Chapter 7 Homework Solutions

Compiled by Joe Kahlig

1. (a) $\mathrm{S}=\{$ (heads, red), (heads, white), (tails, red), (tails, white) $\}$
(b) There are multiple answers for this part. Any two disjoint subsets of S are acceptable.
$\mathrm{E}=\{(\mathrm{h}, \mathrm{r}),(\mathrm{h}, \mathrm{w})\}$
$\mathrm{F}=\{(\mathrm{t}, \mathrm{w})\}$
2. (a) Since we are drawing them out simultaneously, we don't care about the order. i.e. $(1,2)$ is the same as $(2,1)$
$S=\{(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3)$, $(2,4),(2,5),(2,6),(2,7),(3,4)(3,5),(3,6)$, $(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)\}$
(b) $E=\{(1,3),(1,5),(1,7),(3,5),(3,7),(5,7)\}$
(c) $F=\{(2,4),(2,6),(4,6)\}$
(d) No.
(e) There are multiple answers for this part. Any two disjoint subsets of S are acceptable.
$\mathrm{G}=\{(1,3),(1,4),(1,5),(2,3)\}$
$\mathrm{H}=\{(2,5),(3,4),(3,5),(4,5)\}$
3. (a) $S=\{6,10,11,15,20\}$
(b) Not equally likely since the probability of getting 20 cents is $\frac{C(2,2)}{C(6,2)}=\frac{1}{15}$ and the probability of getting 10 cents is $\frac{C(3,2)}{C(6,2)}=\frac{1}{5}$. Since these are not the same, the sample is not equally likely. Note that we used concepts in section 7.4 to compute these probabilities.
4. Answers will vary.
$\mathrm{E}=\{\mathrm{HHH}\}$
$\mathrm{F}=\{\mathrm{HHT}, \mathrm{HTT}, \mathrm{TTT}\}$
5. Let $\mathrm{w}=$ white ball, $\mathrm{g}=$ green ball, and $\mathrm{y}=$ yellow ball.
(a) Note that order is important.
$S=\{w w, w g, w y, g w, g g, g y, y w, y g\}$
(b) $\mathrm{G}=\{\mathrm{wg}, \mathrm{gw}, \mathrm{gy}, \mathrm{yg}\}$
(c) Answers will vary, but pick E such that $E \cap G=\emptyset$ One answer is: $\mathrm{E}=\{\mathrm{ww}, \mathrm{wy}\}$.
6. (a) $S=\{R, E, P, S, N, T, A, I, V\}$
(b) $2^{n(S)}=2^{9}=512$
(c) $\mathrm{E}=\{\mathrm{E}, \mathrm{A}, \mathrm{I}\}$
7. (a) No. There are more red balls in the bag, so the drawing a red ball is more likely than drawing a white ball.
(b) See part (a) for the answer since uniform and equally likely mean the same thing.
8. (a) $0.2=1-(.15+.25+.4)$
(b) $0.4=.15+.25$
9. Since $P(a)+P(b)+P(c)=1$ and $P(a)+P(b)=0.75$, then $P(c)=0.25$. Similarly $P(a)=0.55$ and $P(b)=0.2$.
10. $J^{C}=\{d, e\}$ which means that $P(d)+P(e)=0.4$ and thus $P(d)=0.25$. Since all probability adds up to 1 we get that $P(c)=0.2$
11. $J^{C}=\{a, d, e\}$ which means that
$P(a)+P(d)+P(e)=0.45$
$P(a)+0.2+0.1=0.45$
$P(a)=0.15$
Since a and b are equally likely, then $P(b)=0.15$. Since all probability adds up to 1 , we get that $P(c)=0.4$
12. (a) $\frac{20+7}{90}=\frac{27}{90}$
(b) $\frac{21}{90}$
13. $\frac{25+30}{210}=\frac{55}{210}$
14. (a) $\frac{6}{11}$
(b) $\frac{6+2}{11}=\frac{8}{11}$
15. (a) $\frac{41}{713}$
(b) $\frac{55+41+52}{713}=\frac{181-33}{713}=\frac{148}{713}$
(c) $\frac{171+199-41}{713}=\frac{329}{713}$
(d) $\frac{199+141}{713}=\frac{340}{713}$
16. (a) $\frac{85+35}{300}$
(b) $\frac{85}{300}$
(c) $\frac{58}{300}$
(d) $\frac{170+26+154-12-138}{300}=\frac{200}{300}$
17. (a) $\frac{30+20+10+10}{1000}=\frac{70}{1000}$
(b) $\frac{90+290-30}{1000}=\frac{350}{1000}$
(c) $\frac{250+320+260}{1000}=\frac{830}{1000}$
18. Use the information to fill in a venn diagram to answer part b and c.

(a) $0.4+0.2=0.6$ or $1-0.4=1-P\left(E^{C}\right)$
(b) 0.4
(c) 0.8
19. Use the information to fill in a venn diagram to answer part c.

(a) $0.4=1-0.6=1-P\left(E^{C}\right)$
(b) $0.1=0.4+0.5-0.8=P(E)+P(F)-P(E \cup F)$
(c) 0.3
20. Use the information to fill in a venn diagram to answer part b and c.

(a) $0.55=1-P\left(F^{C}\right)$
(b) 0.3
(c) $0.3+0.25+0.05=0.6$
21. $P(E \cap F)=0$, since E and F are mutually exclusive. Use the information to fill in a venn diagram

(a) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$ $P(E \cup F)=0.25+0.35-0=0.6$
(b) 0.65
22. (a) $\frac{1}{6}+\frac{1}{8}+\frac{1}{8}$
(b) $\frac{1}{3}+\frac{1}{6}$
(c) $1-\left(\frac{1}{3}+\frac{1}{6}\right)$
(d) 2^{6}. An event is the same as a subset.
(e) A and B are mutually exclusive

C and D are mutually exclusive
23. (a) $\mathrm{X}=\mathrm{a} 4$ on either die and $\mathrm{Y}=\operatorname{sum}$ of 5 .

Red Die

Answer: $\frac{2}{36}$
(b) $\mathrm{X}=\mathrm{a} 3$ on either die and $\mathrm{Y}=$ sum of 4 .

Red Die

Answer: $\frac{12}{36}$
(c) $\mathrm{X}=\mathrm{a} 6$ on red die and $\mathrm{Y}=$ number less than 3 on the green.

Red Die

Answer: $\frac{2}{36}$
24. $\mathrm{X}=\mathrm{a} 4$ on either die and $\mathrm{Y}=$ sum of 7

	1	2	3	4	5	6
1						
2						
3						
4						

Answer: $\frac{11}{24}$
25. Use a venn diagram to organize the information.

Answer: $\frac{180+85}{500}=\frac{265}{500}=0.53$
26. $\frac{4 * 3 * 4 * 3}{8 * 7 * 6 * 5}$
27. (a) $\frac{8 * 7 * 13}{15 * 14 * 13}$
(b) $\frac{8 * 7 * 3}{15 * 14 * 13}$
28. First count the number of ways to hang the posters on the wall so that the posters of the same type are together. The 3 ! counts the rearrangement of the groups. Divide by the total number of ways to hang the posters on the wall.
Answer: $\frac{(5!4!2!) * 3!}{11!}$
29. Choose both Bob and Phill, $\mathrm{C}(2,2)$, and choose then 3 of the remaining 18 men. Choose Sara then choose 4 of the remaining 29 women. Divide by the total number of ways to choose 5 men and 5 women. Note: $\mathrm{C}(2,2)$ and $\mathrm{C}(1.1)$ are both equal to 1 and thus do not have to be included in the answer.
Answer: $\frac{C(2,2) * C(18,3) * C(1,1) * C(29,4)}{C(20,5) * C(30,5)}$
30. Select 3 of the 7 friends and then select 7 of the 93 other applicants.
Answer: $\frac{C(7,3) * C(93,7)}{C(100,10)}=0.01915$
31. First figure out how many ways the couples may be in the row and then divide by the number of ways 8 people can be placed in a row.
Answer: $\frac{8 * 1 * 6 * 1 * 4 * 1 * 2 * 1}{8!}=0.0095$
32. $\frac{C(4,2)+C(5,2)}{C(9,2)}$
33. Use the union formula for counting or probability.
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
where A is exactly 4 green marbles and B is exactly 2 blue marbles.
Answer: $\frac{C(8,4) C(16,2)+C(6,2) C(18,4)-C(8,4) C(6,2)}{C(24,6)}$
34. The 4 ! is the ordering of the roses on a single shelf. The 8 ! is the ordering of the flowers on the other two shelves. Multiply by 3 since the roses can be on any of the three shelves.
Answer: $\frac{3(4!* 8!)}{12!}$
35. At least 2 freshmen are the cases: (exactly 2 fr and 1 other) or (exactly 3 fr).
Answer: $\frac{C(12,2) * C(10,1)+C(12,3) C(10,0)}{C(22,3)}=0.5714$
36. there are 2 defective and 8 good typewriters.
(a) $\frac{C(2,0) * C(8,4)}{C(10,4)}=\frac{70}{210}=\frac{1}{3}$
(b) $\frac{C(2,1) * C(8,3)}{C(10,4)}=\frac{112}{210}=\frac{8}{15}$
37. Select artist A and B and then select two more artist from the remaining 6 . Note: $C(2,2)=1$ so it does not need to be included in the answer.
Answer: $\frac{C(2,2) * C(6,2)}{C(8,4)}$
38. Select 5 banks from the 6 with discounts and then select 1 bank from the 4 without discounts.
Answer: $\frac{C(6,5) * C(4,1)}{C(10,6)}=0.1143$
39. $\frac{C(13,9) C(12,1)+C(13,10)}{C(25,10)}$
40. For this problem it is easier to calculate total - what you don't want. You don't want less than two born in July. If 0 were born in July then there are 11 other months in which people can be born, 11^{7} ways. Next if exactly 1 was born in July there are $1 * 11^{6}$ ways and we multiply this by 7 so that any of the 7 people could be born in July.
Answer: $1-\left(\frac{11^{7}}{12^{7}}+\frac{7 *\left(1 * 11^{6}\right)}{12^{7}}\right)$
41. The numerator is a permutation since the day a person is born is acting like a label.
(a) $\frac{P(365,20)}{365^{20}}$
(b) easiest way to count this it to do 1 minus what you don't want, which happens to be part (a).
Answer: $1-\frac{P(365,20)}{365^{20}}=0.4114$
42. When picking three people we have the following cases:

Male	Female
0	3
1	2
2	1
3	0

At most two males are the top three cases. notice that we do not want the last case.
Answer: $1-\frac{C(7,3)}{C(12,3)}$
or $\frac{C(7,2) * C(5,1)+C(7,1) * C(5,2)+C(7,0) * C(5,3)}{C(12,3)}$
43. (a) $P(N \mid M)=\frac{P(N \cap M)}{P(M)}=\frac{0.25}{.4+.25}=\frac{0.25}{0.65}$
(b) $P(M \mid N)=\frac{P(M \cap N)}{P(N)}=\frac{0.25}{.15+.25}=\frac{0.25}{0.4}$
44. (a) $P(J \mid K)=\frac{P(J \cap K)}{P(K)}=\frac{.3}{.3+.22+.09}=\frac{.3}{.61}$
(b) $P\left(M \mid K^{C}\right)=\frac{P\left(M \cap K^{C}\right)}{P\left(K^{C}\right)}=\frac{.14}{.15+.14+.1}=\frac{.14}{.39}$
(c) $P(M \mid N)=\frac{P(M \cap N)}{P(N)}=\frac{0}{.09+.1}=0$
45. Let $\mathrm{E}=$ solve the first problem and $\mathrm{F}=$ solve the second problem. Fill in a venn diagram with the given information.

(a) $P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{.2}{.75}$
(b) $P\left(E^{C} \mid F\right)=\frac{P\left(E^{C} \cap F\right)}{P(F)}=\frac{.25}{.45}$
46. First organize the information into a table.

	Fresh.(F)	Soph.(S)	Total
Male(M)	6	18	24
Female(F)	1	17	28
Total	7	36	42

Answer: $P(S \mid M)=\frac{18}{24}$
47. (a) $P(O \mid$ only rifle $)=\frac{5}{26}$
(b) $P(O \mid$ own handgun $)=\frac{58+25}{120}=\frac{83}{120}$
(c) $P(F \mid$ own rifle $)=\frac{12+5}{26+35}=\frac{17}{61}$
48. (a) $P(2$ cds \mid over 25$)=\frac{40}{210}$
(b) $P(19--25 \mid$ lessthan2cds $)=\frac{70+110}{570}=\frac{180}{570}$
49. We already know two juniors are attending, so we need to determine the remaining three students. We need exactly 1 junior of the remaining 10 and 2 of the 7 remaining students.
Answer: $\frac{C(10,1) * C(7,2)}{C(17,3)}$
50. We already know three questions: 2 difficult and 1 easy, so we need to determine the remaining questions. We need exactly 2 difficult questions of the remaining 6 and 5 easy questions of the remaining 11.
Answer: $\frac{C(6,2) * C(11,5)}{C(17,7)}$
51. Use a venn diagram to organize the information.

(a) $\frac{P\left(F^{C} \cap E\right)}{P(E)}=\frac{0.4}{0.6}$
(b) $\frac{P\left(E^{C} \cap F^{C}\right)}{P\left(F^{C}\right)}=\frac{0.3}{0.7}$.
(c) $\frac{P\left(F \cap E^{C}\right)}{P\left(E^{C}\right)}=\frac{0.1}{0.4}$
52. (a) $P\left(A^{C} \mid C\right)=\frac{P\left(A^{C} \cap C\right)}{P(C)}$ $A^{C} \cap C=\left\{s_{3}, s_{5}\right\}$
Answer: $\frac{1 / 3+1 / 6}{1 / 8+1 / 3+1 / 6}$
(b) $P(C \mid B)=\frac{P(C \cap B)}{P(B)}$
$C \cap B=\left\{s_{3}, s_{5}\right\}$
Answer: $\frac{1 / 3+1 / 6}{1 / 3+1 / 6+1 / 12}$
53. (a) $0.6 * 0.3+0.4 * 0.2=0.26$
(b) $0.4 * 0.2+0.4 * 0.5=0.28$
(c) $0.6 * 0.7+0.4 * 0.3=0.54$
(d) $0.4 * 0.5=0.2$
(e) $P(A \cup G)=P(A)+P(G)-P(A \cap G)$
$P(A \cup G)=0.6+0.54-0.42=0.72$
(f) 0.5
(g) 0.7
(h) $P(A \mid G)=\frac{P(A \cap G)}{P(G)}=\frac{0.6 * 0.7}{0.6 * 0.7+0.4 * 0.3}$
(i) $P(B \mid R)=\frac{B \cap R)}{P(R)}=\frac{0.4 * 0.5}{0.4 * 0.5}=1$
(j) $P(A \mid Y)=\frac{A \cap Y)}{P(Y)}=\frac{0.6 * 0.3}{0.6 * 0.3+0.4 * 0.2}$
(k) $P(A \mid R)=\frac{A \cap R)}{P(R)}=\frac{0}{0.4 * 0.5}=0$
54. (a) $0.1 * 0.2+0.6 * 0.7=0.44$
(b) $0.3 * 0.25=0.075$
(c) 0.8
(d) $P(C \mid G)=\frac{C \cap G)}{P(G)}=\frac{0.3 * 0.75}{0.6 * 00.3+00.3 * 0.75}$
(e) $P(C)=0.3$
$P(E)=0.1 * 0.2+0.6 * 0.7=0.44$
$P(E \cap C)=0$
Since $P(E \cap C) \neq P(E) * P(C)$ they are not independent.
(f) Yes since $P(E \cap C)=0$
(g) $P(B)=0.6$
$P(E)=0.1 * 0.2+0.6 * 0.7=0.44$
$P(E \cap B)=0.6 * 0.7=0.42$
$P(E) * P(B)=0.6 * 0.44=0.264$
Since $P(E \cap B) \neq P(E) * P(B)$ they are not independent.
(h) No since $P(E \cap B) \neq 0$
55. Draw a tree.

(a) $P(M \mid C)=\frac{P(M \cap C)}{P(C)}=\frac{0.25 * 0.45}{0.25 * 0.45+0.75 * 0.8}$
(b) $P(F \cup C)=.75+.25 * .45=0.8625$
56. The third child has a good squirt gun so there are only 59 good guns remaining. Thus the second child culd pick any of the 20 bad squirt guns out of the total of $59+20=79$ squirt guns.
Answer: $\frac{20}{79}$
57. Draw a tree.

$$
P(d)=0.6 * 0.97+0.4 * 0.95=.962
$$

Answer: 96.2\%
58. Draw a tree.

(a) $P(A \mid V)=\frac{P(A \cap V)}{P(V)}=\frac{0.7 * 0.12}{0.7 * 0.12+0.3 * 0.28}$
(b) $P(V)=0.7 * 0.12+0.3 * 0.28=0.168$
59. Draw a tree.

(a) $P(T \mid Q)=\frac{.75 * .9}{.75 * .9+.25 * .45}$
(b) $P(N Q \cap N T)=.25 * .55$
60. Draw a tree.

(a) $P(C \cap W)=\frac{3}{6} * \frac{3}{5}$
(b) $P(B \mid r)=\frac{2 / 6 * 1 / 4}{1 / 6 * 3 / 7+2 / 6 * 1 / 4+3 / 6 * 2 / 5}$
61. A club and a diamond have been accounted for so there are still 13 hearts remaining and a total of 50 cards remaining.
Answer: $\frac{13}{50}$
62. (a) $\frac{12}{46}$
(b) $\frac{3}{46}$
(c) The seventh card was the king of hearts.

Answer: 0
63. Think of a tree.

you want $P(N \cap F)$.
Answer: $\frac{5}{8} * \frac{3}{7}=\frac{15}{56}$
64. Draw a tree similar to the one from problem 63
(a) $\frac{4}{9} * \frac{3}{8} * \frac{5}{7}=\frac{60}{504}$
(b) By the fifth draw you have to have drawn a green ball. since you stop when you draw a green ball, you will never have a sixth draw.
Answer: 0
65. Draw a tree.

(a) $P(g)=0.7 * 0.98+0.3 * 0.9=0.956$
(b) $P(Y \mid d)=\frac{0.3 * 0.1}{0.7 * 0.02+0.3 * 0.1}$
(c) $P(d \cap Y)=0.1 * 0.3$
66. Draw a tree.

(a) $P(g \cap(B \cup C)) P(g \cap B)+P(g \cap C)=$ $0.2 * 0.94+0.5 * 0.91=0.643$
(b) $P(g \mid C)=\frac{P(g \cap C)}{P(C)}=\frac{0.5 * 0.91}{0.5}=0.91$
(c) $P(A \mid d)=\frac{P(A \cap d)}{P(d)}=$ $\frac{0.3 * 0.2}{0.3 * 0.02+0.2 * 0.06+0.5 * 0.09}=0.095238$
67. (a) $X=3$ or 4 on six sided die $\mathrm{Y}=$ sum greater than 5.

	1	2	3	4	5	6
1		X	X	Y	Y	
2		X	Y	Y		
3				Y	Y	
4		Y		Y	Y	

$P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=\frac{5 / 24}{14 / 24}$
Answer: $\frac{5}{14}$
(b) $\mathrm{X}=$ odd sum greater than 6
$\mathrm{Y}=4$ on either die

	1	2	3	4	5	6
1				Y		X
2				Y	X	
3						X
4	Y	Y	Y	Y		

$P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=\frac{3 / 24}{9 / 24}$
Answer: $\frac{3}{9}$
(c) $\mathrm{X}=$ sum of 4
$\mathrm{Y}=$ sum at most 6

	1	2	3	4	5	6
1	Y	Y		Y	Y	
2	Y	Y	Y			
3	Y	Y	Y			
4	Y	Y				

$P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=\frac{3 / 24}{14 / 24}$
Answer: $\frac{3}{14}$
(d) $\mathrm{X}=$ sum of 4
$Y=$ roll was a double

	1	2	3	4	5	6
1	Y	X				
2						
3	X		Y			
4				Y		

$P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=\frac{1 / 24}{4 / 24}$
Answer: $\frac{1}{4}$
68. (a) probability tree.

(b) $\frac{3}{8} * \frac{7}{12}+\frac{5}{8} * \frac{8}{12}=\frac{61}{96}$.
(c) $\mathrm{P}\left(2^{\text {nd }} \mathrm{r} \mid 1^{\text {st }} \mathrm{b}\right)=\frac{4}{12}$
(d) $\mathrm{P}\left(1^{s t} \mathrm{r} \mid 2^{n d} \mathrm{~b}\right)=\frac{21}{61}$
(e) $\mathrm{P}\left(1^{s t} \mathrm{r} \mid 2^{\text {nd }} 4\right)=\frac{3}{7}$
69. (a) The probability of the first level of the tree was computed using combinations and then converting the answers to fractions.

(b) $\frac{15}{28} * \frac{8}{13}+\frac{10}{28} * \frac{4}{13}=\frac{40}{91}$
(c) $P(r r \cap b)=\frac{3}{28} * \frac{7}{13}=\frac{3}{52}$
(d) $P(r \mid r b)=\frac{5}{13}$
(e) $P(r b \mid r)=\frac{75}{133}$
(f) $P((r r \cup r b) \mid r)=$
$\frac{(3 / 28) *(6 / 13)+(15 / 28) *(5 / 13)}{(3 / 28) *(6 / 13)+(15 / 28) *(5 / 13)+(10 / 28) *(4 / 13)}=\frac{93}{133}$
70. Draw a tree.

(a) $P(I \mid M)=0.65$
(b) $P(F \mid O)=\frac{.4 * 75 / 135}{.35 * 60 / 135+.4 * 75 / 135}=\frac{10}{17}$
(c) $P(F)=\frac{75}{1,35}=\frac{5}{9}$
$P(O)=\frac{17}{45}$
$P(F \cap O)=\frac{2}{9}$
Since $P(F) P(O)=\frac{17}{81}$ is not equal to $P(F \cap O)$ these events are dependent. (i.e. not independent)
71. Draw a tree.

(a) $P(F \mid N)=\frac{.14 * 10 / 24}{.46 * 6 / 24+.26 * 8 / 24+.14 * 10 / 24}=\frac{35}{156}$
(b) $P(B)=\frac{8}{24}$

$$
P(C)=\frac{6}{24} * 0.54+\frac{8}{24} * 0.74+\frac{10}{24} * 0.86=0.74
$$

$P(B \cap C)=\frac{8}{24} * 0.74=\frac{37}{150}$
$P(B) * P(C)=\frac{8}{24} * 0.74=\frac{37}{150}$
Yes, since $P(B \cap C)=P(B) * P(C)$.
72. (a) Since E and F are independent then
$P(E \cap F)=P(E) * P(F)$
$P(E \cap F)=0.6 * 0.3=0.18$
(b) $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
$P(E \cup F)=0.6+0.3-0.18$
Answer: 0.72
73. Since you are drawing an item from each box you can draw this tree to represent the problem.

Answer: $\frac{3}{7} * \frac{7}{13}+\frac{4}{7} * \frac{5}{13}$
74. Note the machines working or not working are independent.
(a) $(\mathrm{A} \text { breaks down })^{*}(\mathrm{~B}$ works all day $)+(\mathrm{A}$ works all day)*(B breaks down)
Answer: $0.02 * 0.97+0.98 * 0.03$
(b) (A works all day)* B works all day)

Answer: $0.98 * 0.97$
75. $P(E)=\frac{2}{4}$
$P(F)=\frac{2}{4}$
$P(E \cap F)=\frac{1}{4}$
Since $P(E) * P(F)=\frac{2}{4} * \frac{2}{4}=\frac{1}{4}=P(E \cap F)$, these events are independent.
76. Similar to problem 75

Answer: Independent.
77. Similar to Problem 73
$0.075 * 0.87+0.925 * 0.13$
78. (a) $\frac{9}{10} * \frac{17}{20} * \frac{7}{15}$
(b) $\frac{1}{10} * \frac{17}{20} * \frac{7}{15}+\frac{9}{10} * \frac{3}{20} * \frac{7}{15}+\frac{9}{10} * \frac{17}{20} * \frac{8}{15}$

