The lab is due by 4 pm on October 31, 2016.
Adding, subtracting, and multiplying a matrix by a number are operations that are fairly standard. Write the formula for the first cell in the matrix and then copy and paste the formula to the other cells. Multiplying matrices, MMULT, or computing the inverse of a matrix, MINVERSE, must be done with a command since the matrix needs to be treated as an array.

For Libre Office: If you do not use the function wizard, then you must enter the formula by hand. Once the formula in entered, do not press ENTER. Instead press CTRL-SHIFT-ENTER. This lets the spreadsheet know that you are doing an array calculation.
For Excel: Enter the command into the cell and press enter. Then Highlight the group of cells that will contain the answer. Then Press F2. Then CTRL-SHIFT-ENTER.

Problem 1. Use these matrices to do the following computations.

$$
A=\left[\begin{array}{ccc}
20 & 27 & -1 \\
-19 & -26 & 1 \\
2 & 3 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
10 & 5 & 0 \\
1 & 6 & 9 \\
2 & 9 & 5
\end{array}\right] \quad C=\left[\begin{array}{ccc}
15 & 25 & -5 \\
-8 & 10 & 1 \\
7 & 35 & -4
\end{array}\right] \quad D=\left[\begin{array}{ccc}
2 & 8 & -1 \\
5 & 2 & 10 \\
3 & 10 & 7
\end{array}\right]
$$

Do the following computations. Be sure to clearly label your answers in the spreadsheet. you do not need to include these answers on this paper. If a computation is not possible, then be sure to mention this.

1. $2 A+3 B-6 C$
2. $3 D-4 A+2 B$
3. $A C$
4. $B D$
5. $A B C$
6. A^{-1}
7. C^{-1}
8. $A^{-1} * B$

Problem 2. Solve these systems of equations by using matrice inverses. Give your answers to at least 3 decimal digits. Do this problem on a different page of the spreadsheet.
$3 x-2 y+8 z=-60$
$-2 x+2 y+z=25$
$x+2 y-3 z=75$

Answer: $x=$ \qquad $y=$ \qquad $z=$ \qquad
$3 x-2 y+8 z=49$
$-2 x+2 y+z=-2$
$x+2 y-3 z=-16$
Answer: $x=$ \qquad $y=$ \qquad $z=$ \qquad
$2 x+y+3 z-4 w=9$
$x+2 y+3 w=1$
$x-3 z+w=10$
$x-y-z-w=8$
Answer: $x=$ \qquad $y=$ $z=$ \qquad $w=$ \qquad
Once again e-mail me the spreadsheet showing how you solved these problems.

