Week in Review \#1

Section L.1: Introduction to Logic

- A statement is a declarative sentence that can be evaluated as either true or false (but not both).
- Connectives
- conjunction (and), denoted $p \wedge q$
- disjunction (inclusive or), denoted $p \vee q$
- negation (not), denoted $\sim p$

1. Which of the following are statements.
(a) $\mathrm{A} \& M$ is the friendliest college in the world.
(b) A\&M's Miss Reveille is a German Shepard.
(c) There are 30 tennis courts on A\& M's campus.
2. Use the statements b, s, and n for the following. compound statements in words.
b : The car is blue.
s : The car is a saturn.
n : The car is new.
(a) Express the compound statements in words.
i. $n \wedge \sim b$
ii. $s \vee b$
(b) Give the symbolic expression for these statements.
i. The new saturn was not blue.
ii. The saturn was blue or it was not new.

Section L.2: Truth Tables

- Definitions
- Exclusive Disjunction (exclusive or), denoted $\underline{\vee}$
- A tautology is a compound statement that is always true.
- A compound statement that is always false is called a contradiction.

and			
p	q	$p \wedge q$	
T	T	T	
T	F	F	
F	T	F	
F	F	F	

or		
p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

exclusive or		
p	q	$p \underline{\vee} q$
T	T	F
T	F	T
F	T	T
F	F	F

3. Construct the following truth tables.
$(\mathrm{a}) \sim p \vee(p \wedge q)$
(b) $p \wedge(\sim q \underline{\vee} r)$
4. If the truth value of p, q and r is true and the truth value of s is false, what is the truth value of these compound statements.
(a) $(s \vee \sim r) \wedge q$
(b) $(\sim q \underline{\vee} r) \vee \sim(\sim s \wedge p)$
(c) $p \vee[(\sim r \wedge s) \underline{\vee} \sim(\sim(q \wedge \sim p) \vee r)]$

Section 1.1: Set and Set Operations.

- a set is a well defined collection of objects
- roster notation: $A=\{1,2,3\}$
- set builder notation: $\mathrm{B}=\{\mathrm{x} \mid \mathrm{x}$ is a positive integer $\}$
- Definitions:
- x is an element of set $\mathrm{A}, x \in A$, if x is an object in A .
- set A and B are equal if they have exactly the same elements.
- A is a subset of $\mathrm{B}, A \subseteq B$, if every element in A is also an element of B
- A is a proper subset, $A \subset B$, if A is a subset of B but is not equal to B .
- The empty set, $\phi=\{ \}$, is a set that contains no elements
- The universal set, U, is the set that contains all of the elements possible in a problem.
- Set A and B are disjoint provided that $A \cap B=\phi$
- Set operations:
- Union, $A \cup B$
- Intersection, $A \cap B$
- Compliment, A^{C}

5. Write the set $\{\mathrm{x} \mid \mathrm{x}$ is a letter in the word ENCYCLOPEDIA $\}$ in roster notation.
6. $\mathrm{U}=\{0,1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{0,3,6,9\}, \mathrm{B}=\{0,2,4,6,8\}$, and $\mathrm{C}=\{1,3,5,7,9\}$ Find the following.
(a) $n(A)=$
(b) $A \cup B$
(c) $A \cap C^{C}=$
(d) $A \cap B \cap C=$
(e) $(A \cap C)^{C} \cap B=$
(f) How many subsets does B have?
(g) How many proper subsets does B have?
(h) Are A and B disjoint?
(i) Are B and C disjoint?
(j) Give two disjoint proper subsets of B.
7. Shade the regions of a Venn Diagram that represent the following.
(a) $A \cup B \cup C$
(b) $\left(A^{c} \cap B\right) \cup C$
8. Indicate the regions of the Venn Diagram that correspond to these set operations.
(a) $(B \cup C)^{c}$
(b) $(A \cap C)^{c} \cap B$

9. $\mathrm{U}=$ the set of $\mathrm{A} \& \mathrm{M}$ students.
$\mathrm{M}=\{x \in U \mid x$ is male $\}$
$\mathrm{F}=\{x \in U \mid x$ is female $\}$
$\mathrm{D}=\{x \in U \mid x$ drinks Dr. Pepper $\}$
$\mathrm{S}=\{x \in U \mid x$ drinks Sprite $\}$
$\mathrm{C}=\{x \in U \mid x$ drinks coffee $\}$
(a) Describe each of the given sets in words.
i. $S \cup C^{C}$
ii. $M \cap(D \cup S)$
(b) Write the set(use set notation) that represents each of the given statements.
i. The female students at A\&M that drink sprite but do not drink coffee.
ii. The students at A\&M that drink coffee or do not drink Dr. Pepper.
