## Math 152 Week In Review: Sections 5.5-6.1

Solutions and questions can be found at the link:
https://www.math.tamu.edu/~kahlig/152WIR.html

1. Integrate the following: Note $k$ is some non-zero constant.
(a) $\int e^{k x} d x$
(b) $\int \cos (k x) d x$
(c) $\int \sin (k x) d x$
2. Integrate the following.
(a) $\int 5 x^{2}\left(x^{3}+7\right)^{8} d x$
(b) $\int \frac{x^{2}+2}{x^{3}+6 x} d x$
(c) $\int\left(6 x^{2}+8\right) e^{x^{3}+4 x} d x$
(d) $\int 7 e^{3 x} \sin \left(e^{3 x}\right) d x$
(e) $\int \frac{\sec ^{2}\left(x^{-3}\right)}{x^{4}} d x$
(f) $\int \frac{5+4 x}{x^{2}+1} d x$
(g) $\int x \sqrt{x+5} d x$
(h) $\int_{0}^{\pi / 4} \frac{1}{\cos ^{2}(x) \sqrt{1+\tan (x)}} d x$
(i) $\int_{1}^{2} x^{3}\left(1-x^{2}\right)^{5} d x$
3. Sketch the region enclosed by these curves, and then find the area of the region.

$$
\begin{aligned}
& y=2 x^{2}+5 \\
& y=5 x^{2}-7
\end{aligned}
$$

4. Sketch the region enclosed by these curves. set up the integral with respect to both x and y that would give the area of the region.
$y=\sqrt{2 x+6}$
$y=x+3$
5. Setup the integral(s) that would find the area bounded by these curves.

$$
\begin{aligned}
& x=2 y^{2}+4 y+2 \\
& x=y^{2}+y+12
\end{aligned}
$$

6. Find the area that is bounded(enclosed) by these curves from $x=-1$ to $x=5$.

$$
y=e^{3 x}
$$

$$
y=e^{-2 x}
$$

7. Find the area of the region in the first quadrant that is bounded by these functions.

$$
\begin{aligned}
& x y=12 \\
& 3 y=x \\
& 3 y=4 x
\end{aligned}
$$

8. Sketch the region that is bounded by the curve $y=e^{x / 2}$, the tangent line to this curve at $x=3$, the $x$-axis, and the $y$-axis. set up the integral(s) that will find the area of this region.
