Week in Review #1

Section L.1: Introduction to Logic

- A statement is a declarative sentence that can be evaluated as either true or false (but not both).
- Connectives
 - conjunction (and), denoted $p \wedge q$
 - disjunction (inclusive or), denoted $p \lor q$
 - negation (not), denoted $\sim p$
- 1. Which of the following are statements.
 - (a) A&M is the friendliest college in the world.
 - (b) A&M's Miss Reveille is a German Shepard.
 - (c) There are 30 tennis courts on A& M's campus.
- 2. Use the statements b, s, and n for the following. compound statements in words.
 - b: The car is blue. s: The car is a saturn. n: The car is new.
 - (a) Express the compound statements in words. i. $n \ \wedge \sim b$
 - ii. $s \lor b$
 - (b) Give the symbolic expression for these statements.
 - i. The new saturn was not blue.
 - ii. The saturn was blue or it was not new.

Section L.2: Truth Tables

- Definitions
 - Exclusive Disjunction (exclusive or), denoted \vee
 - A tautology is a compound statement that is always true.
 - A compound statement that is always false is called a **contradiction**.

and				or			exclusive or		
р	q	$p \wedge q$	р	q	$p \vee q$		р	q	$p \underline{\lor} q$
Т	Т	Т	Т	Т	Т		Т	Т	F
Т	F	F	Т	F	Т		Т	F	Т
\mathbf{F}	Т	F	\mathbf{F}	Т	Т		F	Т	Т
\mathbf{F}	F	\mathbf{F}	F	F	F		F	F	F

3. Construct the following truth tables.

(a) $\sim p \lor (p \land q)$

(b)
$$p \land (\sim q \lor r)$$

- 4. If the truth value of p, q and r is true and the truth value of s is false, what is the truth value of these compound statements.
 - (a) $(s \lor \sim r) \land q$

(b)
$$(\sim q \vee r) \vee \sim (\sim s \wedge p)$$

(c)
$$p \lor \left[(\sim r \land s) \underline{\lor} \sim (\sim (q \land \sim p) \lor r) \right]$$

Section 1.1: Set and Set Operations.

- a set is a well defined collection of objects
- roster notation: $A = \{1, 2, 3\}$
- set builder notation: $B = \{x \mid x \text{ is a positive integer }\}$
- Definitions:
 - x is an element of set A, $x \in A$, if x is an object in A.
 - set A and B are **equal** if they have exactly the same elements.
 - A is a subset of B, $A \subseteq B$, if every element in A is also an element of B
 - A is a **proper subset**, $A \subset B$, if A is a subset of B but is not equal to B.
 - The **empty set**, $\phi = \{\}$, is a set that contains no elements
 - The **universal set**, U, is the set that contains all of the elements possible in a problem.
- Set A and B are **disjoint** provided that $A \cap B = \phi$ Set operations:
 - Union, $A \cup B$
 - \bullet Intersection, $A \cap B$
 - Compliment, A^C

WIR Math 166-copyright Joe Kahlig, 10A

- 5. Write the set $\{x \mid x \text{ is a letter in the word ENCYCLOPEDIA}\}$ in roster notation.
- 6. U={ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, A = { 0, 3, 6, 9}, B={ 0, 2, 4, 6, 8}, and C={ 1, 3, 5, 7, 9} Find the following.
 - (a) n(A) =
 - (b) $A \cup B$
 - (c) $A \cap C^C =$
 - (d) $A \cap B \cap C =$
 - (e) $(A \cap C)^C \cap B =$
 - (f) How many subsets does B have?
 - (g) How many proper subsets does B have?
 - (h) Are A and B disjoint?
 - (i) Are B and C disjoint?
 - (j) Give two disjoint proper subsets of B.

- 7. Shade the regions of a Venn Diagram that represent the following.
 - (a) $A \cup B \cup C$
 - (b) $(A^c \cap B) \cup C$

- 8. Indicate the regions of the Venn Diagram that correspond to these set operations.
 - (a) $(B \cup C)^c$
 - (b) $(A \cap C)^c \cap B$

9. U = the set of A&M students. $M = \{ x \in U | x \text{ is male} \}$ $F = \{ x \in U | x \text{ is female} \}$

- $D = \{ x \in U | x \text{ drinks Dr. Pepper} \}$ S = { x \in U | x drinks Sprite} C = { x \in U | x drinks coffee}
- (a) Describe each of the given sets in words. $\label{eq:sets} {\rm i.} \ S \cup C^C$

ii. $M \cap (D \cup S)$

- (b) Write the set(use set notation) that represents each of the given statements.i. The female students at A&M that drink sprite but do not drink coffee.
 - ii. The students at A&M that drink coffee or do not drink Dr. Pepper.