Week in Review \# 6
Sections 3.1, 3.2, 3.3, 3.4, 3.5

Things to know:

- Be able to find derivatives using the derivative rules.
- Be able to find the equation of the tangent line using the derivative rules.
- Know the different notation for the derivative.
- Know how to compute higher ordered derivatives.

1. Find the derivatives for the following functions. Assume that a, b, and k are constants.
(a) $y=\frac{3}{t^{2}}-4 t^{6}+5$
(b) $u=3 a q^{4}+q^{1.45}+b^{3}$
(c) $f(x)=6 \sqrt[3]{x^{4}}+\frac{k}{2 x^{5}}$
(d) $y=\frac{5 x^{4}+7 x^{2}-2 x+3}{x}$
2. Find the equation of the tangent line for the function $y=x^{3} e^{\left(x^{2}-4\right)}+3 x$ at $x=2$
3. Find the value for a for the function $y=4 x^{3}+a x^{2}+3 x+2$ so that the rate of change at $x=1$ is 10 .
4. Find the values of x where the function $y=x^{4}-4 x^{2}+10 x+5$ has an instantaneous rate of change of 10 .
5. Suppose the depth of the water, in meters, is a function of time, in hours, since 6 am is given by $y=7+3.8 \sin (0.628 x)$. How quickly is the water rising or falling at 9 am ? at Noon?
6. If the position function for an object is given by $s(x)=7 x^{3}-15 x^{2}-x+25$. Find the velocity function and the acceleration function.
7. Find the derivative for the following functions.
(a) $f(x)=\sqrt[6]{x^{3}+7 x^{2}+6}$
(b) $h(t)=3 e^{3 t^{2}+4}+5^{4 t-5}$
(c) $y=\left(x^{3}+5 x\right) \cos \left(x^{4}\right)$
(d) $y=2^{\sin (3 x)}+\ln \left(x^{4}+7 x^{3}+15\right)$
(e) $g(x)=e^{-5 x^{2}} \sqrt{x^{8}+x-6}$
(f) $y=\frac{x^{2}+5}{x^{4}-2 x-1}$
(g) $y=\left(\frac{x^{4}+7 x+1}{\cos (5 x)}\right)^{4}$
(h) $g(a)=\ln \left(2 a+e^{\sin (3 a)}\right)$
(i) $y=\ln \left(\frac{7 x^{2}+5}{10-x^{5}}\right)$
(j) $f(x)=\ln \left(\left(x^{4}+5\right)^{7} \cos \left(3 x^{2}\right)\right)$
(k) $y=7^{\left(2-3 x^{2}\right)} \ln (5-2 x)$
