Section 11.5: Alternating Series
An alternating series is a series whose terms are alternately positive and negative. The general term, a_{n}, is of the form $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ or $a_{n}=(-1)^{n-1} b_{n}$, where b_{n} is a positive number.

The Alternating Series Test (AST): If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{(n-1)} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\ldots
$$

The bn are decreasing
with $b_{n}>0$ satisfies:
(1) $b_{n+1} \leq b_{n}$ for all n and (2) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

Example: Does this series converge or diverge? $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \quad G_{n}=(-1)^{n} \frac{1}{n}$

$$
b_{n}=\frac{1}{n}
$$

$$
b_{n}=\frac{1}{n} \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

b_{n} decreasing \checkmark
by AST This series will converge.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=\ln (2)
$$

Alternating Series Estimation Theorem: If $s=\sum_{n=1}^{\infty}(-1)^{(n-1)} b_{n}$ is the sum of an alternating series that satisfies:
$\underline{\left(\text { a) } 0<b_{n+1} \leq b_{n}\right.} \quad$ and \quad (b) $\lim _{n \rightarrow \infty} b_{n}=0$
then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$ next bn

$$
\begin{aligned}
& S_{2}=b_{1}-b_{2} \\
& \quad\left|R_{2}\right|<b_{3}
\end{aligned}
$$

$$
e_{\text {econ }}=R_{5}
$$

$$
S_{5}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}
$$

$$
\left|R_{s}\right|<b_{6}
$$

Pg 4

Example: Find a bound on R_{4} for the series: $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n}$ \longleftarrow conn. byAst

Example: Do these series converge or diverge?
A) $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n^{2}}\right)$

$$
b_{n}=\ln \left(1+\frac{1}{n^{2}}\right)
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n^{2}}\right)=\ln (1)=0 \\
& \text { dec??} \\
& f(x)=\ln \left(1+x^{-2}\right)
\end{aligned}
$$

$$
f^{\prime}=\frac{1}{1+x^{-2}} \cdot-2 x^{-3}=\frac{\frac{-2}{x^{3}}}{1+\frac{1}{x^{2}}}<0 \text { for } x>0
$$

by AST the series will converge.
B) $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n^{2}}=\sum_{n=1} \frac{(-1)^{n+1} 3^{n+1}}{n^{2}}$

$$
\sum \frac{-3^{n+1}}{n^{2}}
$$

$$
b_{n}=\frac{3^{n+1}}{n^{2}}
$$

$$
\lim _{n \rightarrow \infty} \frac{3^{n n}}{n^{2}} \stackrel{L^{\prime} H}{=} \lim _{n \rightarrow \infty} \frac{3^{n+1} \ln (3)}{2 n} \stackrel{L^{\prime} / 4}{=} \lim _{n \rightarrow \infty} \frac{3^{n+1} \ln (3) \ln (3)}{2}
$$

$$
=\infty
$$

Tee serie will diverge by the test fie
NV.

$$
\cos (n \pi)
$$

$$
b_{n}=\frac{n}{4^{n}}
$$

$$
\lim _{n \rightarrow \infty} \frac{n}{4^{n}}=\lim _{n \rightarrow \infty} \frac{1}{4^{n} \ln (4)}=0
$$

dec?

$$
\left.\begin{array}{rl}
f(x)=\frac{x}{4^{x}} & f^{\prime}(x)
\end{array}\right)=\frac{4^{x}(1)-x \cdot 4^{x} \ln (4)}{\left(4^{x}\right)^{2}}
$$

$$
\begin{array}{r}
1-x \ln (x)=0 \\
x \ln (4)
\end{array}
$$

for $x>\frac{1}{\ln (1)}$
The series will converge by AST
D) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}+1}$
none d my test

$$
\begin{aligned}
& \text { none vol work or } \\
& \text { will wis. }
\end{aligned}
$$

this.

3 positive terms the 3 negative terms not alter rating.
writuntil the next section.

Example: Determine if the series converges or diverges. If it converges find a bound for the error of s_{6}, i.e. R_{6}

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n}) \quad b_{n}=\sqrt{n+1}-\sqrt{n} \\
& \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}-\sqrt{n}}{1} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{n+1-n}{\sqrt{n+1}+\sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=0 \\
& \text { Alec } f(x)=\sqrt{x+1}-\sqrt{x} \\
& f^{\prime}(x)=\frac{1}{2}(x+1)^{-1 / 2}-\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(x)=\frac{\sqrt{x}-\sqrt{x+1}}{2 \sqrt{x} \sqrt{x+1}}<0 \\
& \text { Critical } \\
& x=\frac{1}{2}
\end{aligned}
$$

Mes
by AST the series will conk.

$$
R_{6} \mid<b_{7}=\sqrt{7+1}-\sqrt{7}=\sqrt{8}-\sqrt{7}
$$

Example: What is the smallest number of terms we must use to approximate
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ so that the error is less than $\frac{1}{120}$.

$$
\begin{aligned}
\left|R_{n}\right| & <b_{n+1}
\end{aligned} \begin{aligned}
&<\frac{1}{120} \\
& \frac{1}{(n+1)^{2}}<\frac{1}{120} \\
& 120<(n+1)^{2} \\
& \sqrt{120}<n+1 \\
& \sqrt{120}-1<n \\
& 9,95<n \\
& n=10
\end{aligned}
$$

$$
\begin{cases}b_{n}=\frac{1}{n^{2}} \\ n=1 & b_{1}=1 \\ n=2 & b_{2}=\frac{1}{4} \\ n=3 & b_{3}=\frac{1}{9} \\ n=9 & b_{4}=\frac{1}{81} \\ n=10 & b_{10}=\frac{1}{100} \\ b_{11}=\frac{1}{121} \\ n=10\end{cases}
$$

Example: What is the minimum number of terms needed so that the sum of this series is correct to 3 decimal places? i.e. error <0.0005
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)!}$

$$
b_{n}=\frac{1}{(2 n-1)!}
$$

$$
b_{1}=1
$$

$$
b_{2}=\frac{1}{3!}=\frac{1}{6}=.16 \overline{6}
$$

$$
b_{3}=\frac{1}{5!}=.0083
$$

$$
\begin{aligned}
& b_{n+1}<10005 \\
& \frac{1}{(2(n+1)-1)!}<.0005
\end{aligned}
$$

$b_{y}=\frac{1}{7!}=.000198 \quad$ "next term"

$$
\text { need } n=3
$$

Example: Given that the alternating series $\sum_{n=1}^{\infty} \underbrace{(-1)^{(n-1)} b_{n}}$ converges. Is the sum of the first 47 terms, s_{47}, an overestimate or an underestimate for the total sum?
Is the first term pos on neg? positive

over estimate

