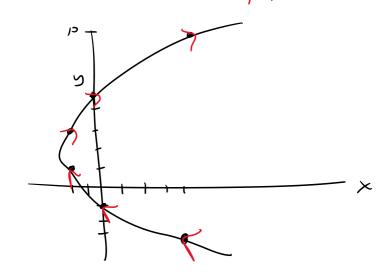
Section 10.1: Curves Defined by Parametric Equations

Example: Use the parametric function $x(t) = t^2 + 3t$, y(t) = 2t + 5 to answer the following.

8 = 2++5

y= 2++5

A) Is the point (10,8) on the graph? Justify your answer.


3 = 2t

$$X = t^{2} + 3t$$

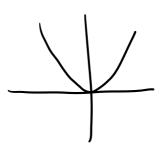
 $= (1.5)^{2} + 3(1.5)$ $1.5 = \frac{3}{2} = t$

B) Sketch the graph of the curve.

Ξ	2.75	+	4.5	
	_	1	75	

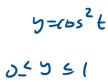
NI~,7	t	\boldsymbol{x}	y	۱
	-4	4	-3	
	-3	0	-1	
	-2	-2	1	
	-1	-2	3	
	0	0	5	
	1	4	7	
V	2	10	9	
				/

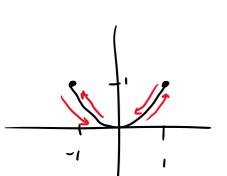
C) Find the Cartesian equation of the parametric function.


$$X = t^{2} + 3t$$
 $y = 2t + 5$
 $y - 5 = 2t$
 $\frac{5-5}{2} = t$

$$X = \left(\frac{9-5}{2}\right)^2 + 3\left(\frac{9-5}{2}\right)$$

Example: Sketch the curve $x = \cos(t)$, $y = \cos^2(t)$.





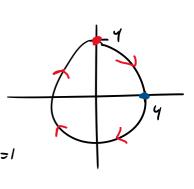
X= wst

-1 4 X S 1

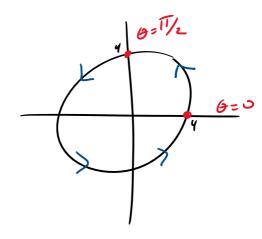
Poth del reincle d'hadius r.

X = r 6050 | X = r 6120

y = r 6120


y = r 6150

Example: Sketch the graph of these parametric curves.


A)
$$x = 4\sin(t)$$
, $y = 4\cos(t)$

$$\frac{X}{Y}$$
 = sint $\frac{Y}{Y}$ = ω > t

$$\left(\frac{x}{4}\right)^2 + \left(\frac{2}{4}\right)^2 = 1$$

B)
$$x = 4\cos(t)$$
, $y = 4\sin(t)$

