ Γ = ∂Ω, t ≥ 0, (3.5)

where w is the macroscopic wave function of the condensate,

V (x) = 1
2
(γ2

1x
2
1 + · · · + γ2

dx
2
d) with γ1, ..., γd > 0 is a trapping potential,

β > 0 measures a repulsive nonlinearity.

An important invariant is the normalization of the wave-function
∫

Ω

|w(x, t)|2dx = 1. (3.6)

Finding the solitary wave solutions w(x, t) = u(x)e−iµt to (3.4) leads to

µu(x) = −
1

2
∆u(x)+V (x)u(x)+β|u(x)|2u(x), x ∈ Ω s.t.

∫

Ω

|u(x)|2dx = 1,

(3.7)

a non homogeneous NEP for eigensolutions (µ, u) ∈ R × W 1,2
0 (Ω).
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The active Lagrange functional of (3.7) is

J(λ, u) =
1

4

∫

Ω

[

|∇u(x)|2 + 2V (x)u2(x) +u4(x)
]

dx−
|λ|k

2
(

∫

Ω

u2(x)dx− 1).

(3.8)
Set k = 2.1, Ω = (−10, 10) × (−10, 10) ⊂ R

2. Note ”localized” property.
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Figure 7: The first 7 eigenfunctions w(x)=10u(10x) of (3.7) with β = 1, γ1 = γ2 = 0.2 and their

eigenvalues (a) 0.229817, (b) 0.422992, (c) 0.422995, (d) 0.615675, (e) 0.617554, (f) 0.617599 and (g)

0.618999. (h) The contours of w in (g).
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(3) Find multiple nonsmooth critical points. [Yao-Zhou,04, Math. Prog.(B)]

Let J : B → R be a locally Lipschitz continuous functional and ∂J(u) be

the generalized gradient of J at u ∈ B in the sense of Clarke [5]. 0 ∈ ∂J(u∗)

Lemma 5. Let B = H and p be a local peak selection of J w.r.t. L at

v ∈ SL⊥ s.t. p is continuous at v, dis(p(v), L) > 0 and z ∈ ∂J(p(v)) with

‖z‖ = min{‖w‖ : w ∈ ∂J(p(v))} > 0. Then when s > 0 is small

J(p(v(s))) − J(p(v)) < −
1

4
|tv|‖z‖

2, (3.9)

where v(s) =
v − sign(tv)szL⊥

‖v − sign(tv)szL⊥‖
, p(v) = tvv + wv, wv ∈ L and

z = zL + zL⊥, zL ∈ L, zL⊥ ∈ L⊥.

Theorem 6. Let B = H and p be a local peak selection of J w.r.t. L at

v ∈ SL⊥ s.t. p is continuous at v, dis (p(v), L) > 0 and

J(p(v)) = local- min
u∈S

L⊥

J(p(u)). Then p(v) is a critical point of J .
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Next let B = L ⊕ L′ be a reflexive Banach space.

Definition 5. For u0 ∈ B, let µ = min{‖z‖B∗ : z ∈ ∂J(u0)}.

The pseudo-generalized-gradient (PGG) of J at u0 is the set

ΨJ(u0) = {z∗ ∈ B : ‖z∗‖ = µ, inf
w∈∂J(u0)

〈w, z∗〉 ≥ 〈z, z∗〉 = µ2,

z ∈ ∂J(u0), ‖z‖B∗ = µ}.

Lemma 6. The PGG ΨJ(u0) of J at u0 ∈ B is a nonempty, convex set

in B. If in addition, B∗ is locally uniformly convex and ‖ · ‖B∗ is Frechet

differentiable on B∗ \ {0}, then ΨJ(u0) = {‖z‖B∗‖z‖′B∗} where z is the

unique point of minimum norm in ∂J(u0).
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Lemma 7. Let p be a local peak selection of J w.r.t L at v ∈ SL′ s.t.

(1) p is continuous at v and dis(p(v), L) > 0,

(2) z∗ ∈ B is the PGG of J at p(v) with ‖z∗‖ > 0. If s is small then

J(p(v(s))) − J(p(v)) < −
1

4
s|tv|‖z‖

2
B∗

where v(s) =
v − sign(tv)sz

∗
L′

‖v − sign(tv)sz∗L′‖
, p(v) = tvv + wv, wv ∈ L, z∗ = z∗L + z∗L′,

z∗L ∈ L, z∗L′ ∈ L′ and z is a point of minimum norm in ∂J(p(v)).

Theorem 7. Let p be a local peak selection of J w.r.t L at v ∈ SL′ s.t.

(1) p is continuous at v and dis(p(v), L) > 0,

(2) J(p(v)) = local- min
u∈SL′

J(p(u)).

Then p(v) is a critical point of J , i.e., 0 ∈ ∂J(p(v)).
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Multiple Solutions to Systems

When a nonlinear process involves multi-bodies (particles, molecules, species,

etc.), it leads to a system, e.g., a semilinear Schrödinger system
{

iūt(t, x) + ∆ū(t, x) + κg(|ū(t, x)|, |v̄(t, x)|)ū(t, x) = 0,

iv̄t(t, x) + ∆v̄(t, x) + ρh(|ū(t, x)|, |v̄(t, x)|)v̄(t, x) = 0
(3.10)

for some physical parameters κ, ρ. Standing wave/ and steady state solutions

(ū, v̄) = (e−iλtu(x), e−iµtv(x)), (ū, v̄) = (u(x), v(x))

lead to study semilinear elliptic (eigen) systems on Ω
{

λu(x) + ∆u(x) + κg(|u(x)|, |v(x)|)u(x) = 0,

µv(x) + ∆v(x) + ρh(|u(x)|, |v(x)|)v(x) = 0,

{

∆u(x) + κg(|u(x)|, |v(x)|)u(x) = 0,

∆v(x) + ρh(|u(x)|, |v(x)|)v(x) = 0,

with zero Dirichlet or Neumann boundary condition (B.C.).
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Comparing to their single equation counterparts, nonlinear systems are

much richer in varieties and complexities, and can be classified in many dif-

ferent ways. We focus on developing theory and methods for finding multiple

solutions to a class of semilinear elliptic systems on Ω:
{

−∆u(x) = G′
1(u(x), v(x), x),

−∆v(x) = H ′
2(u(x), v(x), x),

J1(u, v) =
∫

Ω[12|∇u(x)|2 − G(u(x), v(x), x)]dx,

J2(u, v) =
∫

Ω[12|∇v(x)|2 − H(u(x), v(x), x)]dx,

with zero Dirichlet or Neumann B.C., where G, H ∈ C1(R2 ×Ω, R) usually

contain higher order terms satisfying some growth conditions, and G′
1 and

H ′
2 are their partial Frechet derivatives w.r.t u and v variables, respectively.
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u and v interact each other in many different ways on energy profiles J1, J2,

e.g., strongly coupled, weakly coupled, cooperative, noncooperative.

(4) Multiple co-existing solutions to variational systems [Chen-Z-Yao,07,JANM]

View a solution of the form (0, v) or (u, 0) as trivial.

A Cooperative system and its variational functional

−∆u(x) − λu(x) = F ′
u(u, v), −∆v(x) − µv(x) = F ′

v(u, v).

J(u, v) =

∫

Ω

[1

2
(|∇u(x)|2−λu2(x)+|∇v(x)|2−µv2(x))−F (u(x), v(x))

]

dx.

A Noncooperative system and its variational functional (strongly indefinite)

−∆u(x) − λu(x) = F ′
u(u, v), −∆v(x) − µv(x) = −F ′

v(u, v).

J(u, v) =

∫

Ω

[1

2
(|∇u(x)|2−λu2(x)−|∇v(x)|2+µv2(x))−F (u(x), v(x))

]

dx,

where F satisfies certain growth conditions.

So (0, 0) is a saddle (critical) point of J .
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Let H1 and H2 be Hilbert spaces, H = H1 ×H2, J ∈ C1(H, R), L1 ⊂ H1

and L2 ⊂ H2 be closed subspaces. Denote L = L1 × L2.

Definition 6. A set-valued mapping P: SL⊥ → 2H is called an L-⊥

mapping of J if ∀ w̄ = (ū, v̄) ∈ SL⊥,

P (w̄) =
{

(u, v) ∈ [L1, ū] × [L2, v̄] : J ′
1(u, v)⊥[L1, ū], J ′

2(u, v)⊥[L2, v̄].
}

.

A mapping p : SL⊥ → H is an L-⊥ selection of J if p(w) ∈ P (w),

∀w ∈ SL⊥. For w ∈ SL⊥, if p is locally defined near w, then p is called

a local L-⊥ selection of J at w.
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Remark 4. (a) Definition 6 is bi-⊥ and stronger than the original one, since

J ′
1⊥[L1, u], J ′

2⊥[L2, v] ⇒ J ′ = (J ′
1, J

′
2)⊥[L, (u, v)], ∀(u, v).

It enables us to identify and capture the co-existing states, also gives us

more flexibility in solving other nonlinear systems.

(b) The bi-⊥ condition (u∗, v∗) = p(ū, v̄) can be solved simultaneously from

u∗ = arg max
u∈[L1,ū]

(or min)J(u, v∗), v∗ = arg min
v∈[L2,v̄]

(or max)J(u∗, v).

(c) Definition 6 can be easily extended to a multicomponent system.

(d) Due to two components, how to define instability order?

Let E+
1 , E−

1 ⊂ H1, E
+
2 , E−

2 ⊂ H2 where E+
1 × E+

2 , E−
1 × E−

2 are resp.

m.p.d. and m.n.d. subspaces of J ′′(0, 0) where E−
1 is finite dimensional.
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Cooperative Case: dim(E−
2 ) < ∞. Let L1 ⊂ H1 contain E−

1 and L2 ⊂ H2

contain E−
2 be finite dimensional subspaces. Solve

u∗ = arg min
u∈S

L⊥
1

J(p(
(u, v∗)

‖(u, v∗)‖
)) and v∗ = arg min

v∈S
L⊥

2

J(p(
(u∗, v)

‖(u∗, v)‖
)).

Then J ′
1(p(

(u∗, v∗)

‖(u∗, v∗)‖
))⊥L⊥

1 and J ′
2(p(

(u∗, v∗)

‖(u∗, v∗)‖
))⊥L⊥

2 .

Thus J ′(p( (u∗,v∗)
‖(u∗,v∗)‖)) = 0. For each (u, v) ∈ SL⊥,

u(s) = u − sJ ′
1(p(u, v)) and v(t) = v − tJ ′

2(p(u, v))

are used to update an iteration and (s, t) are determined by the stepsize rule

J(p(
(u(s), v)

‖(u(s), v)‖
)) − J(p(u, v)) ≤ −

1

2
sus‖J

′
1(p(u, v))‖2

J(p(
(u, v(t))

‖(u, v(t))‖
)) − J(p(u, v)) ≤ −

1

2
tvt‖J

′
2(p(u, v))‖2.
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Noncooperative Case: dim(E+
2 ) < ∞. Let L1 ⊂ H1 contain E−

1 , L2 ⊂ H2

contain E+
2 be finite dimensional subspaces. Solve

u∗ = arg min
u∈S

L⊥
1

J(p(
(u, v∗)

‖(u, v∗)‖
)) and v∗ = arg max

v∈S
L⊥

2

J(p(
(u∗, v)

‖(u∗, v)‖
))

or

J(p(
(u∗, v)

‖(u∗, v)‖
)) ≤ J(p(

(u∗, v∗)

‖(u∗, v∗)‖
)) ≤ J(p(

(u, v∗)

‖(u, v∗)‖
))

for all (u, v) ∈ N (u∗, v∗) ∩ SL⊥. Then

J ′
1(p(

(u∗, v∗)

‖(u∗, v∗)‖
))⊥L⊥

1 and J ′
2(p(

(u∗, v∗)

‖(u∗, v∗)‖
))⊥L⊥

2 .

Thus J ′(p( (u∗,v∗)
‖(u∗,v∗)‖)) = 0. For each (u, v) ∈ SL⊥,

u(s) = u − sJ ′
1(p(u, v)) and v(t) = v + tJ ′

2(p(u, v))

are used to update an iteration and (s, t) are determined by the stepsize rule

J(p(
(u(s), v)

‖(u(s), v)‖
)) − J(p(u, v)) ≤ −

1

2
sus‖J

′
1(p(u, v))‖2

J(p(
(u, v(t))

‖(u, v(t))‖
)) − J(p(u, v)) ≥

1

2
tvt‖J

′
2(p(u, v))‖2.
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A Cooperative System in nonlinear optics (A multiple vector soliton problem):

[Chen-Zhou-Yao,07,JANM]






−∆u(x, y) = −u(x, y) + u2(x,y)+v2(x,y)

1+µ(u2(x,y)+v2(x,y))
u(x, y),

−∆v(x, y) = −γv(x, y) + u2(x,y)+v2(x,y)
1+µ(u2(x,y)+v2(x,y))

v(x, y),
(3.11)

with u = v = 0 on ∂Ω where Ω = (−10, 10) × (−10, 10), γ = 0.65, µ = 0.5.
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A Noncooperative System: [Chen-Zhou]
{

−∆u(x, y) = λu(x, y) − δv(x, y) + |u(x, y)|p−1u(x, y),

−∆v(x, y) = δu(x, y) + γv(x, y) − |v(x, y)|q−1v(x, y),
(3.12)

with u = v = 0 on ∂Ω where Ω = (−1, 1) × (−1, 1).

We choose p = q = 3, λ = γ = −0.5, δ = 5.
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(5) 0 is a saddle. H = H+⊕H−, H+, H− m.p.d., m.n.d. subspaces of J ′′(0).

Case (a) dim(H−) < +∞. Then we let L = H−, L⊥ = H+ and apply LMM

to find a saddle point u∗
1 = p(v∗1). We have MI(u∗

1) = dim(L)+1 and MI(u∗
1)

relative to 0 is dim(L) + 1 − dim(H−) = 1. Next let L = [H−, u∗
1], use

LMM to find u∗
2 = p(v∗2). MI(u∗

2) = dim(L) + 1 and MI(u∗
2) relative to 0 is

dim(L) + 1 − dim(H−) = 2, etc. For example, when

J(u) =

∫

Ω

[1

2

(

|∇u(x)|2 − λ|u(x)|2
)

−
1

4
|u(x)|4

]

dx

where λi < λ < λi+1 and λ1 < λ2 < ... < λi < ... are the eigenvalues of

−∆ on Ω. Let u1, u2, ... be the corresponding eigenfunctions of −∆. Then

we have H− = [u1, ..., ui] and 0 is a saddle point of J with MI(0) = i.
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Case (b) dim(H−) = +∞. Have some practical difficulty to evaluate p(v).

Let L1 ⊂ H+, L2 ⊂ H− be finite-d subspaces, p(u, v) ∈ [L1, u] ⊕ [L2, v] s.t.

J ′(p(u, v))⊥[L1, u], J ′(p(u, v))⊥[L2, v], ∀(u, v) ∈ S(H+∩L⊥
1

)×(H−∩L⊥
2

).

Then
u∗ = arg min

u∈S
H+∩L⊥

1

J(p(
(u, v∗)

‖(u, v∗)‖
)) and v∗ = arg max

v∈S
H−∩L⊥

2

J(p(
(u∗, v)

‖(u∗, v)‖
))

lead to
J ′(p(

(u∗, v∗)

‖(u∗, v∗)‖
))⊥H+ ∩ L⊥

1 and J ′(p(
(u∗, v∗)

‖(u∗, v∗)‖
))⊥H− ∩ L⊥

2 .

Thus J ′(p( (u∗,v∗)
‖(u∗,v∗)‖)) = 0. Where

u(s) = u − sJ ′(p(u, v))H+ and v(t) = v + tJ ′(p(u, v))H−

are used to update an iteration and (s, t) is determined by the stepsize rule

J(p(
(u(s), v)

‖(u(s), v)‖
)) − J(p(u, v)) ≤ −

1

2
sus‖J

′(p(u, v))H+‖2

J(p(
(u, v(t))

‖(u, v(t))‖
)) − J(p(u, v)) ≥

1

2
tvt‖J

′(p(u, v))H−‖2.
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E.g., to find periodic solutions to a semilinear Schrödinger equation

−∆u(x) + V (x)u(x) = f(x, u), u ∈ H1(Rn), (3.13)

where V and f are periodic w.r.t. to x and 0 lies in a gap of the spectrum of

−∆ + V . Its functional is

J(u) =

∫

Rn

[1

2
(|∇u(x)|2 + V (x)u2(x)) − F (x, u)

]

dx,

where F (x, t) =
∫ t

0 f(x, s)ds satisfies certain growth conditions. Thus we

have a spectrum decomposition H = H+⊕H−, where H+ and H− are resp.,

infinite dimensional m.p.d. and m.n.d. subspaces of J ′′(0).

(6) Non Variational Problems: to be continue.


