Week in Review #1

Section L.1: Introduction to Logic

- A **statement** is a declarative sentence that can be evaluated as either true or false (but not both).
- Connectives
 - conjunction (and), denoted $p \wedge q$
 - disjunction (inclusive or), denoted $p \vee q$
 - negation (not), denoted $\sim p$
- 1. Which of the following are statements.
 - (a) A&M is the friendliest college in the world.
 - (b) A&M's Miss Reveille is a German Shepard.
 - (c) There are 30 tennis courts on A& M's campus.
- 2. Use the statements b, s, and n for the following. compound statements in words.
 - b: The car is blue.
- s: The car is a saturn.
- n: The car is new.
- (a) Express the compound statements in words.
 - i. $n \wedge \sim b$
 - ii. $s \vee b$
- (b) Give the symbolic expression for these statements.
 - i. The new saturn was not blue.
 - ii. The saturn was blue or it was not new.

Section L.2: Truth Tables

- Definitions
 - Exclusive Disjunction (exclusive or), denoted \vee
 - A **tautology** is a compound statement that is always true.
 - A compound statement that is always false is called a **contradiction**.

and				
p	q	$p \wedge q$		
Τ	Τ	Т		
\mathbf{T}	F	\mathbf{F}		
\mathbf{F}	${ m T}$	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{F}		

or			
p	q	$p \lor q$	
Т	Τ	Т	
${\rm T}$	F	${ m T}$	
F	${ m T}$	${ m T}$	
F	F	\mathbf{F}	
		1	

exclusive or				
p	q	$p\underline{\vee}q$		
Τ	Τ	\mathbf{F}		
\mathbf{T}	\mathbf{F}	${ m T}$		
F	${ m T}$	${ m T}$		
F	F	\mathbf{F}		

- 3. Construct the following truth tables.
 - (a) $\sim p \vee (p \wedge q)$
 - (b) $p \wedge (\sim q \vee r)$
- 4. If the truth value of p, q and r is true and the truth value of s is false, what is the truth value of these compound statements.
 - (a) $(s \lor \sim r) \land q$
 - (b) $(\sim q \vee r) \vee \sim (\sim s \wedge p)$
 - (c) $p \vee \left[(\sim r \wedge s) \vee \sim (\sim (q \wedge \sim p) \vee r) \right]$

Section 1.1: Set and Set Operations.

- a set is a well defined collection of objects
- roster notation: $A = \{1, 2, 3\}$
- set builder notation: $B = \{x \mid x \text{ is a positive integer }\}$
- Definitions:
 - x is an element of set A, $x \in A$, if x is an object in A.
 - set A and B are **equal** if they have exactly the same elements.
 - A is a subset of B, $A \subseteq B$, if every element in A is also an element of B
 - A is a **proper subset**, $A \subset B$, if A is a subset of B but is not equal to B.
 - The **empty set**, $\phi = \{\}$, is a set that contains no elements
 - The universal set, U, is the set that contains all of the elements possible in a problem.
- Set A and B are **disjoint** provided that $A \cap B = \phi$ Set operations:
 - Union, $A \cup B$
 - Intersection, $A \cap B$
 - Compliment, A^C
- 5. Write the set $\{x \mid x \text{ is a letter in the word } \mathbf{ENCYCLOPEDIA}\}\$ in roster notation.
- 6. U={ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, A = { 0, 3, 6, 9}, B={ 0, 2, 4, 6, 8}, and C={ 1, 3, 5, 7, 9} Find the following.
 - (a) n(A) =

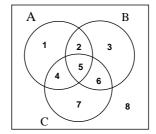
(f) How many subsets does B have?

(b) $A \cup B$

(g) How many proper subsets does B have?

(c) $A \cap C^C =$

- (h) Are A and B disjoint?
- (d) $A \cap B \cap C =$
- (i) Are B and C disjoint?
- (e) $(A \cap C)^C \cap B =$
- (j) Give two disjoint proper subsets of B.
- 7. Shade the regions of a Venn Diagram that represent the following.


(a)
$$A \cup B \cup C$$

(b)
$$(A^c \cap B) \cup C$$

8. Indicate the regions of the Venn Diagram that correspond to these set operations.

(a)
$$(B \cup C)^c$$

(b)
$$(A \cap C)^c \cap B$$

9. U = the set of A&M students.

$$\mathbf{M} = \{ \ x \in U | x \text{ is male} \}$$

$$F = \{ x \in U | x \text{ is female} \}$$

 $D = \{ x \in U | x \text{ drinks Dr. Pepper} \}$ $S = \{ x \in U | x \text{ drinks Sprite} \}$ $C = \{ x \in U | x \text{ drinks coffee} \}$

- (a) Describe each of the given sets in words.
 - i. $S \cup C^C$
 - ii. $M \cap (D \cup S)$
- (b) Write the set(use set notation) that represents each of the given statements.
 - i. The female students at A&M that drink sprite but do not drink coffee.
 - ii. The students at A&M that drink coffee or do not drink Dr. Pepper.