Math 152 Week in Review: Sections 11.8, 11.9

Solutions and questions can be found at the link:
https://www.math.tamu.edu/~kahlig/152WIR.html
For a given power series centered at $x=a, \sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are only three possibilities for convergence.
(i) The series converges only when $x=a$.
(ii) The series converges for all x.
(iii) The is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

1. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=5$ but diverges when $x=-9$. What can be said about the convergence or divergence of the following series?
A) $\sum_{n=0}^{\infty} c_{n} 10^{n}$
B) $\sum_{n=0}^{\infty} c_{n}$
C) $\sum_{n=0}^{\infty}(-1)^{n} c_{n} 5^{n}$
D) $\sum_{n=0}^{\infty} c_{n}(-2)^{n}$
E) $\sum_{n=0}^{\infty} c_{n} 9^{n}$
2. Find the interval and the radius of convergence for the following power series.
(a) $\sum_{n=0}^{\infty} \frac{n 5^{n}(x+3)^{n}}{3 n!}$
(b) $\sum_{n=0}^{\infty} \frac{(2 n)!(5 x-1)^{n}}{n!}$
(c) $\sum_{n=2}^{\infty} \frac{(2 x-5)^{n}}{n 4^{n}}$

Power Series Building Blocks:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad|x|<1$ so $R=1$ and $I:(-1,1)$
$\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} \quad|x|<1$ so $R=1$ and $I:(-1,1]$
$\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad R=1$
3. Find a power series representation for the function. Determine the radius and interval of convergence.
$g(x)=\frac{5 x}{8+27 x^{3}}$
4. Evaluate the indefinite integral as a power series. What is the radius of convergence?

$$
\int \frac{x}{2 x^{6}+3} d x
$$

5. Find a power series representation for the function and the Radius of convergence.

$$
f(x)=\frac{5}{(1-2 x)^{2}}
$$

6. Find a power series representation for the function and the Radius of convergence.

$$
f(x)=\frac{3 x^{4}}{(1+x)^{3}}
$$

7. Find a power series representation for the function.

$$
f(x)=\ln \left(1+x^{2}\right)
$$

8. Find a power series representation for the function.

$$
f(x)=\ln \left(9-x^{3}\right)
$$

9. Evaluate the indefinite integral as a power series.

$$
\int x^{2} \arctan \left(3 x^{2}\right) d x
$$

Be sure you learn these.

Important Maclaurin series

$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots \quad|x|<1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots \quad R=\infty$
$\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \quad R=\infty$
$\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \quad R=\infty$
$\tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \quad R=1$
$\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad-1<x \leq 1$

