Week In Review #7 - Test 2 Review Covers sections: 2.1 - 2.4, 3.1 - 3.5, 4.1 - 4.3

- This review gives one or two examples from each section. It is NOT a thorough review by itself, but rather some additional practice problems that you can study along with your homework and lecture notes.
- The problems in Week-In-Review 5 and 6 are also good review problems for the exam.

Review Problems:

- 1. Consider the function $f(x) = x \cdot 2^x$. (Round the answers to three decimal places.) (a) Find the average rate of change of *f* between x = 2 and x = 4.
 - (b) Estimate f'(3) by using **a** small interval.
 - (c) Find f'(3) by using derivative formulas.
 - (d) Find the equation of the line tangent to f(x) at x = 3.

2. The graph of f' is given below, at which value of x is

3. (a) If the graph below is of f(x), which of the following has the largest value?

- (b) If the above graph is of f(x), where is f(x) increasing?
- (c) If the above graph is of f(x), where is f(x) concave up?
- (d) If the above graph is of f'(x), where is f(x) increasing?
- (e) If the above graph is of f'(x), where does f(x) have inflection points?
- (f) If the above graph is of f'(x), where does f(x) have local maxima?
- (g) If the above graph is of f''(x), where is f(x) concave up?

- 4. Let $f(x) = 3x^3 5x^2 + x + 9$.
 - (a) Find all critical points of f(x) and state what type of critical points they are (local max, local min, or either).
 - (b) Find the inflection point(s).
 - (c) Find the interval(s) at which f(x) is decreasing and concave up at same time.
 - (d) Find the globe maximum and globe minimum of f(x) on the interval [-2, 1].

5. The value of A Toyota minivan purchased in 2005 can be approximated by the function $V(t) = 25(0.85)^t$, where *t* is the time, in years, from the date of purchase, and *V* is the value, in thousands of dollars.

- (a) Evaluate and interpret *V*(4).
- (b) Evaluate and interpret V'(4).

6. The table below shows the world gold production, G = f(t), as a function of year, t.

t (year)	1987	1990	1993	1996	1999
<i>G</i> (million troy ounces)	53	70	73	74	81

- (a) Does *f* '(*t*) appear to be positive or negative? What does this mean in terms of gold production?
- (b) In which time interval does f'(t) appear to be greatest?
- (c) Estimate f'(1999). Give units and interpret the answer in terms of gold production.
- (d) Use the estimate value of f'(1999) to estimate f(2000) and (2005), and interpret the answers.

7. The following figure shows the tangent line approximation to f(x) near x = a.

(a) Find a, f(a), and f'(a).

(b) Estimate f(2.1) and f(1.98). Are these under or overestimates? Which estimate would you expect to be more accurate and why?

8. Sketch a possible graph of a function that satisfies all of the given conditions.

9. The following graph is of f(x). Sketch the graph of f'(x).

10. Find the value of *a* so that the function $f(x) = xe^{ax}$ has a critical point at x = 3.

11. If f and g are functions whose graphs shown on the right, find

(c)
$$h'(1)$$
 if $h(x) = 3 - f(x)g(x)$

(d)
$$h'(3)$$
 if $h(x) = \frac{g(x) - 2}{f(x)}$

12. During a flu outbreak in a school of 763 children, the number of infected children, *I*, was expressed in terms of the number of susceptible (but still healthy) children, *S*, by the expression $I = 192 \ln \left(\frac{S}{762}\right) - S + 763$. What is the maximum possible number of infected children?

Find the derivatives for the following functions:

13.
$$f(x) = \frac{1}{2x} + 3 \cdot \sqrt[3]{x^5} + e^{-x}$$

14.
$$g(x) = \ln(2x) - 3\cos x + \ln 3$$

$$y = \frac{5}{2 \cdot \sqrt{\ln x + xe^x + 1}}$$

16.
$$g(t) = \frac{t^2 + 5t + 2}{t + 3}$$

17.
$$H(t) = \ln \frac{t^2 + 5t + 2}{t + 3}$$

18.
$$g(x) = (2 - 3x^2)^2 \sin(3x^2)$$

19. Find
$$f''(x)$$
 for $f(x) = e^{x^2 + 4x}$.

Answers:

- 1. (a) 28 (b) 24.6367 (c) 24.6355 (d) y = 24.6355x 49.92. (a) x_1 (b) x_5 (c) x_2 (d) x_3 (e) x_1 (f) x_5
- 3. (a) f'(-3) is the largest value.
 - (b) f(x) is increasing on (- ∞ , -2) and (2, ∞).
 - (c) f(x) is concave up on $(0, \infty)$.
 - (d) f'(-3) is the largest value.
 - (e) f(x) is increasing on (-3, 0).
 - (f) f(x) has inflection points at $x = \pm 2$.
 - (g) f(x) has a local maximum at x = 0.
 - (h) f(x) is concave up on (-3, 0).
- 4. (a) f(x) has two critical points: x = 1/9 and x = 1.
 - f(1/9) is a local maximum. f(1) is a local minimum.
 - (b) The inflection point is at x = 5/9.
 - (c) f(x) is decreasing and concave up on (5/9, 1).
 - (d) The globe maximum is 9.0535 and the globe minimum is -37.
- 5.(a) $V(4) \approx 13.05$ which means the car will be worth about \$13,050 in 2009.
- (b) $V(4) \approx -2.121$ which means the value of the car will be decreasing at a rate of \$2,121 per year in 2009. Or in year 2010, the car will be worth about \$11,040.
- 6. (a) f'(t) appears to be positive, because according to the table, gold production is increasing.
 - (b) The derivative (the rate of change) appears to be greatest between 1987 and 1990.
 - (c) $f'(1999) \approx 2.333$ million troy ounces/year. In 1999, gold production was increasing at a rate of approximately 2.333 million troy ounces per year.
 - (d) $f(2000) \approx 83.333$ million troy ounces $f(2005) \approx 94.998$ million troy ounces

7, (a) 2, 1, and -3. (b) $f(2.1) \approx 0.7$ (under); $f(1.98) \approx 1.06$ (over) and is better.

- 8, 9, Graph. 10. a = -1/3
- 11, (a) -1/2 (b) 4 (c) -2 (d) -1/3
- 12. 306 children

13.
$$f'(x) = -\frac{1}{2x^2} + 5x^{2/3} - e^{-x}$$

14. $g'(x) = \frac{1}{x} + 3\sin x$
15. $y = -\frac{5}{4}(\ln x + xe^x + 1)^{-3/2}(\frac{1}{x} + e^x + xe^x)$
16. $H'(t) = \frac{(t+3)(2t+5) - (t^2 + 5t + 2)}{(t+3)^2} = \frac{t^2 + 6t + 13}{(t+3)^2}$
17. $H'(t) = \frac{2t+5}{t^2 + 5t + 2} - \frac{1}{t+3}$
18. $y' = -12x(2-3x^2)\sin(3x^2) + 6x(2-3x^2)^2\cos(3x^2)$
19. $f''(x) = 2e^{x^2 + 4x} (2x^2 + 8x + 9)$

If you find any mistakes, please let me know. Thanks!

li-chen2@neo.tamu.edu