Chapter 2 Homework Solutions

Compiled by Joe Kahlig

1. $\mathrm{x}=$ the number of dimes
$\mathrm{y}=$ the number of quarters
$x+y=32$
$.1 x+.25 y=5.15$
Solution:
19 dimes
13 quarters
2. $\mathrm{x}=$ the number of nickels
$\mathrm{y}=$ the number of quarters
$x+y=150$
$.05 x+.25 y=18.50$
Solution:
95 nickels
55 quarters
3. $x=$ amount invested in Fund A
$y=$ amount invested in Fund B
$x+y=50000$
$.074 x+.098 y=4072$
Solution:
$\$ 34,500$ invested in Fund A
$\$ 15,500$ invested in Fund B
4. $\mathrm{x}=$ number of five dollar bills
$y=$ number of ten dollar bills
$\mathrm{z}=$ number of twenty dollar bills
$x+y+z=70$
$5 x+10 y+20 z=740$
$x-3 y=0$
Solution:
36 five dollar bills
12 ten dollar bills
22 twenty dollar bills
5. $\mathrm{x}=$ number of minutes jogging
$y=$ number of minutes playing handball
$\mathrm{z}=$ number of minutes riding a bike
$x+y+z=60$
$11 x+13 y+5 z=660$
$x-2 z=0$

Solution:

20 minutes jogging
30 minutes playing handball
10 minutes riding a bike
6. $\mathrm{x}=$ number of hours Valley Mills is scheduled.
$\mathrm{y}=$ number of hours Marlin is scheduled.
$\mathrm{z}=$ number of hours Hillsboro is scheduled.
$10 x+7 y+5 z=1365$
$12 x+10 y+4 z=1530$
$6 x+8 y+13 z=1890$

Solution:
Valley Mills scheduled for 60 hours Marlin scheduled for 45 hours
Hillsboro scheduled for 90 hours
7. $x=$ the number of carton A
$y=$ the number of carton B
$z=$ the number of carton C
$2 x+6 y+4 z=50$
$5 x+8 y+6 z=78$
$3 x+2 y+10 z=52$
Solution:
4 of carton A
5 of carton B
3 of carton C
8. $x=$ number of plain hamburgers
$y=$ number of double cheeseburgers
$\mathrm{z}=$ number of regular cheeseburgers
$x+y+z=86$
$x+2 y+z=100$
$4 y+2 z=140$
Solution:
30 plain hamburgers
14 double cheeseburgers
42 regular cheeseburgers
9. $\mathrm{x}=$ number of one-bedroom units
$y=$ number of two-bedroom units
$\mathrm{z}=$ number of three-bedroom units
$x+y+z=225$
$y+z=2 x$
$x=3 z$
Solution:
$\mathrm{x}=75$
$\mathrm{y}=125$
$\mathrm{z}=25$
10. $\mathrm{x}=$ number of children at the show
$\mathrm{y}=$ number of students at the show
$\mathrm{z}=$ number of adults at the show
$x+y+z=900$
$2 x+3 y+4 z=2800$
$2 z=x+y$
Solution:
$\mathrm{x}=200$
$\mathrm{y}=400$
$\mathrm{z}=300$
11. $\mathrm{x}=$ number of barrels of mix A
$y=$ number of barrels of mix B
$\mathrm{z}=$ number of barrels of mix C
$\mathrm{w}=$ number of barrels of mix D
$30 x+30 y+30 z+60 w=900$
$50 z+75 y+25 z+25 w=750$
$30 x+20 y+20 z+50 w=700$

Initial matrix
final matrix
$\left[\begin{array}{rrrr|r}30 & 30 & 30 & 60 & 900 \\ 50 & 75 & 25 & 25 & 750 \\ 30 & 20 & 20 & 50 & 700\end{array}\right] \stackrel{\operatorname{rref}}{\rightarrow}\left[\begin{array}{rrrr|r}1 & 0 & 0 & 1 & 10 \\ 0 & 1 & 0 & -1 & -5 \\ 0 & 0 & 1 & 2 & 25\end{array}\right]$
Parametric Solution:
$x=10-w$
$y=-5+w$
$z=25-2 w$
$w=$ any number
Now place restrictions on the parameter. Since we are not told a maximum number of barrels that can be bought assume there is no limit. We know the number of barrels bought has to be non-negative.

$$
\begin{array}{cccc}
x \geq 0 & y \geq 0 & z \geq 0 & w \geq 0 \\
10-w \geq 0 & -5+w \geq 0 & 25-2 w \geq 0 & \\
10 \geq w & w \geq 5 & 25 \geq 2 w & \\
w \leq 10 & & 12.5 \geq w & \\
& & w \leq 12.5 &
\end{array}
$$

The restriction on the parameter is that w must be an integer and $5 \leq w \leq 10$ (i.e. $w=5,6,7,8,9,10$)
12. $\mathrm{x}=$ number of cars purchased with 6,000 gallon capacity
$\mathrm{y}=$ number of cars purchased with 8,000 gallon capacity $\mathrm{z}=$ number of cars purchased with 18,000 gallon capacity
$x+y+z=24$
$6000 x+8000 y+18000 z=250000$
Initial matrix and final matrix:
$\left[\begin{array}{rrr|r}1 & 1 & 1 & 24 \\ 6000 & 8000 & 18000 & 250000\end{array}\right] \begin{gathered}\operatorname{rref} \\ \rightarrow\end{gathered}\left[\begin{array}{rrr|r}1 & 0 & -5 & -29 \\ 0 & 1 & 6 & 53\end{array}\right]$
Parametric solution:
$x=-29+5 z$
$y=53-6 z$
$z=$ any number

We can not buy a part of a tank car. So z must be an integer. We also know that all of the variables must be greater than or equal to zero.

$$
\begin{array}{ccc}
x \geq 0 & y \geq 0 & z \geq 0 \\
-29+5 z \geq 0 & 53-6 z \geq 0 & \\
5 z \geq 29 & 53 \geq 6 z & \\
z \geq 5.8 & 53 / 6 \geq z & \\
& z \leq \frac{53}{6} \approx 8.8333 &
\end{array}
$$

In addition we know that the variables can not be any larger than 24

$$
\begin{array}{cc}
x \leq 24 & y \leq 24 \\
-29+5 z \leq 24 & 53-6 z \leq 24 \\
5 z \leq 53 & 29 \leq 6 z \\
z \leq 10.6 & 29 / 6 \leq z \\
& z \geq \frac{29}{6} \approx 4.8333
\end{array}
$$

Taken all together, we find that $z=6,7,8$. This problem ends up having only three solutions.
13. $\mathrm{x}=$ the number of chihuahuas bought
$y=$ the number of cats bought
$\mathrm{z}=$ the number of dogs bought
$x+y+z=14$
$4 x+7 y+16 z=116$
Solution:
$x=-6+3 z$
$y=20-4 z$
$z=$ any number
We can not buy a part of a pet. So z must be an integer. We also know that all of the variables must be greater than or equal to zero.
$x \geq 0$
$y \geq 0$
$z \geq 0$
$-6+3 z \geq 0$
$20-4 z \geq 0$
$3 z \geq 6$
$20 \geq 4 z$
$z \geq 2$
$5 \geq z$

In addition we know that the variables can not be any larger than 14

$$
\begin{array}{ccc}
x \leq 14 & y \leq 14 & z \leq 14 \\
-6+3 z \leq 14 & 20-4 z \leq 14 & \\
3 z \leq 20 & 6 \leq 4 z & \\
z \leq \frac{20}{3} \approx 6.6667 & 1.5 \leq z &
\end{array}
$$

Taken all together, we find that $z=2,3,4$, or 5
14. $s=$ the number of small shirts at the end of the day.
$m=$ the number of medium shirts at the end of the day.
$l=$ the number of large shirt at the end of the day.
$s+m+l=45$
$8 s+10 m+13 l=480$
$8(2 s)+10(4 m)+13(5 l)=1940$
Solution:
15 small shirts
10 medium shirts
20 large shirts
15. $\mathrm{x}=$ number of tank cars purchased with 7,000 gallon capacity
$\mathrm{y}=$ number of tank cars purchased with 9,000 gallon capacity
$\mathrm{z}=$ number of tank cars purchased with 20,000 gallon capacity
$x+y+z=40$
$7000 x+9000 y+20000 z=400000$
Solution:
$x=-20+5.5 z$
$y=60-6.5 z$
$z=4,6$, or 8
16. $\mathrm{x}=$ number of wood pens made
$y=$ number of silver pens made
$\mathrm{z}=$ number of gold pens made
$x+.5 y+3 z=12000$
$2 x+3 y+2 z=9600$

Solution:
$x=15600-4 z$
$y=-7200+2 z$
$3600 \leq z \leq 3900$ and z is an integer
17. $x=$ the number of evil sorcerers slain.
$y=$ the number of warriors slain.
$z=$ the number of orcs slain.
$x+y+z=370$
$2 x+4 y+z=560$
$y=6 x$
Solution:
10 evil sorcerers
60 warriors
300 orcs
18. $\mathrm{x}=$ the amount of money invested in the QX company
$\mathrm{y}=$ the amount of money invested in the RY company
$\mathrm{z}=$ the amount of money invested in the KZ company
$x+y+z=17300$
$2 z=y$
$1.5\left(\frac{x}{130}\right)+1\left(\frac{y}{75}\right)+2\left(\frac{z}{90}\right)=251$
Solution:
\$6,500 invested in QX
\$7,200 invested in RY
$\$ 3,600$ invested in KZ
19. $\mathrm{x}=$ number of 12 -ounce(small) cups sold
$y=$ number of 16 -ounce(medium) cups sold
$\mathrm{z}=$ number of 20 -ounce(large) cups sold
$x+y+z=23$
$12 x+16 y+20 z=376$
$x+2 y+3 z=48$
Solution:
$x=z-2$
$y=-2 z+25$
$z=2,3,4, \cdots 12$
20. (a) the variables x, y, z, and w are the average number of vehicles on that section of the road.
Note: the number of vehicles entering the intersection must equal the number of vehicles exiting the intersection.
$x+y=1400$
$y+z=1200$
$z+w=1100$
$x+w=1300$
Solution:
$x=1300-w$
$y=100+w$
$z=1100-w$
$w=$ any number
(b) $200 \leq w \leq 1000$
(c) To get this restriction we need $y=150$. This means that $w=50$. Since this is outside of the restrictions found in part b, the answer is no.
21. (a) $x+y=1300$
$y+z=1300$
$z+w-m=800$
$v-m=500$
$x+w-v=300$
Solution:
columns in the matrix are $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}, \mathrm{m}, \mathrm{w}$
$x=800+m-w$
$y=500-m+w$
$z=800+m-w$
$v=500+m$
$m=$ any number
$w=$ any number
(b) The only restriction that we can place on the parameters m and w is that they have to be non-negative, i.e. ≥ 0. We can not say anything else since the choice of m will affect the possible choices of w.
22.
(a) $\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 3 & 1\end{array}\right]-\left[\begin{array}{cc}2 & -4 \\ 0 & 4 \\ 8 & -2\end{array}\right]=\left[\begin{array}{cc}-1 & 4 \\ -1 & -2 \\ -5 & 3\end{array}\right]$
(b) Not possible, the dimension don't match.
(c) $\left[\begin{array}{ccc}7 & -14 & 0 \\ -7 & 21 & 14\end{array}\right]+\left[\begin{array}{ccc}2 & 0 & 8 \\ -4 & 4 & -2\end{array}\right]=$
$\left[\begin{array}{ccc}9 & -14 & 8 \\ -11 & 25 & 12\end{array}\right]$
(d) Not possible, the dimensions don't match.
(e) $\left[\begin{array}{ccc}3 & -6 & 0 \\ -3 & 9 & 6\end{array}\right]-\left[\begin{array}{ccc}2 & -2 & 6 \\ 0 & 4 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & -4 & -6 \\ -3 & 5 & 4\end{array}\right]$
23. (a) $\left[\begin{array}{ccc}5 a & -15 & 5 \\ 0 & 5 & 20\end{array}\right]+\left[\begin{array}{ccc}6 a & -6 & 2 \\ 0 & 2 & 6\end{array}\right]=\left[\begin{array}{ccc}11 a & -21 & 7 \\ 0 & 7 & 26\end{array}\right]$
(b) Not possible, the dimensions don't match.
(c) Not possible, the dimensions don't match.
(d) $\left[\begin{array}{cc}6 & 0 \\ -6 & 9\end{array}\right]+\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}6+a & b \\ -6+c & 9+d\end{array}\right]$
(e) $\left[\begin{array}{ccc}2 & 6 & 2 j \\ -4 & 0 & 4\end{array}\right]+\left[\begin{array}{ccc}0 & 3 & -5 \\ 7 & k & 2\end{array}\right]-C^{T}=$
$\left[\begin{array}{ccc}2 & 9 & 2 j-5 \\ 3 & k & 6\end{array}\right]-\left[\begin{array}{cccc}2 & 7 & 1 & b \\ -1 & 0 & -3 & \end{array}\right]=$
$\left[\begin{array}{ccc}0 & 8 & 2 j-5-b \\ 4 & \mathrm{k} & 9\end{array}\right]$
24. (a) $\left[\begin{array}{cc}6 x+2 & 12+2 u \\ -3-2 z & 14\end{array}\right]=\left[\begin{array}{cc}2 y & 5 \\ 7 & y\end{array}\right]$

Now solve these equations:
$6 x+2=2 y$
$12+2 u=5$
$-3-2 z=7$
$14=y$
Answer:
$y=14, z=-5, u=-3.5$, and $x=26 / 6$
(b) $\left[\begin{array}{cc}3 & -4 x+5 y \\ 6 y+10 x & 12\end{array}\right]=\left[\begin{array}{cc}3 & 22 \\ -3 & 12\end{array}\right]$

Now solve these equations:
$-4 x+5 y=22$
$6 y+10 x=-3$
Answer: $x=\frac{-147}{74}$ and $y=\frac{104}{37}$
(c) $\left[\begin{array}{cc}2 & 3 x \\ 6 x & 6\end{array}\right]+2\left[\begin{array}{cc}3 & -2 y \\ 6 y & -1\end{array}\right]=\left[\begin{array}{cc}8 & -13 \\ 84 & 4\end{array}\right]$
$\left[\begin{array}{cc}8 & 3 x-4 y \\ 6 x+12 y & 4\end{array}\right]=\left[\begin{array}{cc}8 & -13 \\ 84 & 4\end{array}\right]$
Now solve these equations:
$3 x-4 y=-13$
$6 x+12 y=84$
Answer: $x=3$ and $y=5.5$
(d) $\left[\begin{array}{lc}x-6 y & 2-2 z \\ y-14 & -1\end{array}\right]=\left[\begin{array}{cc}4 & 0 \\ 2 x & -1\end{array}\right]$

Now solve these equations:
$x-6 y=4$
$2-2 z=0$
$y-14=2 x$
Answer: $x=-8, y=-2$, and $z=1$
25. (a) 3×1
(b) 5×3
(c) Not possible.
(d) 4×4
(e) Not possible.
(f) 3×5
26. (a) False. Try with the folowing.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(b) True
(c) False, it is a 4×4 matrix.
27.
(a) Not possible
(b) $\left[\begin{array}{cc}13 & -7 \\ 4 & 3\end{array}\right]$
(c) Not possible
(d) $\left[\begin{array}{ccc}2 & -2 & 4 \\ -2 & 7 & 6\end{array}\right]$
(e) $\left[\begin{array}{cc}17 & 20 \\ 7 & 6\end{array}\right]$
(f) $\left[\begin{array}{cc}a-2 c & b-2 d \\ 2 c & 2 d \\ 4 a-c & 4 b-d\end{array}\right]$
(g) $\left[\begin{array}{lll}a & -a+2 b & 3 a+b \\ c & -c+2 d & 3 c+d\end{array}\right]$
28. $\left[\begin{array}{ccc}2 & 6 & -4 \\ 10 & 16 & -8 \\ -12 & 20 & 10\end{array}\right]$
29. $A B=\left[\begin{array}{ll}x+5 & 2 \\ y+5 & 2\end{array}\right]$ and $B A=\left[\begin{array}{cc}x & 1 \\ 5 x+2 y & 7\end{array}\right]$
30. Note: either multiple the entire matrix or only use the row and column needed for the answer.
(a) $C_{1,3}=0+9+20=29$
(b) $D_{3,1}=0+0+50+4=54$
31. $\left[\begin{array}{cc}-5 & 30 \\ 6+x-2 y & 15+5 y\end{array}\right]=\left[\begin{array}{cc}-5 & y+2 z \\ 1 & 35\end{array}\right]$

Now solve these equations:
$30=y+2 z$
$6+x-2 y=1$
$15+5 y=35$
Answer: $x=3, y=4$, and $z=13$
32. (a) $B M=\left[\begin{array}{ll}2910 & 8970\end{array}\right]$

There is no meaning for these numbers since the lables of the rows/collumns do not match up.
(b) $M L^{T}=\left[\begin{array}{l}7200 \\ 2700\end{array}\right]$

The 7200 is the amount of vitamin A and the 2700 is the amount of vitamin C that is consumed at lunch.
(c) $(B+L) M=\left[\begin{array}{ll}6840 & 21480\end{array}\right]$

There is no meaning for these numbers since the lables of the rows/collumns do not match up.
(d) $M(B L)^{T}=\left[\begin{array}{c}11200 \\ 4040\end{array}\right]$

The 11200 is the amount of vitamin A and the 4040 is the amount of vitamin C that is consumed together at breakfast and lunch.
33. (a) $x=3-4 y+w$
$z=4-2 w$
$y, w=$ any number
(b) $x=8, y=2$, and $z=5$
(c) No solution.

Note: no solution mean no solution for ALL of the variables. Do not say that $x=8, z=5$, no solution.
(d) $x=3+z$
$y=1-2 z$
$z=$ any number
(e) $x=0, y=4$, and $z=2$
(f) No solution
(g) $x=-2, y=1, z=3$
(h) No solution
34. (a) $\left[\begin{array}{ccc|c}1 & 0 & 1 & -12 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 7 & -7\end{array}\right]$
(b) $\left[\begin{array}{ccc|c}1 & 0 & 9 & 12 \\ 0 & 2 & 19 & 27 \\ 0 & 2 & -12 & -4\end{array}\right]$
(c) $\left[\begin{array}{ccc|c}1 & 2 & 5 & 3 \\ 0 & -2 & 4 & 4 \\ 0 & 18 & 3 & 10 \\ 3 & 0 & 6 & 1\end{array}\right]$
(d) $\left[\begin{array}{ccc|c}4 & 0 & 26 & -7 \\ 0 & 4 & -2 & 5 \\ 0 & 7 & 74 & 35 \\ 5 & 1 & 2 & 5\end{array}\right]$
35. (a) i. $x=2-2 z$

$$
y=2+z
$$

$$
z=\text { any number }
$$

ii. no solution
(b) i. $x=12, y=-22$, and $z=41$
ii. $x=\frac{-2}{17}, y=\frac{-10}{17}$, and $z=\frac{-60}{17}$
(c) no solution
(d) $x=7-10 z$
$y=1+3 z$
$\mathrm{z}=$ any number
(e) $x=8, y=3$, and $z=5$
(f) $x=\frac{70}{3}+z$
$y=\frac{110}{3}-2 z$
$z=$ any number
(g) $x=1, y=-2, z=3$, and $w=8$
(h) $x=26-2 y+14 w$
$z=7+6 w$
$\mathrm{y}=$ any number
$\mathrm{w}=$ any number

