## Week In Review \#7-Test 2 Review

Covers sections: 2.1-2.4, 3.1-3.5, 4.1-4.3

- This review gives one or two examples from each section. It is NOT a thorough review by itself, but rather some additional practice problems that you can study along with your homework and lecture notes.
- The problems in Week-In-Review 5 and 6 are also good review problems for the exam.


## Review Problems:

1. Consider the function $f(x)=x \cdot 2^{x}$. (Round the answers to three decimal places.)
(a) Find the average rate of change of $f$ between $x=2$ and $x=4$.
(b) Estimate $f^{\prime}(3)$ by using a small interval.
(c) Find $f^{\prime}(3)$ by using derivative formulas.
(d) Find the equation of the line tangent to $f(x)$ at $x=3$.
2. The graph of $f^{\prime}$ is given below, at which value of $x$ is

(a) $f(x)$ greatest?
(b) $f(x)$ least?
(c) $f^{\prime}(x)$ greatest?
(d) $f^{\prime}(x)$ least?
(e) $f^{\prime \prime}(x)$ greatest?
(f) $f^{\prime \prime}(x)$ least?
3. (a) If the graph below is of $f(x)$, which of the following has the largest value?

$$
f^{\prime \prime}(-2) \quad f^{\prime}(3) \quad f(3) \quad f^{\prime}(-3) \quad f^{\prime}(0)
$$


(b) If the above graph is of $f(x)$, where is $f(x)$ increasing?
(c) If the above graph is of $f(x)$, where is $f(x)$ concave up?
(d) If the above graph is of $f^{\prime}(x)$, where is $f(x)$ increasing?
(e) If the above graph is of $f^{\prime}(x)$, where does $f(x)$ have inflection points?
(f) If the above graph is of $f^{\prime}(x)$, where does $f(x)$ have local maxima?
(g) If the above graph is of $f^{\prime \prime}(x)$, where is $f(x)$ concave up?
4. Let $f(x)=3 x^{3}-5 x^{2}+x+9$.
(a) Find all critical points of $f(x)$ and state what type of critical points they are (local max, local min, or either).
(b) Find the inflection point(s).
(c) Find the interval(s) at which $f(x)$ is decreasing and concave up at same time.
(d) Find the globe maximum and globe minimum of $f(x)$ on the interval $[-2,1]$.
5. The value of A Toyota minivan purchased in 2005 can be approximated by the function $V(t)=25(0.85)^{t}$, where $t$ is the time, in years, from the date of purchase, and $V$ is the value, in thousands of dollars.
(a) Evaluate and interpret $V(4)$.
(b) Evaluate and interpret $V^{\prime}(4)$.
6. The table below shows the world gold production, $G=f(t)$, as a function of year, $t$.

| $t$ (year) | 1987 | 1990 | 1993 | 1996 | 1999 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $G$ (million troy ounces) | 53 | 70 | 73 | 74 | 81 |

(a) Does $f^{\prime}(t)$ appear to be positive or negative? What does this mean in terms of gold production?
(b) In which time interval does $f^{\prime}(t)$ appear to be greatest?
(c) Estimate $f^{\prime}(1999)$. Give units and interpret the answer in terms of gold production.
(d) Use the estimate value of $f^{\prime}(1999)$ to estimate $f(2000)$ and (2005), and interpret the answers.
7. The following figure shows the tangent line approximation to $f(x)$ near $x=a$.
(a) Find $a, f(a)$, and $f^{\prime}(a)$.
(b) Estimate $f(2.1)$ and $f(1.98)$. Are these under or overestimates? Which estimate would you expect to be more accurate and why?

8. Sketch a possible graph of a function that satisfies all of the given conditions.
$f(6)=0, f(0)=1, f^{\prime}(4)=0$
$f^{\prime}(x)>0$ for $0<x<4$,
$f^{\prime}(x)<0$ for $x<0$ and $x>4$,
$f^{\prime \prime}(x)>0$ for $-2<x<2$, $f^{\prime \prime}(x)<0$ for $x<-2$ and $x>2$, $f(x) \rightarrow 3$ as $x \rightarrow-\infty$,

9. The following graph is of $f(x)$. Sketch the graph of $f^{\prime}(x)$.


10. Find the value of $a$ so that the function $f(x)=x e^{a x}$ has a critical point at $x=3$.
11. If $f$ and $g$ are functions whose graphs shown on the right, find
(a) $h^{\prime}(1)$ if $h(x)=g(f(x))$.
(b) $h(-2)$ if $h(x)=f\left(x^{2}\right)$.

(c) $h^{\prime}(1)$ if $h(x)=3-f(x) g(x)$
(d) $h^{\prime}(3)$ if $h(x)=\frac{g(x)-2}{f(x)}$
12. During a flu outbreak in a school of 763 children, the number of infected children, $I$, was expressed in terms of the number of susceptible (but still healthy) children, $S$, by the expression $I=192 \ln \left(\frac{S}{762}\right)-S+763$. What is the maximum possible number of infected children?

Find the derivatives for the following functions:
13. $f(x)=\frac{1}{2 x}+3 \cdot \sqrt[3]{x^{5}}+e^{-x}$
14. $g(x)=\ln (2 x)-3 \cos x+\ln 3$
15. $y=\frac{5}{2 \cdot \sqrt{\ln x+x e^{x}+1}}$
16. $g(t)=\frac{t^{2}+5 t+2}{t+3}$
17. $H(t)=\ln \frac{t^{2}+5 t+2}{t+3}$
18. $g(x)=\left(2-3 x^{2}\right)^{2} \sin \left(3 x^{2}\right)$
19. Find $f^{\prime \prime}(x)$ for $f(x)=e^{x^{2}+4 x}$.

## Answers:

1. (a) 28
(b) 24.6367
(c) 24.6355
(d) $y=24.6355 x-49.9$
2. (a) $x_{1}$
(b) $x_{5}$
(c) $x_{2}$
(d) $x_{3}$
(e) $x_{1}$
(f) $x_{5}$
3. (a) $f^{\prime}(-3)$ is the largest value.
(b) $f(x)$ is increasing on $(-\infty,-2)$ and $(2, \infty)$.
(c) $f(x)$ is concave up on $(0, \infty)$.
(d) $f^{\prime}(-3)$ is the largest value.
(e) $f(x)$ is increasing on $(-3,0)$.
(f) $f(x)$ has inflection points at $x= \pm 2$.
(g) $f(x)$ has a local maximum at $x=0$.
(h) $f(x)$ is concave up on $(-3,0)$.
4. (a) $f(x)$ has two critical points: $x=1 / 9$ and $x=1$.
$f(1 / 9)$ is a local maximum. $f(1)$ is a local minimum.
(b) The inflection point is at $x=5 / 9$.
(c) $f(x)$ is decreasing and concave up on $(5 / 9,1)$.
(d) The globe maximum is 9.0535 and the globe minimum is -37 .
5.(a) $V(4) \approx 13.05$ which means the car will be worth about $\$ 13,050$ in 2009.
(b) $V(4) \approx-2.121$ which means the value of the car will be decreasing at a rate of $\$ 2,121$ per year in 2009. Or in year 2010, the car will be worth about $\$ 11,040$.
5. (a) $f^{\prime}(t)$ appears to be positive, because according to the table, gold production is increasing.
(b) The derivative (the rate of change) appears to be greatest between 1987 and 1990.
(c) $f^{\prime}(1999) \approx 2.333$ million troy ounces/year. In 1999, gold production was increasing at a rate of approximately 2.333 million troy ounces per year.
(d) $f(2000) \approx 83.333$ million troy ounces $\quad f(2005) \approx 94.998$ million troy ounces

7 , (a) 2,1 , and -3 . (b) $f(2.1) \approx 0.7$ (under); $f(1.98) \approx 1.06$ (over) and is better.
8, 9, Graph. $\quad$ 10. $a=-1 / 3$
11 , (a) $-1 / 2$
(b) 4
(c) -2
(d) $-1 / 3$
12. 306 children
13. $f^{\prime}(x)=-\frac{1}{2 x^{2}}+5 x^{2 / 3}-e^{-x}$
14. $g^{\prime}(x)=\frac{1}{x}+3 \sin x$
15. $y=-\frac{5}{4}\left(\ln x+x e^{x}+1\right)^{-3 / 2}\left(\frac{1}{x}+e^{x}+x e^{x}\right)$
16. $H^{\prime}(t)=\frac{(t+3)(2 t+5)-\left(t^{2}+5 t+2\right)}{(t+3)^{2}}=\frac{t^{2}+6 t+13}{(t+3)^{2}}$
17. $H^{\prime}(t)=\frac{2 t+5}{t^{2}+5 t+2}-\frac{1}{t+3}$
18. $y^{\prime}=-12 x\left(2-3 x^{2}\right) \sin \left(3 x^{2}\right)+6 x\left(2-3 x^{2}\right)^{2} \cos \left(3 x^{2}\right)$
19. $f^{\prime \prime}(x)=2 e^{x^{2}+4 x}\left(2 x^{2}+8 x+9\right)$

