Math 152 Week in Review: Section 11.4
The Comparison Test (Strict Comparison): Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(a) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(b) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

Limit Comparison $\operatorname{Test(LCT)}$: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$

If L is a number greater than zero, $L>0$, then both series converge or both series diverge.

Determine if the series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{3^{n}-1}{5 n+4^{n}}$
2. $\sum_{n=4}^{\infty} \frac{1}{\sqrt[3]{n^{2}-3}}$
3. $\sum_{n=1}^{\infty} \frac{5+\sin (n)}{5 n^{3}+n+1}$
4. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{(2 n+5)^{4}}$
5. $\sum_{n=1}^{\infty} \frac{\ln (n)}{\sqrt{n}}$
6. $\sum_{n=4}^{\infty} \frac{4 n^{3}+7 n^{2}}{\sqrt{3 n^{2}+n^{10}+5}}$
7. $\sum_{n=1}^{\infty} \frac{2 n e^{-n}}{n^{3}+4 n^{2}}$
8. $\sum_{n=3}^{\infty} \frac{5-\sin ^{2}(n)}{\sqrt{n-1}}$
