Math 152 Week in Review: Section 6.2

Volume of a solid: $V=\int_{a}^{b} A(x) d x$ or $V=\int_{a}^{b} A(y) d y$
$A(x)$ represents the area of the slice and the slice is perpendicular to the x-axis.
$A(y)$ represents the area of the slice and the slice is perpendicular to the y-axis.

1. The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the y-axis are squares. Find the volume of the solid.
2. The base of a solid is the region enclosed by $x=y^{2}-9$ and the $x=7$. Cross-sections perpendicular to the x-axis are equilateral triangles. Find the volume of the solid.
3. The base of a solid is the region enclosed by $y=4-x^{2}$ and the x-axis. Cross-sections perpendicular to the y-axis are quarter circles. Find the volume of the solid.
4. The base of a solid is a triangular region with vertices $(0,4),(2,0)$, and $(-2,0)$. Cross-sections perpendicular to the y-axis are isosceles triangles with the height equal to half the base. Find the volume of the solid.
5. The base of a solid is the region enclosed by $y=\sqrt{x+5}, x=4$ and $y=0$. Cross-sections perpendicular to the y-axis are semicircles. Setup the integral to find the volume of the solid.
6. Find the volume of the solid obtained by rotating the region bounded the curves about the x-axis.
$y=\frac{2}{x} \quad x$-axis $\quad x=1 \quad x=4$
7. Find the volume of the solid obtained by rotating the region bounded the curves about the y-axis.
$x^{2}=4 y \quad y$-axis $\quad y=7$
8. Find the volume of the solid obtained by rotating the region bounded the curves about the y-axis.
$y=\ln (x) \quad x$-axis $\quad x=e$
9. Set up the integral(s) that would find the volume of the solid obtained by rotating the region bounded the curves about the x-axis.

$$
y=11-x^{2} \quad y=2
$$

10. Set up the integral(s) that would find the volume of the solid obtained by rotating the region bounded the curves about the line $x=7$.
$x=y^{2}+3 \quad x=7$
11. Set up the integral(s) that would find the volume of the solid obtained by rotating the region bounded the curves about the line $x=1$.
$x=y^{2}+3 \quad x=7$
12. Set up the integral(s) that would find the volume of the solid obtained by rotating the region bounded the curves about the line $y=5$.
$y=\sqrt{x+1} \quad x$-axis $\quad x=8$
13. Set up the integral(s) that would find the volume of the solid obtained by rotating the region bounded the curves about the line $y=-2$.
$y=x^{2} \quad y=18-x^{2}$
