Appendix J.1: Vectors

Definition: A vector is a quantity that has both a magnitude and a direction. A two-dimensional vector is an ordered pair $\mathbf{a} = \langle a_1, a_2 \rangle$ of real numbers. The numbers a_1 and a_2 are called the components of \mathbf{a} .

Example: For the points, A(1,-2) and B(5,4), find \overrightarrow{AB} and \overrightarrow{BA} .

Definition: Given two points $J(a_1, a_2)$ and $K(b_1, b_2)$, then the vector represented by

$$\overrightarrow{JK} = \langle b, -a, bz-az \rangle$$

$$\text{Lend - start } end - start \rangle$$

Definition: The magnitude or length of a vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{(\mathbf{G_1})^2 + (\mathbf{G_2})^2}$$

Example: Find the length of these vectors.

A)
$$\langle 4,6 \rangle$$
 $|(4,6)| = \sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52}$

B)
$$\langle 0, 0 \rangle$$
 $|\langle 0, 0 \rangle| = \sqrt{D^2 L \delta^2} = D$
 $S = \sqrt{25} = \sqrt{[-5]^2} = -5$

Scalar Multiplication: If c is a scalar and $\mathbf{a} = \langle a_1, a_2 \rangle$, then we define the vector $c\mathbf{a}$ as

$$|ca| = \langle CA, CA_2 \rangle$$

$$|ca| = \langle CA, CA_2 \rangle$$

$$= \langle CA, CA_$$

Definition: Two vectors, a and b are said to be parallel if there is some scalar c such that $\mathbf{a} = c\mathbf{b}$

Vector Addition/Subtraction: If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ then the vector $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are defined as

$$a-b=\langle a,-b, \beta, \beta \rangle$$

Example: Compute the following for $\mathbf{a} = \langle 3, 4 \rangle$, $\mathbf{b} = \langle 6, 2 \rangle$, $\mathbf{c} = \langle -2, 5 \rangle$

A)
$$a + b = (3,4) + (6,2) = (4,6)$$

$$C) = 2b = 23,4 - 212,4 = 2-9,0$$

D)
$$3a - 2c + b = 29, 12 > -2-4, 10 > +26.2 > = 219, 4 >$$

Definition: A unit vector is a vector of length 1. The vectors $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$ are referred to as the standard basis vectors for the xy plane.

Example: Find a vector of length 7 that is in the same direction as $\mathbf{a} = \langle 3, 4 \rangle$

$$|a| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

$$\frac{1}{5}a = \langle \frac{3}{5}, \frac{4}{5} \rangle \leftarrow unit vector.$$

La I have magnetized

The vector or

i.e. made it an

$$\frac{anJarer:}{7.\frac{1}{5}a = (\frac{21}{5}, \frac{28}{5})}$$

Example: Given the points P(1,5) and Q(3,10). Find a vector of length 4 that is in the same direction

Answer is
$$\frac{4}{\sqrt{24}} \left< -2, -5 \right> = \left< \frac{-8}{\sqrt{24}} \right> \frac{-20}{\sqrt{24}} \right>$$

w 35°N

Example: A pilot is flying in the direction of $N60^{\circ}W$ at a speed of 250 km/hr.

 $Sin 60 = \frac{x}{h}$ $Sin 60 = \frac{x}{250}$

A) Find the velocity vector.

Ν

B) If there is a wind blowing in the direction of N45°E at 30km/hr, find the true course and ground speed of the plane.

result:

$$= 2^{-125} \sqrt{3}, 125 + 215 \sqrt{2}, 155 \sqrt{2}$$

$$= 2^{-125} \sqrt{3} + 15 \sqrt{2}, 125 + 15 \sqrt{2}$$

$$= 2^{-125} \sqrt{3} + 15 \sqrt{2}, 146.21$$

$$tan \theta = \frac{195.29}{146.31}$$

Example: A 50lb weight hangs from 2 wires. Find the tensions(forces) T_1 and T_2 in both wires and their magnitudes.

