## Chapter 1 Homework Solutions

Compiled by Joe Kahlig

1. (a) The two points are $(70,120)$ and $(80,160)$.

$$
\text { slope }=\frac{160-120}{80-70}=4
$$

Answer(either of these):
point-slope formula: $y-120=4(x-70)$
slope-intercept formula: $y=4 x-160$
(b) Temperature is represented by the variable $x$, so plug $x=102$ into the equation in part (a).
Answer: 248 chirps per minute
(c) x-intercept: set $y=0$ in the equation in part (a) and solve for $x$.
x -intercept $=40$; This could make sense. It says the chirp rate is 0 when the temperature is $40^{\circ} \mathrm{F}$.
y-intercept: set $x=0$ in the equation in part (a) and solve for $y$.
$y$-intercept $=-160$; This doesn't make sense. It says there will be a negative number of chirps per minute when the temp is $0^{\circ} \mathrm{F}$.
2. (a) The points are $(24,172)$ and $(26,175)$.
$m=\frac{175-172}{26-24}=1.5$
Answer(either of these):
point-slope formula: $y-172=1.5(x-24)$
slope-intercept formula: $y=1.5 x+136$
(b) plug in $x=20$ and get height is 166 cm tall
(c) x-intercept: set $y=0$ in the equation in part (a) and solve for $x$.
x-intercept $=-90.6667$; Doesn't make sense in that it gives a negative length for a bone.
y-intercept: set $x=0$ in the equation in part (a) and solve for $y$.
y-intercept $=136$; This does not really make sense since a radius bone of length 0 gives a height of 136 cm .
3. The variable $x$ is the age of the truck. So we have the points $(3,20000)$ and $(8,12600)$.
Answer(either of these):
point-slope formula: $y-20000=-1480(x-3)$
slope-intercept formula: $y=-1480 x+24440$
4. The $x$ variable is age. So we have the points, $(0,14000)$ and $(10,1000)$. Using these points we get the equation, $y=-1300 x+14000$. Finally we want the value of the vehicle after 5 years, so plug $x=5$ into our equation.
Answer: $\$ 7500$
5. The points $(0,50000)$ are $(9,500)$.
(a) Answer(either of these):
point-slope formula: $y-500=-5500(x-9)$
slope-intercept formula: $y=-5500 x+50000$
(b) The slope is -5500 and it means that the value is decreasing by $\$ 5500$ each year.
6. The points $(3,85000)$ are $(11,36000)$. Note: $x$ is the age of the truck.
(a) Answer(either of these):
point-slope formula: $y-85000=-6125(x-3)$
slope-intercept formula: $y=-6125 x+103375$
(b) The tractor was new when it's age was 0 , so plug $x=0$ into the equation.
Answer: \$103,375
(c) $\$ 6125$ per year. Note: by asking for the rate of depreciation you are wanting how much the value of the object is decreasing per year.
7. The two points, $(1980,185)$ are $(1994,220)$.

Answer(either of these):
point-slope formula: $y-185=2.5(x-0)$
slope-intercept formula: $y=2.5 x+185$
8. The two points, $(4,40000)$ are $(12,15000)$.
(a) $y=-3125 x+52500$
(b) plug $x=0$ into our equation. Answer: $\$ 52,500$
(c) $\$ 3125$ per year. Note: by asking for the rate of depreciation you are wanting how much the value of the object is decreasing per year.
9. The two points, $(125,35.75)$ are $(265,51.15)$. Notice the points are in the form (miles, cost).
Answer: $y=0.11 x+22$
10. The two common methods to solve are substitution and elimination.
(a) Substitution Method:

Step 1. Solve one of the equations for one of the variables. In this example it easiest to solve the first equation for the $y$ variable.

$$
y=7 x-32
$$

Step 2. Plug this variable into the other equation and solve for the remaining variable.

$$
\begin{aligned}
2 x+3(7 x-32) & =19 \\
2 x+3(7 x-32) & =19 \\
2 x+21 x-96 & =19 \\
23 x & =115 \\
x & =5
\end{aligned}
$$

Step 3. Plug this answer into the original equation from step 1.

$$
y=7(5)-32=3
$$

Answer: $x=5, y=3$

## (b) Elimination Method:

Step 1. Multiply each equation by a number so that the coefficient in front of the variable $x$ (or possible $y$ ) are the same except for their sign. For this problem multiply the top equation by -2 and the bottom equation by 3 .

$$
\begin{aligned}
-6 x+8 y & =-44 \\
6 x+15 y & =21
\end{aligned}
$$

Step 2. Add the equations together and then solve for the remaining variable.

$$
\begin{aligned}
23 y & =-23 \\
y & =-1
\end{aligned}
$$

Step 3: Plug in the value of the variable into any of the equations.

$$
\begin{aligned}
3 x-4(-1) & =22 \\
3 x+4 & =22 \\
3 x & =18 \\
x & =6
\end{aligned}
$$

Answer: $x=6, y=-1$
(c) No solution.

If you ever get something that doesn't make sense (like $1=0$ or something) then there is no solution.
(d) $x=\frac{18}{11}, y=\frac{-17}{11}$
(e) $x=\frac{9}{7}, y=\frac{-10}{7}$
11. Break even means that cost and revenue are the same, so we need to solve $C=R$.

$$
15 x+12000=21 x
$$

Once we've found $x$, plug this into either equation (or both to check our answer) to find the rest of the point.
Answer: $(2000,42000)$
12. (a) $R=0.25 x$ since each scantron is sold for $\$ 0.25$.
(b) The cost function is $C=v c * x+f c$ where vc is the variable cost, i.e. cost per item, and fc is the fixed cost. From the problem we know $v c=0.15$. We also know that when 6500 units are sold the store breaks even, so when $x=6500$ we have Cost $=$ Revenue, so we have to solve

$$
\begin{aligned}
0.25(6500) & =0.15(6500)+f c \\
f c & =650
\end{aligned}
$$

Answer: $C=0.15 x+650$
(c) $P=R-C=0.25 x-(.15 x+650)=0.1 x-650$
13. The cost function is $C=v c * x+f c$ where vc is the variable cost, i.e. cost per item, and fc is the fixed cost. From the problem we know that $v c=5$ and that when $x=20$ then $C=500$. Use this to solve for the fixed cost.

$$
\begin{aligned}
& 500=5 * 20+f c \\
& 400=f c
\end{aligned}
$$

Thus $C=5 x+400$.
From the problem we know that when $x=30$ then the profit is 290. Also, Profit=Revenu-Cost and the revenue function is $R=A * x$ where A is the price that each item is sold.

$$
\begin{aligned}
P & =A * x-(5 x+400) \\
290 & =A * 30-(5 * 30+400) \\
290 & =30 A-550 \\
840 & =30 A \\
A & =28
\end{aligned}
$$

Thus $R=28 x$
14. (a) The cost function is $C=0.75 x+45$ here $x$ is the number of questions he answers. Revenue is $R=A x$ where $A$ is the selling price per item. Also, Profit $=$ Revenue - Cost. From the problem we know that when $x=40$ then $P=15$. So we need to solve the following:

$$
\begin{aligned}
15 & =A * 40-(.75 * 40+45) \\
15 & =40 A-75 \\
90 & =40 A \\
A & =2.25
\end{aligned}
$$

Answer: \$2.25
(b) Break even is when Revenue $=$ Cost, so we must solve

$$
2.25 x=.75 x+45
$$

Answer: 30 questions.
15. general formulas are $R=A^{*} x$ and $C=v c^{*} x+f c$
$\mathrm{A}=$ selling price per item
$\mathrm{vc}=$ cost per item
$\mathrm{fc}=$ fixed cost of the business
The problem tells us that $\mathrm{fc}=600$ (monthly rent).
When $x=60$ then the cost is 1680 so solve for the variable cost.

$$
\begin{aligned}
& 1680=\mathrm{vc} \cdot 60+600 \\
& \mathrm{vc}=18
\end{aligned}
$$

Revenue $=$ Cost when 40 cds are sold.

$$
\begin{aligned}
A \cdot 40 & =18 \cdot 40+600 \\
A & =33
\end{aligned}
$$

Answers: $R=33 x$
$C=18 x+600$
$P=15 x-600$
16. (a) $P=R-C=500 x-(240 x+2405)=260 x-2405$
(b) When your solve for x when $P=0$ or $R=C$, you get $x=9.25$. This is thousand of cups sold. Multiply by 1000 to get the number of cups sold. Answer: 9250 cups of lemonade.
(c) Plug in $x=9.25$ into the revenue function. Answer: \$4625.
17. Use the points $(10,159)$ and $(40,99)$. Remember that the points are of the form ( $\mathrm{x}, \mathrm{p}$ ) where $\mathrm{x}=$ quantity and $\mathrm{p}=$ price.
Answer: $p-159=-2(x-10)$ or simplified to $p=-2 x+$ 179
18. (a) The two points are $(700,580)$ and $(1300,940)$. The points are taken from the supply information.
Answer: $p=0.6 x+160$
(b) The two point are $(2000,400)$ and $(1500,500)$. The points are taken from the demand information.
Answer: $p=-0.2 x+800$
(c) Since both equations (in part a and b) are set equal to $p$, then you can set the equations and solve for $x$.

Answer: $(800,640)$
19. Use a method shown in problem 10 to solve the system of equations. Note: The chapter 2 material will make solving this type of problem easier.
Equilibrium quantity is 6580 items.
Equilibrium price is $\$ 424$.
20. (a) Note: The problem specifies that the value of $x$ is the number of rackets and $p$ is price in dollars. The two points are $(8000,120)$ and $(3000,230)$.
Answer: $p=-0.022 x+296$
(b) Solve the supply and demand equations simultaneously using a method outlined in problem 10. This answer will be the $x$ value.
Answer: 4400 rackets
(c) The $p$ value from part (b).

Answer: $\$ 199.20$
21. (a) $x$ is in thousands of units so our points are $(3,31)$ and $(8,16)$.
Answer: $3 x+p=40$
(b) Solve the supply and demand equations simultaneously using a method outlined in problem 10. The answer will be 1000 times the $x$ value.
Answer: 6000 markers
(c) The $p$ value from part (b).

Answer: $\$ 22$
22. (a) The two points are $(0,1.5)$ and $(600,3)$.

Answer: $p=.0025 x+1.5$
(b) Solve the supply and demand equations simultaneously using a method outlined in problem 10. This answer will be the $x$ value.
Answer: $x=200$

