Math 152 Week in Review: Sections 10.2, 10.3

Solutions and questions can be found at the link:
https://www.math.tamu.edu/~kahlig/152WIR.html

1. Find the length of the arc of the curve $x=t^{2}, y=t^{3}$ that lies between the points $(1,1)$ and $(4,8)$.
2. Find the length of the curve $x=e^{t}-t, \quad y=4 e^{t / 2}, \quad 0 \leq t \leq 2$
3. Find the length of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 3$
4. Find the area of the surface obtained by rotating the curve about the y-axis.
$x=5 \sin t, \quad y=5 \cos t, \quad 0 \leq t \leq \pi$
5. Find the area of the surface obtained by rotating the curve about the x-axis.

$$
x=\frac{t^{3}}{3}, \quad y=t^{2}, \quad 0 \leq t \leq 1
$$

6. Setup the integral that would find the area of the surface obtained by rotating the curve given by the parametric equations given below on the interval $0 \leq t \leq 2$.
$x=2 t-t^{2} \quad y=3+t^{2}$
(a) about the x-axis.
(b) about the y-axis.
7. Find two other pairs of polar coordinates fo the given polar coordinate, one with $r>0$ and one with $r<0$ and both with $0 \leq \theta<2 \pi$
8. Find the Cartesian coordinates of the polar point $\left(4 \sqrt{2}, \frac{3 \pi}{4}\right)$
9. Give two polar representations for the point $(-5 \sqrt{3}, 5)$. One with $r>0$ and one with $r<0$.
10. Write a Cartesian equation for the polar curve $r=-8 \sin \theta$
11. Write a Cartesian equation for the polar curve $r^{2} \sin (2 \theta)=1$.
12. Graph $r=3 \sin (\theta)$

13. Graph $r=4 \cos (3 \theta)$

14. Graph $r=3 \sin (2 \theta)$

15. Graph $r=2-2 \cos \theta$

16. Graph $r=2+3 \sin \theta$

