Week in Review \#5

1. (a) This part is not a binomial problem since which trials are success and which are failures are specified. Use a tree to get this answer.
$\frac{2}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5}=\left(\frac{2}{5}\right)^{3} *\left(\frac{3}{5}\right)^{2}$
(b) $\mathrm{n}=5, \mathrm{p}=\frac{2}{5}, \mathrm{r}=4$
$\operatorname{binompdf}(5,0.4,4)=0.0768$
(c) $\mathrm{n}=5, \mathrm{p}=\frac{2}{5}, \mathrm{r}=2,3,4$
binompdf($5,0.4,2)+$ binompdf $(5,0.4,3)+$ binompdf($5,0.4,4)$
or binomcdf($5,0.4,4)-\operatorname{binomcdf}(5,0.4,1)$
Answer: 0.6528
2. note: $p=$ probability of success. convert the number of failures to the number of success. one failure means 4 success; 2 failures means 3 success;
$\mathrm{n}=5, \mathrm{p}=\frac{3}{7}, \mathrm{r}=0,1,2,3,4$
binomcdf $\left(5, \frac{3}{7}, 4\right)$
Answer: 0.9855
3. (a) $\mathrm{n}=25, \mathrm{p}=\frac{1}{6}, \mathrm{r}=0,1,2,3,4$
binomcdf $\left(25, \frac{1}{6}, 4\right)$
Answer: 0.5937
(b) $\mathrm{n}=25, \mathrm{p}=\frac{2}{6}, \mathrm{r}=7,8,9, \ldots, 25$
$\operatorname{binomcdf}\left(25, \frac{2}{6}, 25\right)-\operatorname{binomcdf}\left(25, \frac{2}{6}, 6\right)$
Answer: 0.7785
(c) Since the first three rolls are multiples of three, this means the number of trials is actually 22 and we need at least 4 of the remaining 22 rolls to be a multiple of three.
$\mathrm{n}=22, \mathrm{p}=\frac{2}{6}, \mathrm{r}=4,5,6, \ldots, 22$
1 - binomcdf($22, \frac{2}{6}, 3$)
Answer: 0.9649
4. (a) $\mathrm{n}=80, \mathrm{p}=0.15, \mathrm{r}=5,6,7,8,9,10,11,12$
binomcdf $(80,0.15,12)$ - binomcdf $(80,0.15,4)$
Answer: 0.57148
(b) $\mathrm{n}=70$ (since we know the results of the first

10 people)
$\mathrm{p}=0.015$
since 5 people of the first 10 had a reaction, we only need 12 more people to get a total of 17 .
$\mathrm{r}=12$
binomcdf($70,0.15,12$)
Answer: 0.1112
5. not binomial.
$\frac{C(15,6) C(55,4)}{C(70,15)}$
6. $\mathrm{n}=7, \mathrm{p}=\frac{1}{12}, \mathrm{r}=2,3,4,5,6,7$

Answer: $1-\operatorname{binomcdf}\left(7, \frac{1}{12}, 1\right)=0.1101$
7. (a) infinite discrete.
values: $\mathrm{X}=1,2,3, \ldots$.
(b) finite discrete.
values: $\mathrm{X}=0,1,2,3, \ldots, 12$
(c) continuous.
values: room temp $\leq x \leq$ temp of the heating element.
(d) continuous.
values $0 \leq X \leq$ length of class time. either 50 min or 75 min .
8. (a) $x=2,3,4,5$
(b) prob dist.(given in two parts)

x	2	3
prob	$\frac{C(5,2) * C(4,4)}{C(9,6)}$	$\frac{C(5,3) * C(4,3)}{C(9,6)}$

x	4	5
prob	$\frac{C(5,4) * C(4,2)}{C(9,6)}$	$\frac{C(5,5) * C(4,1)}{C(9,6)}$

or

x	2	3	4	5
prob	$\frac{10}{84}$	$\frac{40}{84}$	$\frac{30}{84}$	$\frac{4}{84}$

(c) Histogram

(d) $\frac{30}{84}$
(e) $\frac{10+40}{84}=\frac{50}{84}$
9. Histogram

10. draw the tree to make this problem easier

x	-2	-1	0	1	2	3	4
prob	$\frac{1}{2}$	$\frac{1}{12}$	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$

11. $E(X)=2 * \frac{10}{84}+3 * \frac{40}{84}+4 * \frac{30}{84}+5 * \frac{4}{84}$
$E(x)=3.3333$
Note: since Expected value is an average, don't round to the nearest integer.
12. $\mathrm{E}(\mathrm{x})=-0.5$
13. Let X be the net winnings and let A be the cost of the game.

X	$12-\mathrm{A}$	$5-\mathrm{A}$	$2-\mathrm{A}$	0	-A
prob.	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	$\frac{3}{8}$

Want $E(X)=0$. Solve this equation for A.
Answer: $\mathrm{A}=\$ 3$
14. mean $=14.625$
median $=14.5$
mode: 12 and 16
15. Type the values of X into L_{1}, the frequency into L_{2}, and then compute
1-Var Stats L_{1}, L_{2}
mode: 10
mean $=17.3571$
median $=12$
16. Find a number to represent each interval. I'll use the middle value of the interval.

data	4.5	12.5	20.5	28.5
frequency	8	10	15	20

estimated mean $=19.5943$

