Section 11.6: Absolute Convergence and the Ratio and Tests

Definition: A series $\sum a_{n}$ is called absolutely convergent if the series $\sum\left|a_{n}\right|$ is convergent.

Definition: A series $\sum a_{n}$ is called conditionally convergent if the series $\sum\left|a_{n}\right|$ is divergent and the series $\sum a_{n}$ is convergent.

Theorem: If a series $\sum a_{n}$ is absolute convergent, then it is convergent.

Example: Determine if the series is absolute convergent, conditionally convergent, or divergent?
$\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
Since the "new" series
converges the origind series is Abs. cont.
new series

$$
\sum_{n=1}^{\infty}\left|\frac{1}{n^{3}}\right|=\sum \frac{1}{n^{3}}
$$

p-series $p=3$
con.
by the definition
Example: Determine if the series is absolute convergent, conditionally conver-
gent, or divergent?
onisind $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}+1} \quad$ series
by The def. of Abs corr. This sereips is Abs.conv. serins is Abs.
new series \longleftarrow conv.

$$
\begin{aligned}
& \sum\left|\frac{\sin (n)}{n^{2}+1}\right|=\sum \frac{|\sin (n)|}{n^{2}+1} \\
& |\sin (n)| \leq 1 \\
& \frac{|\sin (n)|}{n^{2}+1} \leq \frac{1}{n^{2}+1}
\end{aligned}
$$

does $\sum \frac{1}{n^{2}+1}$ converge?
lase LCT with $\sum \frac{1}{n^{2}}$ conn. $p=2$

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}+1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1
$$

by Lat $\sum \frac{1}{n^{2}+1}$ will con by the comparison test $\sum \frac{|\sin (n)|}{n^{2}+1}$ will wan.

Example: Determine if the series is absolute convergent, conditionally convergent, or divergent?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

new series does not cone. So this
bes series
series is not abs conn.

$$
\sum_{p \text {-series }}^{\sum\left|\frac{(-1)^{n}}{n}\right|=\sum_{n=1}^{n}} \quad \text { div. }
$$

use AST (Alternating series test)

$$
b_{n}=\frac{1}{n}
$$

$$
\begin{aligned}
& b_{n} d e c \\
& \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\sum \frac{(-1)^{n}}{n} & \text { will } \\
\text { con. by AST }
\end{array}
$$

Thus this series is conditionally cone.

Example: Determine if the series is absolute convergent, conditionally convergent, or divergent?
$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$
not Abs. con.
Try AST

$$
\begin{aligned}
& b_{n}=\frac{1}{\ln (n)} \\
& \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

b_{n} dec
by AST $\sum \frac{(-1)^{n}}{\ln (n)}$ will cons.
Thus $\sum \frac{(-1)^{n}}{\ln (n)}$ is cone. conv.

The Ratio Test:

$$
\sum a_{n}
$$

(a) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$, with $0 \leq L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(b) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Note: If the limit for the ratio test is 1 , then this test fails to give any informaton. Try something else.

Consider the results of the ratio test for two of our known p-series.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, where $a_{n}=\frac{1}{n^{2}}$, converges since $p>1$.

$$
a_{n+1}=\frac{1}{(n+1)^{2}}
$$

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1 /(n+1)^{2}}{1 / n^{2}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1$ by L'Hopitals.
(b) $\sum_{n=1}^{\infty} \frac{1}{n}$, where $a_{n}=\frac{1}{n}$, diverges since $p \leq 1$.
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1 /(n+1)}{1 / n}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ by L'Hopitals.
use Rato test for exp. fiction.

Ratio test
Example: Determine if the series is absolute convergent, conditionally conver-

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!} a_{n}=\frac{(-3)^{n}}{n!}=\frac{(-1)^{n} 3^{n}}{n!} \\
& a_{n+1}=\frac{(-1)^{n+1} 3^{n+1}}{(n+1)!} \quad \lim _{n \rightarrow \infty}\left|a_{n+1} \cdot \frac{1}{a_{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} 3^{n+1}}{(n+1)^{\prime}}}{\frac{(-1)^{n} 3^{n}}{n!}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} 3^{n+1}}{(n+1)!} \cdot \frac{n!}{(-1)^{n} 3^{n}}\right| \\
&=\lim _{n \rightarrow \infty} \left\lvert\, \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^{n}}=\lim _{n \rightarrow \infty} \frac{3^{n} \cdot 3^{n}}{(n+1) \cdot n!}\right. \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
&=5 \cdot 4!
\end{aligned}
$$

Thus $\sum \frac{(-3)^{n}}{n!}$ is Abs. waive by Ratio test

Example: Determine if the series is absolute convergent, conditionally convergent, or divergent?

$$
\begin{aligned}
& \text { EXample: Determine if the series is absolute convergent, conditionally conver- } \\
& \text { gent, or divergent? } \\
& \sum_{n=1}^{\infty} n!e^{-n} \\
& \begin{array}{ll}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!e^{-n-1}}{n!e^{-n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)!e^{-(n+1)}}{} \frac{(n+1) \cdot n!e^{-n} e^{-1}}{n!e^{-n}}=\lim _{n \rightarrow \infty} \frac{n+1}{e^{1}}=\infty
\end{array}
\end{aligned}
$$

by Ratio test This series will diverge

$$
2 \cdot n!=2 n!\neq(2 n)!
$$

Example: Determine if the series is absolute convergent, conditionally conver-

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{3}}{(2 n)!} \quad G_{n}=\frac{(n+1)^{3}}{(2 n)!} \quad G_{n+1}=\frac{(n+2)^{3}}{(2(n+1))!}=\frac{(n+2)^{3}}{(2 n+2)!} \text {. }
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+2)^{3}}{(2 n+2)!} \cdot \frac{(2 r)!}{(n+1)^{3}}\right|
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+2)^{3}}{(n+1)^{3}} \cdot \frac{(2 n)!}{(2 n+2)(2 n+1)(2 n)!} \\
& \lim _{n \rightarrow \infty}\left(\frac{n+2}{n+1}\right)^{3} \cdot \frac{1}{(2 n+2)(2 n+1)}=1^{3} \cdot 0=0
\end{aligned}
$$

The series is Abs. Conn.

$$
\begin{aligned}
5(n+1)+2 & =5 n+5+2 \\
& =5 n+7
\end{aligned}
$$

Example: Determine if the series is absolute convergent, conditionally convergent, or divergent?

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-4)^{n} n!}{7 * 12 * 17 * \ldots *(5 n+2)} \quad G_{n}=\frac{(-1)^{n} 4^{n} n!}{7 \cdot 12 \cdot 17 \cdot \cdots \cdot(5 n+2)} \\
& a_{n+1}=\frac{(-1)^{n+1} 4^{n+1}(n+1)!}{7 \cdot 12 \cdot 17 \cdots(5 n+2) \cdot(5 n+7)}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Ratio test } & \frac{1}{a_{n}} \\
\lim _{n \rightarrow \infty} \left\lvert\, \frac{(-1)^{n+1} 4^{n+1}(n+1)!}{7(12)(17) \cdots \cdot(5 n+2)(5 n+7)}\right. & \left.\frac{7(12)(17) \cdots(5 n+2)}{(-1)^{n} 4^{n} n!} \right\rvert\,
\end{array}
$$

Ratio test

$$
\lim _{n \rightarrow \infty} \frac{4^{n} \cdot 4(n+1)(n)!}{(5 n+7)} \cdot \frac{1}{4^{n} n!}=\lim _{n \rightarrow \infty} \frac{4 n+4}{5 n+7}=\frac{4}{5}
$$

The series will conn. by the Ratio test.

Example: The series $\sum a_{n}$ is defined recursively by

$$
a_{1}=1 \quad a_{n+1}=\left[\frac{(2+\cos (n)}{\sqrt{n}}\right] a_{n} \text { for } n \geq 1
$$

Is the series is absolute convergent, conditionally convergent, or divergent?

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{\frac{2+\cos (n)}{\sqrt{n}} \cdot \ln _{n}}{u_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\operatorname{los}(n)}{\sqrt{n}}=0
\end{aligned}
$$

$$
\begin{array}{r}
\text { By Ratio test the series is Abs. } \\
\text { thus conv. }
\end{array}
$$

