Week in Review #2

Section 1.2: The number of elements in a Set.

- n(A) denotes the number of things in set A.
 n(\phi) = 0
- Set A and B are **disjoint** provided that $A \cap B = \phi$
- A and B are any two sets.
 - $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- A, B, and C are any three sets.
 - $n(A \cup B \cup C) = n(A) + n(B) + n(c) n(A \cap B) n(A \cap C) n(B \cap C) + n(A \cap B \cap C)$
- 1. If $n(A \cap B^c) = 75$, $n(B^c) = 155$, $n(A^c) = 95$, and n(U) = 190, what is $n(A \cup B)$?

- 2. A group of 160 students were asked which of these sports they participated in high school.
 - 15 students participated in all of these sports
 - 25 students participated in basketball and track.
 - 25 students participated in basketball and Tennis but not track.
 - 15 students participated in track but not tennis.
 - 70 students participated in basketball.
 - 100 students did not participate in tennis.
 - 37 students participated in exactly one sport.
 - (a) Fill in the Venn diagram.

- (b) How many students participated in track?
- (c) How many students participated in at least two sports?
- (d) How many students participated in basketball or tennis but did not participate in track?

- 3. A group of students were asked which of these types of pets: dogs, cats, or fish, they had when they were kids.
 - 28 said they only had a dog.
 - 6 said they had all three of these pets.
 - 16 said they had a dog and a fish.
 - 15 said they had a fish but did not have a cat.
 - 48 said they only had one of these types of pets when they were a kid.
 - 57 said they had fish or a cat as a pet when they were a kid.
 - 87 said they did not have a fish as a pet when they were a kid.
 - 57 said they did not have a dog as a pet when they were a kid.
 - (a) Fill in the Venn diagram.

(b) How many students were in the survey?

Section 1.3: Experiments, Sample Spaces, and Events.

- An **experiment** is an activity with observable results.
- Sample space, S, is the set consisting of all possible outcomes of an experiment.
- An **event** is a subset of a sample space.
 - An elementary(or simple) event is an event with a single outcome.
 - The impossible event is the empty set
 - The certain event is the sample space.
- The events E and F are mutually exclusive if $E \cap F = \phi$.
- 4. Suppose a card is randomly drawn from a standard deck of cards and the face value (denomination) is recorded. Find the sample space.
- 5. An experiment consists of selecting a letter at random from the letters in the word **REPRESENTATIVE** and observing the outcome.
 - (a) Describe an appropriate sample space.
 - (b) How many events does this sample space have?
 - (c) Describe the event "the letter selected was a vowel".

- 6. An experiment consists of picking an integer from 0 to 10.
 - (a) Describe an appropriate sample space.
 - (b) Describe the event E that the number picked was even.
 - (c) Describe the event F that the number was a multiple of 3.
 - (d) Describe the event G that the number was a multiple of 5.
 - (e) Describe the event H that the number was odd and greater than 5.
 - (f) Find the event $F^C \cap (H \cup G)$.
 - (g) Which pairs of event, E, F, G, and H are mutually exclusive?
 - (h) If the number 6 was picked, which of the events E, F, G and H occurred?
- 7. The numbers 0, 1, 2, 3, 4 are on separate pieces of paper in a hat. Two pieces of paper are drawn at the same time and the product of the numbers is recorded. Find the sample space.

- 8. Three quarters, four dimes and a nickel are in a piggy bank. Two coins are drawn at the same time and the total dollar amount is recorded.
 - (a) Find the sample space.

(b) describe the event a quarter is drawn.

(c) Describe the event the total is less than \$0.33.

Section 1.4: Basics of Probability

• **Probability** is a nubmer assigned to each outcome in an experiment that indicates how likely that ourcome is to occur with respect to the other outcomes in the sample space.

- empirical probability is probability based off of repeated trials of an experiment.
 - sometimes called relative frequency.
- probability properties
 - $0 \leq \text{probability of any outcome}(\text{simple event}) \leq 1$.
 - the sum of the probability of all of the outcomes is 1

• a **probability distribution** is a chart that shows the outcomes and the probability associated to each outcome.

- For a uniform (equally likely) sample space, each outcome will have the same probability, $\frac{1}{n(S)}$.
- To find the probability of an event E, add the probabilities of all of the outcomes in the event.
- Probability formulas
 - $P(E \cup F) = P(E) + P(F) P(E \cap F)$
 - if E and F are mutually exclusive then $P(E \cap F) = 0$
 - $P(E) + P(E^C) = 1$ or $P(E) = 1 P(E^C)$
- 9. An experiment consits of selecting a digit from the number 11112233444445556777777 and observing it. Give the probability distribution for this experiment.

10. An experiment is to roll two 4 sided die(one red and one green) and record the product of the roll. Give the probability distribution for this experiment. Is the sample space uniform?

11. A sample of 100 college students were asked their party affiliation and whether they favor state lottery money used for welfare.

	Favor	Not Favor	Unsure	total
Democrat	23	6	7	36
Republican	14	25	4	43
Independent	18	3	0	21
total	83	34	11	100

A person is selected at random from the sample. What is the probability the person

- (a) Does not favor the use of lottery money for welfare?
- (b) Is a Republican?
- (c) Is an Independent who is not sure?
- 12. One card is selected from a standard deck of cards. What is the probability that the card is
 - (a) a heart and a face card?
 - (b) a heart or a face card?
 - (c) not a club?

(d) not a 4?

- 13. A jar contains six red marbles numbered 1 to 6 and eleven purple marbles numbered 1 to 11. A marble is drawn at random from the jar. Find the probability that
 - (a) the marble is purple.
 - (b) the marble is even.
 - (c) the marble is purple or even.
- 14. A fair coin is tossed three times and heads or tails is observed after each flip. What is the probability that
 - (a) exactly one head is tossed?
 - (b) at least two heads are tossed?