Pg 1

Section 11.9: Representations of Functions as Power Series
Geometric Power Series: $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$ converges for $|x|<1$ with Radius of convergence $=1$ and interval of convergence $(-1,1)$

$$
10 \mid<1
$$

Example: Find the power series representation of $f(x)$ and the radius and interval of convergence.
A)

$$
\begin{aligned}
\frac{1}{4+x} & =\frac{1}{4\left(1+\frac{x}{4}\right)}=\frac{1}{4} \cdot \frac{1}{1-\left[\frac{-x}{4}\right.} \xrightarrow{c} \rightarrow \substack{\text { con. } \\
\left|\frac{-x}{4}\right|<1} \\
& =\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{-x}{4}\right)^{n}=\sum_{n=0}^{\infty 4^{n}}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n+1}} \quad \begin{gathered}
\text { central ct } \\
\binom{a=0}{i c . x=0}
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \\
& \sum_{n=0}^{\infty} \square^{n}=\frac{1}{1-\square} \\
& \left.\frac{\operatorname{con} v}{n} \right\rvert\, \square 1<1
\end{aligned}
$$

find Radius o Interval of cons.

Test endpoints

$$
x=4 \quad\left\{\frac{(-1)^{n} 4^{n}}{4^{n+1}}=\sum \frac{(-1)^{n}}{4} \quad b_{n}=\frac{1}{4} \quad \begin{array}{l}
\text { bats so } \\
\text { div. by test fore div. }
\end{array}\right.
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{4^{n+2}} \cdot \frac{4^{n+1}}{(-1)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{4}\right|=\left|\frac{x}{4}\right|<1 \\
& a_{n+1} \cdot \frac{1}{a_{n}} \\
& \left|\frac{x}{4}\right|<1>\frac{|x|}{4}<1 \\
& -1<\frac{x}{y}<1 \\
& |x|<4 \\
& \longrightarrow R=4 \\
& -4<x<4 \\
& -4<x<4 \\
& \sum_{n=0} \frac{(-1)^{n} x^{n}}{4^{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
& x=4 \quad \sum \frac{(-1)^{n} 4^{n}}{4^{n+1}}=\sum \frac{(-1)^{n}}{4} \quad \text { bn }=\frac{1}{4} \begin{array}{l}
b_{n} \neq 0 \text { so so } \\
\text { dive by test fore div. }
\end{array} \\
& x=-4\} \frac{(-1)^{n}(-4)^{n}}{4^{n+1}}=\sum \frac{(-1)^{n}(-1)^{n} 4^{n}}{4^{n+1}}=\sum \frac{1}{4} \text { div. by test fur } \\
& \frac{1}{4+x}=\sum_{n=0} \frac{(-1)^{n} x^{n}}{4^{n+1}} \quad R=4 \quad I:(-4,4)
\end{aligned}
$$

B)

$$
\frac{1}{1-x}=\sum_{n=0} x^{n},|x|<1
$$

$$
\frac{1}{1-D}=\sum \square^{n}|B|<1
$$

$$
\begin{aligned}
& \frac{x^{2}}{4+x}=x^{2} \cdot \frac{1}{4+x}=x^{2} \cdot \frac{1}{4\left(1+\frac{x}{4}\right)} \\
& =\frac{x^{2}}{4} \cdot \frac{1}{1-\left[\frac{-x}{4}\right]} \\
& =\frac{x^{2}}{4} \sum_{n=0}^{\infty}\left(\frac{-x}{4}\right)^{n}=\frac{x^{2}}{4} \sum_{n=0} \frac{(-1)^{n} x^{n}}{4^{n}}=\sum_{n=0} \frac{(-1)^{n} \cdot x^{n} \cdot x^{2}}{4^{n} \cdot 4} \\
& \frac{x^{2}}{4+x}=\sum_{n=0} \frac{(-1)^{n} x^{n+2}}{4^{n+1}} \\
& \begin{array}{l}
\left|\frac{-x}{4}\right|<1 \\
\left|\frac{x}{4}\right|<1 \\
|x|<4 \rightarrow R=4
\end{array}
\end{aligned}
$$

Example: Find the power series representation of $f(x)$ and the radius of convergence.
A)

$$
\begin{aligned}
& \frac{3 x^{3}}{1-9 x^{2}}=3 x^{3} \cdot \frac{1}{1-9 x^{2}}=3 x^{3} \cdot \sum_{n=0}\left(9 x^{2}\right)^{n} \\
&= x^{3} \cdot \sum_{n=0} 9^{n} x^{2 n}=\sum_{n=0}^{\infty} 3 \cdot x^{3} \cdot 3^{2 n} x^{2 n} \\
&=\sum_{n=0}^{\infty} 3^{2 n+1} x^{2 n+3} \quad \begin{array}{l}
4 x^{2} \mid<1 \\
9 x^{2}<1 \\
x^{2}<\frac{1}{9} \\
|x|<\frac{1}{3} \\
\\
\\
R=\frac{1}{3} \quad \text { I: }\left(-\frac{1}{3}, \frac{1}{3}\right.
\end{array}
\end{aligned}
$$

$$
\text { B) } \begin{aligned}
\frac{x}{x^{2}-3 x+2} & =\frac{2}{x-2}+\frac{-1}{x-1} \\
& =\frac{2}{-2+x}-\frac{1}{-1+x} \\
& =2 \cdot \frac{1}{-2\left(1-\frac{x}{2}\right)}-\frac{1}{-1(1-x)} \\
& =(-1) \frac{1}{1-\frac{x}{2}}+\frac{1}{1-x}
\end{aligned}
$$

$$
\frac{1}{1-D}=\sum_{n=0} D^{n} \quad|0|<1
$$

converse

$$
\begin{aligned}
& \left|\frac{x}{2}\right|<\mid \\
& |x|<2 \\
& R=2 \\
& I \quad(-2,2)
\end{aligned}
$$

$$
\begin{array}{ll}
=\sum_{n=0}^{(-1)} \sum_{2}\left(\frac{x}{2}\right)^{n}
\end{array} \sum_{n=0} x^{n} \rightarrow \begin{gathered}
\text { Converse. } \\
|x|<1 \\
R=1
\end{gathered}
$$

$$
=\sum_{n=0}\left(\frac{-x^{n}}{2^{n}}+x^{n}\right)=\sum_{n=0} x^{n}\left(1-\frac{1}{2^{n}}\right)
$$

Pg 6
Monday, November 4, 2019
C) $\frac{9}{x^{4}+81}=\frac{9}{81+x^{4}}=\frac{9}{81\left(1+\frac{x^{4}}{81}\right)}=\frac{9}{81} \cdot \frac{1}{1-\frac{-x^{4}}{81}}$

$$
\begin{aligned}
& =\frac{1}{9} \cdot \frac{1}{1-\sqrt{-\frac{x^{4}}{81}}}=\frac{1}{9} \sum_{n=0}\left(\frac{-x^{4}}{81}\right)^{n}
\end{aligned} \begin{array}{ll}
& \text { if }\left|\frac{-x^{4}}{81}\right|<1 \\
=\frac{1}{9} \sum_{n=1} \frac{(-1)^{n} x^{4 n}}{81^{n}} & =\sum_{n=0} \frac{(-1)^{n} x^{4 n}}{9 \cdot 81^{n}}
\end{array} \quad \begin{array}{ll}
x^{4}<81 \\
& \\
=\sum_{n=0} \frac{(-1)^{n} x^{4 n}}{99^{2 n+1}} & \text { since } 81^{n}=9^{2 n}
\end{array}
$$

Theorem: If the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R>0$, then the function defined by $f(x)=\sum^{\infty} c_{n}(x-a)^{n}$ is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \\
& \quad \text { T } \\
& \underline{f^{\prime}(x)}=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\ldots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
& \int f(x) d x=C+c_{0}(x-a)+\frac{c_{1}(x-a)^{2}}{2}+\frac{c_{2}(x-a)^{3}}{3}+\ldots=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1} \\
& \underline{=}
\end{aligned}
$$

The radii of convergence for both $f^{\prime}(x)$ and $\int f(x) d x$ are both R . The interval of convergence may change.

$$
\begin{array}{l|l}
f=\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}} & g=\sum_{n=0}^{\infty} \frac{x^{n+2}}{3^{n}} \\
\mathrm{f}=\frac{x^{0}}{3^{0}}+\frac{x^{1}}{3^{1}}+\frac{x^{2}}{3^{2}}+\cdots & \mathrm{g}=\frac{x^{2}}{3^{0}}+\frac{x^{3}}{3^{1}}+\frac{x^{4}}{3^{2}}+\cdots \\
\mathrm{f}=1+\frac{x}{3}+\frac{x^{2}}{3^{2}}+\cdots & \mathrm{g}=x^{2}+\frac{x^{3}}{3^{1}}+\frac{x^{4}}{3^{2}}+\cdots \\
f^{\prime}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{3^{n}} & g^{\prime}=\sum_{n=0}^{\infty} \frac{(n+2) x^{n+1}}{3^{n}}
\end{array}
$$

Example: Evaluate this integral by using a power series and find the radius of convergence.

$$
\begin{aligned}
\int \frac{9}{x^{4}+81} d x & = \\
& =\int \sum_{n=0} \frac{(-1)^{n} x^{4 n}}{q^{2 n+1}} d x \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1) q^{2 n+1}} \quad R=3
\end{aligned}
$$

Test endpoints

$$
\begin{aligned}
& \lambda=3 \quad \sum_{n=0} \frac{(-1)^{n} 3^{4 n+1}}{(4 n+1) \cdot a^{2 n+1}}=\sum_{n=0} \frac{(-1)^{n} 3^{4 n+1}}{(4 n+1)\left(3^{2}\right)^{2 n+1}} \\
& =\sum_{n=0} \frac{(-1)^{n} 3^{4 n+1}}{(4 n+1) 3^{4 n+2}}=\sum_{n=0} \frac{(-1)^{n}}{(4 n+1) \cdot 3} \quad \begin{array}{l}
b_{n}=\frac{1}{12 n+3} \\
\text { comus bs AST }
\end{array} \\
& (x=-3) \sum_{n=0} \frac{(-1)^{n}(-3)^{4 n+1}}{(4 n+1) 3^{4 n+2}}=\sum_{n=0} \frac{(-1)^{n}(-1)^{4 n+1} 3^{4 n+1}}{(4 n+1) 3^{4 n+2}}=\left\{\frac{(-1)^{5 n+1}}{(4 n+1) \cdot 3}\right. \\
& b_{n}=\frac{1}{12 n+3} \\
& R=3, I=[-3,3]
\end{aligned}
$$

Example: Find a power series representation of $f(x)$ and determine the interval and radius of convergence.

$$
f(x)=\ln (1+x)
$$

$$
f^{\prime}(x)=\frac{1}{1+x}=\underbrace{\frac{1}{1-(-x)}=\sum_{n=0}(-x)^{n}=\sum_{n=0}(-1)^{n} x^{n} \quad \begin{array}{l}
R=1 \\
I=(-1,1)
\end{array}}_{\begin{array}{r}
1-x \mid<1 \\
|x|<1
\end{array} \quad R=1}
$$

$$
\begin{aligned}
& \ln (1+x)=\int \frac{1}{1+x} d x=\int \sum_{n=0}(-1)^{n} x^{n} d x=C+\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \\
& \ln (1+x)=C+\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \\
& R=1 \\
& \text { Solve fan } C \text {. } \\
& \int x^{3} d x=\frac{x^{4}}{4}+C \\
& \text { pick } x=0 \\
& \ln (1+0)=c+0 \\
& n^{(1)}=C \\
& c=0 \\
& f^{\prime}(x)=x^{3} \quad \text { all } f(1)=10 \\
& f(x)=\frac{x^{4}}{y}+c \\
& 10 .-\frac{1}{4}+L \\
& c=9.75
\end{aligned}
$$

$$
\ln (1+x)=\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \quad R=1 \quad I:(-1,1]
$$

Building block\#2

Example: Find the power series representation of these functions. determine
A) f

$$
\begin{aligned}
\text { A) } f(x)=\ln (1-x)=\ln (1+(-x)) \quad \begin{array}{l}
|-x|<1 \\
|x|<1
\end{array} \quad R=1
\end{aligned} \quad \begin{aligned}
& \ln (1+x)=\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \quad R=1 \\
& =\sum_{n=0} \frac{(-1)^{n}(-x)^{n+1}}{n+1}=\sum_{n=0} \frac{(-1)^{n}(-1)^{n+1} x^{n+1}}{n+1}=\sum_{n=0} \frac{-x^{n+1}}{n+1}
\end{aligned}
$$

B) $f(x)=\ln \left(4+x^{2}\right)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x}{4+x^{2}}=\frac{2 x}{4\left(1+\frac{x^{2}}{4}\right)}=\frac{2 x}{4} \cdot \frac{1}{1-\left(\frac{-x^{2}}{4}\right)}=\frac{x}{2} \sum_{n=0}\left(\frac{-x^{2}}{4}\right)^{n} \\
& \begin{array}{l}
=\frac{x}{2} \sum_{n=0} \frac{(-1)^{n} x^{2 n}}{4^{n}}=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 \cdot 4^{n}} \\
\left(4 x^{2}\right)=\int f^{\prime}(x) d x=C+\sum_{n=0} \frac{(-1)^{n} x^{2 n+2}}{2 \cdot 4^{n} \cdot(2 n+2)}
\end{array} \\
& \left|\frac{-x^{2}}{4}\right|<1 \\
& \left|x^{2}\right|<4 \\
& |x|<2 \\
& R=2 \\
& \text { Let } x=0 \quad \ln (4)=C+0 \\
& C=1 m(4) \\
& \ln \left(4+x^{2}\right)=\ln (4)+\sum_{n=0} \frac{(-1)^{n} x^{2 n+2}}{2 \cdot 4^{n}(2 n+2)} \\
& R=2=4^{n+1}(n+1) \\
& =4 \cdot 4^{n}(n+1) \\
& 2 \cdot 4^{n} \cdot(2 n+2)=2 \cdot 4^{n} \cdot 2(n+1) \\
& \ln \left|4+x^{2}\right|=\ln \left[4\left(1+\frac{x^{2}}{4}\right)\right]=\ln (4)+\ln \left(1+\left[\frac{x^{2}}{4}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
=\ln (y)+\sum_{n=0} \frac{(-1)^{n}}{n+1} \cdot\left(\frac{x^{2}}{4}\right)^{n+1} & =\ln (4)+\sum_{n=0} \frac{(-1)^{n} x^{2 n+2}}{(n+1) 4^{n+1}} \\
\left|\frac{x^{2}}{4}\right|<1 & \rightarrow\left|x^{2}\right|<4 \rightarrow|x|<2 \quad R=2
\end{aligned}
$$

Example: Find the power series representation of $f(x)$ and determine the radias of convergence.

$$
\begin{aligned}
& f(x)=\arctan (x) \\
& f^{\prime}=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}\left(-x^{2}\right)^{n}=\sum_{n=0}(-1)^{n} x^{2 n} \begin{array}{r}
\left|-x^{2}\right|<1 \\
\left|x^{2}\right|<1 \\
|x|<\pi \\
\mid x=1 \\
R=1
\end{array} \\
& \arctan (x)=\int f^{\prime}(x) d x=C+\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad R=1
\end{aligned}
$$

Solve for C. Let $x=0$

$$
\begin{aligned}
\arctan (0) & =C+0 \\
0 & =C
\end{aligned}
$$

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad R=1
$$

$$
\begin{array}{rlrl}
f(x)=x^{2} \arctan \left(3 x^{4}\right) & =x^{<} \sum_{n=0}^{\frac{(-1)^{n}\left(3 x^{4}\right)^{2 n+1}}{2 n+1}} & \begin{array}{ll}
\left|3 x^{4}\right|<1 \\
\left|x^{4}\right|<\frac{1}{3}
\end{array} \\
& =x^{2} \sum_{n=0} \frac{(-1)^{n} 3^{2 n+1}\left(x^{4}\right)^{2 n+1}}{2 n+1} & & |x|<\sqrt[4]{\frac{1}{3}} \\
& =\sum_{n=0} \frac{(-1)^{n} 3^{2 n+1} x^{8 n+4} \cdot x^{2}}{2 n+1} & R=\sqrt[4]{\frac{1}{3}} \\
x^{2} \operatorname{ractan}\left(3 x^{4}\right) & =\sum_{n=0} \frac{(-1)^{n} 3^{2 n+1} x^{8 n+6}}{2 n+1}
\end{array}
$$

Example: Find a power series representation of $f(x)$.

$$
\begin{array}{ll}
f(x)=\frac{1}{(1+x)^{3}} \\
f(x)=\frac{1}{2} g^{\prime \prime}(x) \\
& \quad \begin{aligned}
& \substack{1-x \mid<1 \\
R=1} \frac{1}{1+x}=(1+x)^{-1}=\frac{1}{1-(-x)}=\sum_{n=0}(-x)^{n}=\sum_{n=0}^{n}(-1)^{n} x^{n} \\
&=1-x+x^{2}-x^{3}+\cdots
\end{aligned} \\
g^{\prime}=-(1+x)^{-2}=\frac{-1}{(1+x)^{2}}=\sum_{n=1}(-1)^{n} n x^{n-1} \\
g^{\prime \prime}=2(1+x)^{-3}=\frac{2}{(1+x)^{3}}=\sum_{n=2}(-1)^{n} n(n-1) x^{n-2} \\
f=\frac{1}{2} g^{\prime \prime}(x)=\frac{1}{2} \sum_{n=2}(-1)^{n} n(n-1) x^{n-2}=\sum_{n=2} \frac{1}{2}(-1)^{n} n(n-1) x^{n-2}
\end{array}
$$

webassish

to shift the index
Let $j=n-2$
$j+2=n \quad j+1=n-1$

$$
\leftarrow \sum_{j=0} \frac{1}{2}(-1)^{j+2}(j+2)(j+1) x^{j}
$$

Example: Find a power series representation of $f(x)$.

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{(1+2 x)^{3}} \\
& f(x)=\frac{x^{3}}{8} g^{\prime \prime} \\
& g=\frac{1}{1+2 x}=(1+2 x)^{-1}=\frac{1}{1-(-2 x)}=\sum_{n=0}(-2 x)^{n}=\sum_{n=0}(-1)^{n} 2^{n} x^{n} \\
& =(-1)^{0} z^{0} x^{0}+(\cdots)^{1} z^{1} x^{\prime}+\cdots \\
& S^{\prime}=-(1+2 x)^{-2} \cdot 2 \\
& =-2(1+2 x)^{-2}=\frac{-2}{(1+2 x)^{2}}=\sum_{n=1}(-1)^{n} 2^{n} n x^{n-1} \\
& g^{\prime \prime}=4(1+2 x)^{-3}(2) \\
& g^{\prime \prime}=\frac{8}{(1+2 x)^{3}}=\sum_{n=2}(-1)^{n} 2^{n} n(n-1) x^{n-2} \\
& f=\frac{x^{3}}{8} 3^{\prime \prime}=\sum_{n=2} \frac{x^{3}}{8} \cdot(-1)^{n} 2^{n} n(n-1) x^{n-2} \\
& =\sum_{n=2}(-1)^{n} 2^{n-3} n(n-1) x^{n+1} \\
& \left\{\begin{array}{l}
\frac{2^{n}}{8}=\frac{2^{n}}{2^{3}} \\
=2^{n-3}
\end{array}\right.
\end{aligned}
$$

Pg 15

Example: Use a series to evaluate this integral.

$$
\operatorname{arcta}(x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

$$
\begin{array}{rlr}
\int \arctan \left(x^{3}\right) d x & =\int \sum_{n=0} \frac{(-1)^{n}\left(\underline{x}^{3}\right)^{2 n+1}}{2 n+1} d x & n=0 \\
& =\int \sum_{n=0} \frac{(-1)^{n} x^{6 n+3}}{2 n+1} d x & \left|x^{3}\right|<1 \\
& =C+\sum_{n=0} \frac{(-1)^{n} x^{6 n+1}}{(2 n+1)(6 n+4)} & R=1
\end{array}
$$

Building blocks(so far)
Wednesday, July 21, 2021 9:42 AM

$$
\frac{1}{1-x}=\sum_{n=0} x^{n} \text { if }|x|<1 \quad R=1 \quad I:(-1,1)
$$

$$
\ln (1+x)=\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \text { if }|x|<1
$$

Test endpoints to find Interval of conc.

$$
\operatorname{aratan}(x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \text { if }|x|<1
$$

