Chapter 4 Homework problems
Compiled by Joe Kahlig

Section 4.2

Solve these linear programming problems.

1. Minimize: $C=-3 x-2 y-z$

Constraints:
$-x+2 y-z \leq 8$
$x-2 y+2 z \leq 10$
$2 x+4 y-3 z \leq 20$
$x, y, z \geq 0$
2. Minimize: $C=4 x+5 y-9 z$

Constraints:
$3 x+2 y-12 z \leq 120$
$2 x+4 y+6 z \leq 120$
$x-2 y+3 z \leq 52$
$x, y, z \geq 0$
For these problems do the following.
A) State the dual problem.
B) Solve the dual problem and give the solution to the primal problem, i.e. origional problem.
3. Minimize: $f=2 x+5 y$

Constraints:
$4 x+y \geq 40$
$2 x+y \geq 30$
$x+3 y \geq 30$
$x, y \geq 0$
4. Minimize $f=10 x+16 y+20 z$

Constraints:
$3 x+y+6 z \geq 9$
$x+y \geq 9$
$4 x+z \geq 12$
$x \geq 0, y \geq 0, z \geq 0$
5. Minimize: $C=4 x+2 y$

Constraints:
$3 x+2 y \geq 5$
$7 x-8 y \leq 1$
$x \geq 0, y \geq 0$
6. Minimize: $C=4 x+5 y+z$

Constraints:
$10 x+12 y+5 z \geq 100$
$5 x+7 y+5 z \leq 75$
$x, y, z \geq 0$
7. The Acrosonic Company manufactures a model G loudspeaker system in plants I and II. The output at plant I is at most 800 systems per month, whereas the output at plant II is at most 600 per month. These loudspeaker systems are shipped to the three warehouses-A, B, and Cwhose minimum monthly requirements are 500,400 , and 400, respectively. Shipping costs from plant I to warehouse A, warehouse B, and warehouse C are $\$ 16, \$ 20$, and $\$ 22$ per loudspeaker system, respectively, and shipping costs from
plant II to each of these warehouses are $\$ 18, \$ 16$, and $\$ 14$, respectively. What shipping schedule will enable Acrosonic to meet the warehouses' requirements and at the same time keep its shipping costs to a minimum? What is the minimum shipping cost?

Note: set up of this problem was covered in section 3.2
$x=$ the number of loudspeakers shipped from plant I to warehouse A.
$y=$ the number of loudspeakers shipped from plant I to warehouse B.
$z=$ the number of loudspeakers shipped from plant I to warehouse C.
$u=$ the number of loudspeakers shipped from plant II to warehouse A.
$v=$ the number of loudspeakers shipped from plant II to warehouse B.
$w=$ the number of loudspeakers shipped from plant II to warehouse C.

Objective function:
$C=16 x+20 y+22 z+18 u+16 v+14 w$ minimized
Constraints:
$x+y+z \leq 800$
$u+v+w \leq 600$
$x+u \geq 500$
$y+v \geq 400$
$z+w \geq 400$
$x, y, z, u, v, w \geq 0$

