Section 11.2: Series

Definition: Given a sequence $\left\{a_{i}\right\}$, we can construct an infinite series or series
by adding the terms of the sequence. $\sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+a_{3}+\ldots$
Definition: The nth partial sum of a series, denoted s_{n}, is the sum of the first n-terms.

NOTE: If the index starts at $i=1$ then
$s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$
$s_{1}=a_{1}$
$s_{2}=s_{1}+a_{2}=a_{1}+a_{2}$
$s_{3}=s_{2}+a_{3}=a_{1}+a_{2}+a_{3}$
$s_{4}=s_{3}+a_{4}=a_{1}+a_{2}+a_{3}+a_{4}$
$s_{5}=s_{4}+a_{5}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$

Example: Find the Ω_{4} for the series: $\sum_{i=4}^{\infty} \frac{1}{(i-2)^{2}}=\frac{1}{(1-2)^{2}}+\frac{1}{(5-2)^{2}}+\cdots \cdot$

$$
=\frac{(1-2)}{}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{5^{2}}+\cdots \cdots
$$

Page 2
How To Shift a Series:
Example: Adjust the series $\sum_{i=3}^{\infty} 10\left(\frac{1}{3}\right)^{2 i}$ so that the index will now start at $\mathrm{i}=1$.

$$
\begin{aligned}
& j=i-2 \\
& j+2=i
\end{aligned}
$$

$$
10\left(\frac{1}{3}\right)^{2(j+2)}=\sum_{j=1}^{\infty} 10\left(\frac{1}{3}\right)^{2 j+4}
$$

Page 3

Definition: Let $\sum_{i=1}^{\infty} a_{i}$ be a series with s_{n} being the nth partial sum of this series.
If the sequence of partial sums $\left\{s_{n}\right\}$ converges to s, i.e. $\lim _{n \rightarrow \infty} s_{n}=s$, then we say that the series $\sum_{i=1}^{\infty} a_{i}$ converges to s or that the series has a sum of $s, \sum_{i=1}^{\infty} a_{i}=s$. If $\left\{s_{n}\right\}$ does not converge, then the series $\sum_{i=1}^{\infty} a_{i}$ is said to be divergent.

n	a_{n}	n	s_{n}
1	40		
2	8	1	40
3	$8 / 5=1.6$	2	48
4	$8 / 25=0.32$	3	$49.6=\mathrm{S}_{2}$ 19 $_{3}$
5	$8 / 125=0.064$	4	49.92
6	$8 / 625=0.0128$	5	49.984
7	$8 / 3125=0.00256$	6	49.9968
8	$8 / 15625=0.000512$	7	49.99936
9	$8 / 78125=0.0001024$	8	49.999872
10	$8 / 390625=0.00002048$	9	49.9999744
		10	49.99999488

$$
S_{n} \rightarrow 50 \text { as } n->\infty
$$

Thus

$$
\sum_{i=1}^{\infty} a_{i}=50
$$

Theorem: If the series $\sum_{i=1}^{\infty} a_{i}$ is convergent, then $\lim _{i \rightarrow \infty} a_{i}=0$

Test for Divergence: If $\lim _{i \rightarrow \infty} a_{i} \neq 0$ or DNE, then the series $\sum_{i=1}^{\infty} a_{i}$ is divergent.

Example: Which of these series DO NOT have a chance at being convergent?

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=0
$$

may on may
A) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$

$$
a_{n}=\frac{1}{n^{3}}
$$ not cons.

B) $\sum_{n=1}^{\infty} \frac{3 n+5}{7-2 n}$

$$
\lim _{n \rightarrow \infty} \frac{3 n+5}{1-2 n}=\frac{1}{1 /} \frac{3}{-2}=-\frac{3}{2} \neq 0
$$

by the test for din. The series will
C) $\sum_{n=1}^{\infty} \cos \left(e^{-n}\right)$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \cos \left(e^{-n}\right)=\cos (0)=1 \\
\text { by the test for div. This series } \\
\text { will do. }
\end{gathered}
$$

Page 5

Example: The series $\sum_{i=1}^{\infty} a_{i}$ has a nth partial sum given by s_{n}. Will the series converge or diverge? Find the formula for the a_{n} term.

$$
\begin{aligned}
& L^{s_{n}=\frac{3 n+5}{7-2 n}} \quad \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{3 n+5}{7-2 n}=-\frac{3}{2} \\
& \sum_{n} h_{i}=-\frac{3}{2} \quad \text { Re series converges. }
\end{aligned}
$$

$$
i=1
$$

$$
\begin{aligned}
& S_{n}=a_{n}+S_{n-1} \\
& S_{n}-S_{n-1}=a_{n}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=S_{n}-S_{n-1} \\
& a_{n}=\frac{3 n+5}{7-2 n}-\frac{3(n-1)+5}{7-2(n-1)}
\end{aligned}
$$

$$
\begin{array}{r}
\text { find } a_{4}=S_{4}-S_{3}=\frac{17}{-1}-\frac{14}{1}=-17-14=-31 \\
a_{4}=-31
\end{array}
$$

Example: The geometric series may be defined in a variety of methods.
$\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\ldots$
$\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\ldots$.
$\sum_{n=7}^{\infty} a r^{n-7}=a+a r+a r^{2}+a r^{3}+\ldots$.

Proof of the Geometric Series:

Consider the parital sum of the first n terms.
$S_{n}=\sum_{k=1}^{n} a r^{k-1}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}$
Multiply S_{n} by r to get: $r S_{n}=a r+a r^{2}+a r^{3}+\ldots+a r^{n}$
Now compute $S_{n}-r S_{n}$ and then solve for S_{n}
$S_{n}-r S_{n}=a-a r^{n}$
$(1-r) S_{n}=a-a r^{n}$
$S_{n}=\frac{a-a r^{n}}{1-r}$

$$
-1<r<
$$

$\underline{\text { Sum }=\lim _{n \rightarrow \infty} S_{n}}=\lim _{n \rightarrow \infty} \frac{a-\left(a r^{n}\right)}{1-r}= \begin{cases}\frac{a}{1-r} & \text { if } \underbrace{|r|<1} \\ D N E & \text { if }|r| \geq 1\end{cases}$

Page 8
, j

Theorem: If $\sum a_{n}$ and $\sum b_{n}$ are covergent series, then so are the following series $\sum c a_{n}=c \sum a_{n}($ where c is a constant $)$

$$
\sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n} \longrightarrow j+k
$$

$\sum\left(a_{n}-b_{n}\right)=\sum a_{n}-\sum b_{n}$

Example: Determine if these series are convergent or divergent. If the series is convergent, then give the sum of the series.

$$
\begin{aligned}
& \text { A) } 1-\frac{4}{3}+\frac{16}{9}-\frac{64}{27}+\ldots \\
& 1+\left(-\frac{4}{3}\right)+\left(-\frac{4}{3}\right)^{2}+\left(-\frac{4}{3}\right)^{3}+\cdots \\
& r=\frac{-4}{3} \quad a=1
\end{aligned}
$$

$$
\operatorname{since}|r| \geqslant 1
$$

The series div.
B) $\sum_{i=1}^{\infty} 10\left(\frac{1}{3}\right)^{i-1}$

$$
\begin{aligned}
\sum_{i=3}^{\infty} 10\left(\frac{1}{3}\right)^{i-1}= & \underbrace{10\left(\frac{1}{3}\right)^{2}}_{a}+\underbrace{10\left(\frac{1}{3}\right)^{3}}_{a r}+\underbrace{10\left(\frac{1}{3}\right)^{4}}_{a r^{2}}+\cdots \\
a=\frac{10}{9} & =\frac{1}{3} \quad \text { Sum }
\end{aligned}=\frac{a}{1-r}=\frac{10 / 9}{1-\frac{1}{3}}=\frac{\frac{10}{9}}{\frac{2}{3}}=\frac{10}{9} \cdot \frac{3}{2}=
$$

The series converges to the sum of $\frac{5}{3}$.

$$
\begin{aligned}
\sum_{i=1} 10\left(\frac{1}{3}\right)^{i-1} & =10+10\left(\frac{1}{3}\right)+10\left(\frac{1}{3}\right)^{2}+\cdots \\
\sum_{i=1} 10\left(\frac{1}{3}\right)^{i-1} & =10+10\left(\frac{1}{3}\right)+\sum_{i=3}^{\infty} 10\left(\frac{1}{3}\right)^{i-1}
\end{aligned}
$$

$$
15=10+\frac{10}{3}+\sum_{i=3}^{\infty} \rho\left(\frac{1}{3}\right)^{i-1}
$$

$$
\left.\sum_{i=3} 12\left(\frac{1}{3}\right)^{i-1}=15-10-\frac{10}{3}=5-\frac{10}{3}=\frac{15}{3}-\frac{10}{3}=\frac{5}{3}\right)
$$

Page 11
C)

$$
\text { c) } \begin{aligned}
& \sum_{n=0}^{\infty} 7 * 4^{-n 3^{n-1}}=\sum_{n=0} 7 \cdot \frac{3^{n-1}}{4^{n}} \\
&=\underbrace{7 \cdot \frac{3^{-1}}{4^{0}}}_{a}+\underbrace{7 \cdot \frac{3^{1}}{4}}_{a r}+7 \cdot \frac{3^{1}}{4^{2}}+7 \cdot \frac{3^{2}}{4^{3}}+\cdots \cdot \\
& G=\frac{7 \cdot 3^{-1}}{4^{0}}=\frac{7}{3} \quad r=\frac{3}{4} \quad \frac{a r}{a}=r \\
& \operatorname{Smm}=\frac{\text { Since }}{1-r}=\frac{\mid r / 3}{1-3 / 4}=\frac{7 / 3}{1 / 4}=\frac{28}{3}
\end{aligned}
$$

D) $\sum_{i=1}^{\infty} \ln \left(\frac{i}{i+1}\right)$
need afoerula for the parotid sur.

Test for dr.

$$
\lim _{i \rightarrow \infty} \ln \left(\frac{i}{i+1}\right)=\ln (1)=0
$$

may or may not cornu.

$$
\begin{array}{rlrl}
S_{n} & =\sum_{i=1}^{n} \ln \left(\frac{i}{i+1}\right)=\sum_{i=1}^{n}[\ln (i)-\ln (i+1)] \\
S_{n} & =\ln (1)-\ln (2) \\
& +\ln (2)-\ln (3) \\
& +\ln (3)-\ln (4) \\
& +\ln (4)-\ln (5) & i=2 \\
+\ln (n-3)-\ln (n-2) & i=n-3 \\
+\ln (n-2)-\ln (n-1) & i=n-2 \\
+\ln (n-1)-\ln (n) & i=n-1 \\
+\ln (n)-\ln (n+1) & i=n
\end{array}
$$

Telescoping Series

$$
\begin{aligned}
& S_{n}=\ln (1)-\ln (n+1)=-\ln (n+1) \\
& \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}-\ln (n+1)=-\infty
\end{aligned}
$$

Sequence of partied sums does not cons. Thus the series will diverge

Page 13

$$
\text { E) } \begin{aligned}
& \sum_{i=3}^{\infty}\left(\frac{1}{i-2}-\frac{1}{i}\right)=\sum_{i=3} \frac{2}{i^{2}-2 i} \\
& \text { purtidsum }=1-\frac{1}{3} \quad i=3 \\
&+\frac{1}{2}-\frac{1}{4} \quad i=4 \\
&+\frac{1}{3}-\frac{1}{5} \quad i=5 \\
& \left.+\frac{1}{4}-\frac{1}{6} \right\rvert\, \quad i=6 \\
&+\frac{1}{5}-\left(\frac{1}{7}\right) \quad i=7
\end{aligned}
$$

$$
\begin{array}{ll}
+\left(\frac{1}{n-5}-\frac{1}{n-3}\right. & i=n-3 \\
+\left(\frac{1}{n-4}-\frac{1}{n-2}\right. & i=n-2 \\
+\frac{1}{n-3}-\frac{1}{n-1} & i=n-1 \\
+\frac{1}{n-2}-\frac{1}{n} & i=n
\end{array}
$$

pritial sum $=1+\frac{1}{2}-\frac{1}{n-1}-\frac{1}{n}$

$$
\lim _{n \rightarrow \infty} \text { purtidsum }=1+\frac{1}{2}=\frac{3}{2}
$$

The series converges. The surd the series is $3 / 2$

Page 14
Te lescupins
F) $\sum_{i=1}^{\infty} e^{5 /(i+1)}-e^{5 / i}$

$$
+e^{5 / 3}-e^{5 / 2} \quad i=2
$$

$$
\begin{aligned}
& +e^{5 / n-1}-e^{5 / n-2} \\
& +e^{5 / n}-e^{5 / n-1} \\
& +e^{5 / n}-e^{5 / n}
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=e^{5 / n+1}-e^{5} \\
& \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(e^{\frac{5}{n+1}}-e^{5}\right)=e^{0}-e^{5} \\
&=1-e^{5}
\end{aligned}
$$

The series will converge and Its sum is

$$
1-e^{5}
$$

Example: Use a geometric series to express $0 . \overline{14}$ as a ratio of integers.

$$
\begin{aligned}
& . \overline{14}=.14141414 \ldots . \\
& =.14+.0014+.000014+.00000014+\ldots . . \\
& =\frac{14}{100}+\frac{14}{100} \cdot \frac{1}{100}+\frac{14}{150} \cdot\left(\frac{1}{100}\right)^{2}+\frac{14}{100}\left(\frac{1}{100}\right)^{3}+\cdots \cdot \\
& \text { n } \\
& \text { ar } \quad r=\frac{1}{100} \\
& S_{\text {un }}=\frac{a}{1-r}=\frac{\frac{14}{100}}{1-\frac{1}{100}}=\frac{\frac{14}{100}}{\frac{99}{100}}=\frac{14}{99}
\end{aligned}
$$

Example: Find the values of x so that $\sum_{n=1}^{\infty}(4 x-5)^{n}$ will converge. Find the sum for those values of x .

$$
\begin{aligned}
& (4 x-5)+(4 x-5)^{2}+(4 x-5)^{3}+\cdots \cdot \\
& \text { a ar ar convex if }|r|<1 \\
& a=4 \times-5 \\
& |4 x-5|<1
\end{aligned}
$$

$$
\begin{aligned}
& -1<4 x-5<1 \\
& \text { sum }=\frac{4}{1-r}=\frac{4 x-5}{1-(4 x-5)}=\frac{4 x-5}{6-4 x}
\end{aligned}
$$

