$$
\frac{3}{x+2}+\frac{4}{x+5}=\frac{3(x+5)+4(x+2)}{(x+2)(x+5)}=\frac{7 x+23}{x^{2}+7 x+10}
$$

$$
\begin{gathered}
\int \frac{7 x+23}{x^{2}+7 x+10} d x=\int \frac{3}{x+2}+\frac{4}{x+5} d x=\int_{u=x+2}^{L_{u}} \frac{3}{x+2} d x+\int_{u=x+5}^{x+5} d x=\cdots=3 \ln |x+2|+4 \ln |x+5|+\ll
\end{gathered}
$$

A rational function is a function of the form $\frac{P(x)}{Q(x)}$ where both $P(x)$ and $Q(x)$ are polynomials. The degree of a polynomial is the highest power of the variable.

NOTE: To integrate a rational function, $\frac{P(x)}{Q(x)}$, with the partial fraction method, you MUST HAVE the degree $P(x)<$ degree $Q(x)$. If this is not the case then use long division(or some other method) to find $J(x)$ and $K(x)$ so that
$\frac{P(x)}{Q(x)}=J(x)+\frac{K(x)}{Q(x)}$
Method of Integration by Partial Fractions:
0) Do long division(or other algebra manipulation) if degree $P(x) \geq$ degree $Q(x)$.

1) Factor the denominator completely
2) Decompose the fraction
3) Solve for the constants in the decomposition
4) Integrate the new fractions

Page 2

Example: Compute these Integrals.
A) $\int \frac{x^{3}+2 x^{2}-5}{x+1} d x$

$$
\begin{aligned}
& \frac{x^{2}+x-1}{x+1} \begin{aligned}
\frac{x^{3}+2 x^{2}+0 x-5}{-\left(x^{3}+x^{2}\right)} \\
\left.-\frac{x^{2}+0 x}{2}+x\right)
\end{aligned} \frac{x^{3}+2 x-5}{x+1} \\
&-\frac{(-x-1)}{-4}
\end{aligned} \quad \begin{aligned}
&-\frac{x^{2}}{-x-5}+x-1+\frac{-4}{x+1} \\
&=\frac{x^{3}}{3}+\frac{x^{2}}{2}-x-1-\frac{4}{x+1} d x
\end{aligned}
$$

Page 3

$$
\begin{aligned}
& \text { в) } \int \frac{x}{x+5} d x=\int^{\int 1-\frac{5}{x+5}} d x=x-5 \ln |x+5|+C \\
& x+5 \frac{1}{x+0} \\
& \frac{-(x+5)}{-5} \\
& \int \frac{x}{x+5} d x=\int \frac{x+5-5}{x+5} d x=\int \frac{x+5}{x+5}-\frac{5}{x+5} d x
\end{aligned}
$$

Page 4
C) $\int \frac{x^{3}+3 x-5}{x^{2}+1} d x$

$$
\begin{array}{r}
x \\
x^{2}+0 x+1 \begin{array}{l}
x x^{3}+0 x^{2}+3 x-5 \\
2 x-5
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { c) } \int \frac{x^{3}+3 x-5}{x^{2}+1} d x=\int x+\frac{2 x-5}{x^{2}+1} d x=\int x+\frac{2 x}{x^{2}+1}+\frac{-5}{x^{2}+1} d x \\
& =\int x d x+\underbrace{\int \frac{2 x}{x^{2}+1} d x}_{n=x^{2}+1}-\int \frac{5}{x^{2}+1} d x \\
& =\frac{x^{2}}{2}+\ln \left|x^{2}+1\right|-5 \arctan (x)+C
\end{aligned}
$$

Example: Write out the partial fraction decomposition. Do not determine the numetrical values of the coefficients.

$$
\text { A) } \begin{aligned}
\frac{-3 x+20}{x^{3}+3 x^{2}-10 x} & =\frac{-3 x+20}{x\left(x^{2}+3 x-10\right)}=\frac{-3 x+20}{x(x+5)(x-2)} \\
& =\frac{A}{x}+\frac{B}{x+5}+\frac{C}{x-2}
\end{aligned}
$$

B) $\frac{x-3}{x(x+1)^{3}\left(x^{2}+5\right)}=$

$$
\begin{aligned}
& \text { C) } \begin{array}{l}
\frac{x^{2}+2}{x^{3}\left(x^{2}-9\right)\left(x^{2}+16\right)^{2}} \\
\frac{(x-3)(x+3)}{} \quad x^{3}=(x+0)^{3} \\
=\frac{A}{x^{3}}+\frac{B}{x^{2}}+\frac{C}{x}+\frac{d}{x-3}+\frac{e}{x+3}+\frac{f x+2}{\left(x^{2}+16\right)^{2}}+\frac{h x+i}{x^{2}+16}
\end{array} .
\end{aligned}
$$

Example: Compute these integrals.
A) $\int \frac{-3 x+20}{x^{3}+3 x^{2}-10 x} d x$

$$
\begin{aligned}
& \frac{-3 x+20}{x^{3}+3 x^{2}-10 x}=\frac{-3 x+20}{x(x+5)(x-2)}=\frac{A}{x}+\frac{B}{x+5}+\frac{C}{x-2} \\
& \frac{-3 x+20}{x(x+5)(x-2)}=\frac{A(x+5)(x-2)}{x(x+5)(x-2)}+\frac{B x(x-2)}{x(x+5)(x-2)}+\frac{C x(x+5)}{x(x+5)(x-2)} \\
& \frac{-3 x+20}{x(x+5)(x-2)}=\frac{A(x+5)(x-2)+B x(x-2)+C x(x+5)}{x(x+5)(x-2)} \\
&-3 x+20=A(x+5)(x-2)+B x(x-2)+C x(x+5) \\
&-3 x+20=A\left(x^{2}+3 x-10\right)+B\left(x^{2}-2 x\right)+C\left(x^{2}+5 x\right) \\
& 0 x^{2}-3 x+20=A x^{2}+3 A x-10 A+B x^{2}-2 B x+C x^{2}+5 C x
\end{aligned}
$$

$x^{2} \quad 0=A+B+C$
x) $-3=3 A-2 B+5 C$
cons) $20=-10 \mathrm{~A} \longrightarrow A=-2$

$$
0=-2+B+C
$$

$$
-3=-6-2 B+5 \angle
$$

$$
\begin{aligned}
& 2=B+C \begin{array}{l}
3 \\
B=2-C \\
3
\end{array}=-2(2-C)+5 C \\
& 3=-4+2 C+5 C \\
& 7=1 C \\
&=\int \frac{-2}{x}+\frac{1}{x+5}+\frac{1}{x-2} d x=C
\end{aligned}
$$

Example: Compute these integrals.
A) $\int \frac{-3 x+20}{x^{3}+3 x^{2}-10 x} d x$

$$
\begin{aligned}
& \frac{-3 x+20}{x^{3}+3 x^{2}-10 x}=\frac{-3 x+20}{x(x+5)(x-2)}=\frac{A}{x}+\frac{B}{x+5}+\frac{C}{x-2} \\
& -3 x+20=A(x+5)(x-2)+B x(x-2)+C x(x+5)
\end{aligned}
$$

if $x=0$

$$
\begin{aligned}
& 20=A(5)(-2)+0+0 \\
& 20=-10 A \\
& -2=A
\end{aligned}
$$

$$
15+20=0+\Delta(-5)(-7)+0
$$

$$
35=35 B
$$

$x=2$

$$
\begin{aligned}
-6+20=14 & =0+0+2 c \cdot 7 \\
14 & =14 c \\
1 & =c
\end{aligned}
$$

$$
x=-5
$$

$$
1=B
$$

$$
\begin{aligned}
& \int \frac{-2}{x}+\frac{1}{x+5}+\frac{1}{x-2} d x \\
& =-2 \ln |x|+\ln |x+5|+\ln |x-2|+C
\end{aligned}
$$

B) $\int \frac{x+2}{x^{3}+2 x} d x$

$$
\frac{x+2}{x^{3}+2 x}=\frac{x+2}{x\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2}
$$

$$
\begin{aligned}
& x+2=A\left(x^{2}+2\right)+(B x+C) x \\
& x+2=A x^{2}+2 A+B x^{2}+C x
\end{aligned}
$$

$$
\begin{array}{ll}
x^{2} & 0=A+B \\
x & 1=C
\end{array}
$$

cost $2=2 \mathrm{~A}$

$$
2=2 A \longrightarrow A=B C-1
$$

Short cut
Let. $x=0$

$$
\begin{gathered}
2=A(2)+0 \\
A=1
\end{gathered}
$$

$$
\begin{aligned}
& =\int \frac{1}{x}+\frac{-x+1}{x^{2}+2} d x=\int \frac{1}{x}-\underbrace{\frac{x}{x^{2}+2}}_{n=x^{2}+2}+\underbrace{\frac{1}{x^{2}+2} d x}_{\text {from } 7.3 \text { work. }} \\
& =\ln |x|-\frac{1}{2} \ln \left|x^{2}+2\right|+\frac{1}{\sqrt{2}} \arctan \left(\frac{x}{\sqrt{2}}\right)+L
\end{aligned}
$$

$$
\begin{aligned}
\frac{15 x+5}{(x+2)^{2}\left(x^{2}+1\right)} & =\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+d}{x^{2}+1} \\
15 x+5 & =A(x+2)\left(x^{2}+1\right)+B\left(x^{2}+1\right)+(C x+1)(x+2)^{2} \\
& =A\left(x^{3}+x+2 x^{2}+2\right)+B\left(x^{2}+1\right)+(C x+1)\left(x^{2}+4 x+4\right) \\
15 x+5 & =A x^{3}+A x+2 A x^{2}+2 A+B x^{2}+B+C x^{3}+4 C x^{2}+4 C x+d x^{2}+4 d x+4 d
\end{aligned}
$$

$x^{3} \quad 0=A+C \longrightarrow A=-C$
x^{2}) $0=2 A+B+4 C+d$
$x] 15=A+4 C+4 d$
canst) $5=2 A+B+4 d$

Short cut. if $x=-2$

$$
\begin{aligned}
-30+5 & =B(4+1) \\
-25 & =5 B \\
B & =-5
\end{aligned}
$$

$$
\begin{aligned}
& 0=2 A-5-4 A+d\left\{\begin{array} { l }
{ 1 5 = A - 4 A + 4 d } \\
{ 1 5 = - 3 A + 4 d } \\
{ 5 = - 2 A + d }
\end{array} \left\{\begin{array}{l}
5=2 A-5+4 d \\
10=2 A+4 d \\
5+2 A=d) \\
5-2=d \\
d=3 \\
10=2 A+4(5+2 A) \\
10=2 A+20+8 A \\
-10=10 A \\
-1=A
\end{array}\right.\right. \\
& \begin{array}{l}
10 \\
C=-6 \\
C=-A=1
\end{array}
\end{aligned}
$$

Page 8 cont.

$$
\begin{aligned}
& \text { c) } \begin{array}{l}
\int \frac{15 x+5}{(x+2)^{2}\left(x^{2}+1\right)} d x=\int \frac{-1}{x+2}+\frac{-5}{(x+2)^{2}}+\frac{1 x+3}{x^{2}+1} d x \\
=\int \frac{-1}{x+2} d x-\int \frac{5}{(x+2)^{2}} d x+\int \frac{x}{x^{2}+1} d x+\int \frac{3}{x^{2}+1} d x \\
n=x+2
\end{array} \quad \begin{array}{l}
n=x^{2}+1 \\
=-\ln |x+2|-\frac{-5}{x+2}+\frac{1}{2} \ln \left|x^{2}+1\right|+3 \arctan (x)+c
\end{array} .
\end{aligned}
$$

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c
$$

