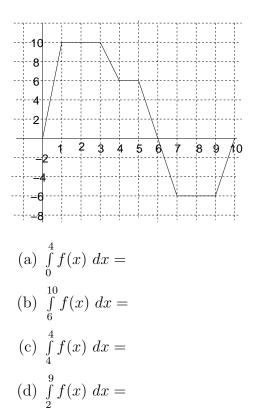

Week in Review # 8 Sections 5.2, 5.3, 5.4, 5.5

Things to know:

- Understand that $\Delta t = \frac{b-a}{n}$ is the base of the rectangles.
- Be able to estimate the definite integral (total change) using a graph or by rectangles.
- Be able to find the area between a function and the x-axis on an interval.
- Be able to find the area bounded between two functions.
- Know how to find the units of an integral and interpret the meaning of an integral.
 - 1. Use the table to estimate $\int_{0}^{40} f(x) dx$ with a right sum.

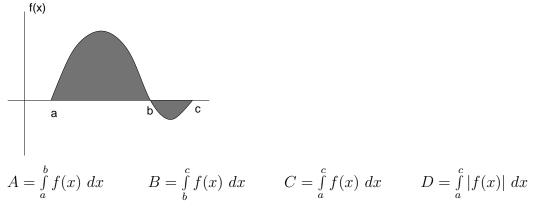
Х	0	8	21	35	40
f(x)	370	425	440	407	393


2. Use the figure and a left sum with n = 4 to estimate $\int_{2}^{10} f(x) dx$

- 3. Estimate the value of $\int_{0}^{4} e^{x^{2}} dx$ using a right sum with n = 2. Is this a lower or upper estimate?
- 4. Estimate the value of $\int_{1}^{13} \ln(x) dx$ using a left sum with n = 4. Is this a lower or upper estimate?
- 5. Compute the values of these definite integrals.

(a)
$$\int_{1}^{13} \ln(x) dx$$

(b) $\int_{3}^{7} \frac{2x^4}{x^2+8} dx$


6. Use the graph to answer these questions.

(e) Find the area between the function and the x-axis from x = 0 to x = 10

- 7. Does $\int_{-1}^{3} (5x x^2) dx$ represent an area or a difference of areas? Justify your answer.
- 8. Find the area between the given function and the x-axis from x = 0 to x = 4.
 - (a) $y = e^{x^2}$ (b) $y = 3x - x^2$
- 9. Given the functions $f(x) = x^2$ and $g(x) = 4\cos(x)$
 - (a) Set up the integral(s) that represent the area between these functions from x = 0 to $x = \pi$
 - (b) Compute the area represented in part (a).
- 10. Given the functions $f(x) = 2^x$ and g(x) = 2x + 3
 - (a) Set up the integral(s) that represent the area bounded between these functions.
 - (b) Compute the area represented in part (a).

11. use the graph below to arrange the definite integrals from smallest to largest

- 12. If k(t) is measured in km/hr² and t is measured in hours, what are the units of $\int_{a}^{b} k(t) dt$?
- 13. If $m'(x) = 0.8x^2 6x + 7$ is the rate a certain population of game fish is changing over the years, where x is measured in the number of years from 1995 and m'(x) is measured in millions of fish per year. Evaluate the definite integral and interpret
 - (a) $\int_{2}^{8} m'(x) dx$. (b) $\int_{5}^{8} m'(x) dx$.
 - (c) The population of this fish was estimated to be 40 million in the year 1998. Estimate the population in 2005.
- 14. When a cup of hot chocolate is bought its temperature is 175° F. The outside temperature is 50°F and the rate at which the chocolate is cooling is given by $T'(x) = -10e^{-0.08x}$, where x is measured in minutes and T'(x) is measured in degrees per minute. What is the temperature of the chocolate after 10 minutes? after 1 hour?