Math 152 Week in Review: Section 10.1, 10.2

1. Determine if the point is on the parametric curve $x(t)=t^{2}-t+1, y(t)=t-2$
(a) $(57,6)$
(b) $(40,5)$
2. For each of the following parametric equations sketch the curve and indicate with an arrow the direction in which the curve increases as t increases. Then eliminate the parameter to find a a Cartesian equation of the curve.
(a) $x(t)=1+4 t, \quad y(t)=t^{2}-t$
(b) $x=5 \sin \theta, \quad y=3 \cos \theta, \quad \frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$
(c) $x(t)=4+4 \cos \theta, \quad y(t)=-5+4 \sin \theta$
3. Find the length of the arc of the curve $x=t^{2}, y=t^{3}$ that lies between the points $(1,1)$ and $(4,8)$.
4. Find the length of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 3$
5. Find the length of the curve $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 2$
6. Find the length of the curve $x=e^{t} \sin (t), y=e^{t} \cos (t), 0 \leq t \leq \pi$
7. Find the area of the surface obtained by rotating the curve about the x-axis.
$x=\frac{t^{3}}{3}, y=t^{2}, 0 \leq t \leq 1$
8. Find the area of the surface obtained by rotating the curve about the y-axis.

$$
x=5 \sin t, y=5 \cos t, 0 \leq t \leq \pi
$$

9. Find the area of the surface obtained by rotating the curve about the y-axis.

$$
x=3 t^{2}, y=2 t^{3}, 0 \leq t \leq 5
$$

10. Setup the integral that would find the area of the surface obtained by rotating the curve about the x-axis.
$x=2 t-t^{2}, y=3+t^{2}, 0 \leq t \leq 2$
11. Setup the integral that would find the area of the surface obtained by rotating the curve about the y-axis.
$x=2 t-t^{2}, y=3+t^{2}, 0 \leq t \leq 2$
