Pg 1

Section 11.9: Representations of Functions as Power Series
Geometric Power Series: $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$ converges for $|x|<1$ with Radius of convergence $=1$ and interval of convergence $(-1,1)$
Building Block

$$
\frac{1}{1-x}=\sum_{n=0} x^{n} \quad R=1 \quad I:(-1,1)
$$

$$
|\square|<1 \rightarrow \frac{1}{1-\square}=\sum_{n=0} B^{n}
$$

Example: Find the power series representation of $f(x)$ and the radius and interval of convergence.
A)

$$
\begin{aligned}
& \text { ample: Find the power series representation of } f(x) \text { and the radius and in- } \\
& \text { val of convergence. } \\
& \begin{aligned}
\frac{1}{4+x} & =\frac{1}{4\left(1+\frac{x}{4}\right)} \\
& =\frac{1}{4} \cdot \frac{1}{1-\frac{-x}{4}}=\frac{1}{4} \sum_{n=0}\left(\frac{-x}{4}\right)^{n}=\frac{1}{1-x} \begin{array}{r}
n \\
|x|<1 \\
\mid x:(-1,1)
\end{array}
\end{aligned}
\end{aligned}
$$

$$
\frac{1}{4+x}=\sum_{n=0} \frac{(-1)^{n} x^{n}}{4^{n+1}}
$$

Con lo the Ratio test to firs Radius d cons. σ then find The Interred of cons. like in section 11.8

$$
\begin{aligned}
& \left|\frac{x}{4}\right|<1 \\
& |x|<4 \\
& -4<x<4
\end{aligned} \longrightarrow|x-0|<4 \rightarrow R=4
$$

~.)
Converge if $\left|\frac{-x}{4}\right|<1$
B)

$$
\text { B) } \frac{x^{2}}{4+x}=x^{2} \cdot \frac{1}{4+x}=x^{2} \frac{(-1)^{n} x^{n}}{4^{n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+2}}{4^{n+1}}
$$

$$
\frac{\sum_{n=0}^{\infty} \frac{\text { dols this by shifting the series }}{c_{n} x^{n}} \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+2}}{4^{n+1}}=\sum_{j=2} \frac{(-1)^{j-2} x^{j}}{4^{j-1}}=\sum_{n=2}^{(-1)^{n-2} x^{n}}}{4^{n-1}}}{\sum_{n=2}}
$$

$$
\begin{aligned}
& j=n+2 \\
& j-2=n \\
& n+1=j-1
\end{aligned}
$$

$$
\frac{1}{1-\Delta}=\sum_{n=0} D^{n} \quad|\Delta|<1
$$

Example: Find the power series representation of $f(x)$ and the radius of convergence.
A)

$$
\begin{aligned}
& \frac{3 x^{3}}{1-9 x^{2}}=3 x^{3} \cdot \frac{1}{1-9 x^{2}}=3 x^{3} \cdot \sum_{n=0}\left(9 x^{2}\right)^{n} \\
& =3 x^{3} \cdot \sum_{n=0} 9^{n} x^{2 n}=\sum_{n=0} 3 \cdot 3^{2 n} x^{3} x^{2 n} \\
& =\sum_{n=0} 3^{2 n+1} x^{2 n+3} \\
& \begin{array}{l}
\left|9 x^{2}\right|<1 \\
\left|x^{2}\right|<\frac{1}{9}
\end{array} \\
& R=\frac{1}{3} \\
& x^{2}<\frac{1}{9} \\
& \sqrt{x^{2}}<\sqrt{\frac{1}{9}} \\
& |x|<\frac{1}{3} \\
& \begin{array}{c}
|x-0|<\frac{1}{3}=R \\
\uparrow \\
\text { centered }
\end{array}
\end{aligned}
$$

partial fouctions
B)

$$
\begin{aligned}
\frac{x}{x^{2}-3 x+2} & =\frac{2}{x-2}+\frac{-1}{x-1} \\
& =\frac{-2}{2-x}+\frac{1}{1-x} \\
& =\frac{-2}{2\left[1-\frac{x}{2}\right]}+\frac{1}{1-x}
\end{aligned}
$$

multipled topa bottom by -1

$$
\begin{aligned}
& =\frac{-2}{2-x}+\frac{1}{1-x} \\
& =\frac{-2}{2\left[1-\frac{x}{2}\right]}+\frac{1}{1-x} \\
& =\frac{-1}{1-\frac{x}{2}}+\frac{1}{1-x} \\
& \begin{array}{lll}
\left|\frac{x}{2}\right|<1 \\
|x|<2 \\
R=2
\end{array} \quad=-\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}+\sum_{n=0}^{1-\frac{x}{2}} x^{n} \quad|x|<1 \\
& =-\sum_{n=0} \frac{x^{n}}{2^{n}}+\sum_{n=0} x^{n} \\
& =\sum_{n=0} \frac{-x^{n}}{2^{n}}+\sum_{n=0} x^{n} \\
& \begin{array}{l}
=\sum_{n=0}-\frac{x^{n}}{2^{n}}+x^{n}=\sum_{n=0}^{n}\left(\frac{-1}{2^{n}}+1\right) x^{n} \\
I:(-1,1)
\end{array} \\
& \begin{array}{l}
=\sum_{n=0}-\frac{x^{n}}{2^{n}}+x^{n}=\sum_{n=0}\left(\frac{-1}{2^{n}}+1\right) x^{n} \\
I:(-1,1)
\end{array}
\end{aligned}
$$

$$
\sum_{n=0}\left(\frac{-1}{2^{n}}+1\right)\left(\frac{1}{2}\right)^{n}=\frac{1 / 2}{\left(\frac{1}{2}\right)^{2}-3\left(\frac{1}{2}\right)+2}
$$

Pg 6
Monday, November 4, $2019 \quad$ 7:54 PM
C)
$\frac{9}{x^{4}+81}$

$$
\begin{aligned}
& =\frac{9}{81\left[1+\frac{x^{4}}{81}\right]}=\frac{1}{9} \cdot \frac{1}{1-\frac{-x^{4}}{81}} \\
& =\frac{1}{9} \sum_{n=0}^{\infty}\left(-\frac{x^{4}}{81}\right)^{n}=\frac{1}{9} \sum_{n=0} \frac{(-1)^{n} x^{4 / n}}{9^{2 n}} \\
& =\sum_{n=0} \frac{(-1)^{n} x^{4 n}}{9^{2 n+1}} \\
& R=3 \\
& I:(-3,3) \\
& \left|\frac{-x^{4}}{81}\right|<1 \\
& \frac{x^{4}}{81}<1 \\
& x^{4}<81 \\
& |x|<\sqrt[4]{81}=3 \\
& |x|<3
\end{aligned}
$$

Theorem: If the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R>0$, then the function defined by $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{aligned}
& f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots=\sum_{\sum_{n=0}^{\infty} c_{n}(x-a)^{n}} \begin{array}{l}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\ldots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x=C+c_{0}(x-a)+\frac{c_{1}(x-a)^{2}}{2}+\frac{c_{2}(x-a)^{3}}{3}+\ldots=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1}
\end{array} .
\end{aligned}
$$

The radii of convergence for both $f^{\prime}(x)$ and $\int f(x) d x$ are both R . The interval of convergence may change.

$$
\begin{array}{l|l}
f=\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}} & g=\sum_{n=0}^{\infty} \frac{x^{n+2}}{3^{n}} \\
\mathrm{f}=\frac{x^{0}}{3^{0}}+\frac{x^{1}}{3^{1}}+\frac{x^{2}}{3^{2}}+\cdots & \mathrm{g}=\frac{x^{2}}{3^{0}}+\frac{x^{3}}{3^{1}}+\frac{x^{4}}{3^{2}}+\cdots \\
\mathrm{f}=1+\frac{x}{3}+\frac{x^{2}}{3^{2}}+\cdots & \mathrm{g}=x^{2}+\frac{x^{3}}{3^{1}}+\frac{x^{4}}{3^{2}}+\cdots \\
f^{\prime}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{3^{n}} & g^{\prime}=\sum_{n=0}^{\infty} \frac{(n+2) x^{n+1}}{3^{n}}
\end{array}
$$

Example: Evaluate this integral by using a power series and find the radius of

$$
\begin{aligned}
\int_{x^{\frac{9}{4}+81}}^{\frac{x^{4}}{\text { Example: Evaluate this integral by using a power series and find the radius of }}} \begin{aligned}
\int^{4}+81 \\
x^{4}+81
\end{aligned} \sum_{n=0} \frac{9}{a^{2 n+1}} d x & =\int \sum_{n=0} \frac{(-1)^{n} x^{4 n}}{9^{2 n+1}} d x \\
& =\sum_{n=0} \int \frac{(-1)^{n} x^{4 n}}{9^{2 n+1}} d x \\
\int \frac{a}{x^{4}+81} d x & =\sum_{n=0} \frac{(-1)^{n} x^{4 n+1}}{9^{2 n+1}(4 n+1)}+C \quad R=3
\end{aligned}
$$

$$
\frac{1}{1-x}=\sum_{n=0} x^{n} \quad|x|<1 \quad R=1 \quad \Gamma(-1,1)
$$

Example: Find a power series representation of $f(x)$ and determine the interval and radius of convergence.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{1+x}=\frac{1}{1-[(-x)}=\sum_{n=0}(-x)^{n}=\sum_{n=0}(-1)^{n} x^{n} \\
& |-x|<1 \\
& |x|<1 \rightarrow R=1
\end{aligned}
$$

$$
\begin{align*}
& f(x)=\int f^{\prime}(x) d x \\
& \underline{l_{n}|1+x|=\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x} \\
& \ln _{n}|1+x|=C+\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1}
\end{align*}
$$

need to firs the value of C.
pick $x=0$ (where we are centered)

$$
\begin{aligned}
\ln (1+0) & =C+0 \\
\ln (1) & =C \\
C & =0
\end{aligned}
$$

$$
\ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} \quad R=1
$$

Now find the interval of cans.

$$
\text { starts } \quad-1<x<1
$$

Test the end ports.

$$
x=1 \quad \sum_{n=0} \frac{(-1)^{n} 1^{n+1}}{n+1}=\sum_{n=0}^{\frac{(-1)^{n}}{n+1}} \begin{array}{ll}
& b_{n}=\frac{1}{n+1} \\
& \text { dec. } \\
\lim _{n \rightarrow \infty} b_{n}=0
\end{array}
$$

Cone. by AST

$$
\begin{aligned}
& \underline{x=-1} \sum_{n=0} \frac{(-1)^{n}(-1)^{n+1}}{n+1}=\sum_{n=0} \frac{(-1)^{n}(-1)^{n}(-1)}{n+1} \\
&=\sum \frac{-1}{n+1}=-\sum \frac{1}{n+1}
\end{aligned}
$$

di: by LOT with $E \frac{1}{n}$

$$
\ln (1+x)=\sum_{n=0}^{\frac{(-1)^{n} x^{n+1}}{n+1} \quad R=1} \quad[:(-1,1]
$$

Our second building block. I

$$
\ln (1+\mathbb{\boxed { V }})=\sum_{n=0} \frac{(-1)^{n} x^{n+1}}{n+1} \quad R=1 \quad|x|<1
$$

Example: Find the power series representation of these functions. determine the radius of convergence.

A) $f(x)=\ln (1-x)$

$$
=\ln \left(1+\frac{(-x)}{q}\right)=\sum_{n=0} \frac{(-1)^{n}(-x)^{n+1}}{n+1} \quad|-x|<1
$$

$$
=\sum_{n=0} \frac{(-1)^{n}(-1)^{n+1} x^{n+1}}{n+1}=\sum_{n=0}^{n=0} \frac{-x^{n+1}}{n+1} \quad r=1
$$

B) $f(x)=\ln \left(4+x^{2}\right)=\ln \left[4\left(1+\frac{x^{2}}{4}\right)\right]$

$$
=\ln (4)+\ln \left(1+\left[\frac{x^{2}}{4}\right]\right)
$$

$$
\begin{aligned}
& \left|\frac{x^{2}}{4}\right|<1 \\
& \left|x^{2}\right|<4 \\
& x^{2}<4
\end{aligned}
$$

$$
\begin{aligned}
& =\ln (4)+\sum_{n=0} \frac{(-1)^{n}}{n+1} \cdot \frac{\left(x^{2}\right)^{n+1}}{y^{n+1}} \\
\ln \left(4+x^{2}\right)= & =\frac{\ln (4)+\sum_{n=0} \frac{(-1)^{n} x^{2 n+2}}{(n+1) \cdot 4^{n+1}}}{R=2}
\end{aligned}
$$

Example: Find the power series representation of $f(x)$ and determine the radius of convergence

$$
\begin{array}{ll}
f^{\prime}(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} & \left|-x^{2}\right|<1 \\
f^{\prime}(x)=\sum_{n=0}(-1)^{n} x^{2 n} \quad R=1 & \left|x^{2}\right|<1 \\
f(x)=\int x^{2}<1 \\
\operatorname{frctan}(x) & |x|<1=R \\
& C+\sum_{n=0}^{\prime \prime} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad R=1
\end{array}
$$

We car solve for C. (plug in $x=0$)

$$
\begin{array}{rlr}
\arctan (0) & =C+0 & \\
0 & =C & \text { Building Block } \\
\operatorname{arctar}(x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} & R=1
\end{array}
$$

$$
\frac{1}{1-B}=\sum_{n=0} a^{n} \quad|a| \in 1
$$

$$
\begin{aligned}
& f(x)=\frac{1}{(1+x)^{3}}=\frac{1}{2} g^{\prime \prime}(x) \\
& g(x)=\frac{1}{1+x}=(1+x)^{-1}=\frac{1}{1-(-x)}=\sum_{n=0}(-1)^{n} x^{n} \\
& C=1-x+x^{2}-x^{3}+\ldots \\
& \begin{aligned}
g^{\prime}(x) & =-1(1+x)^{-2}(1)=(-1)(1+x)^{-2}=\sum_{n=1}(-1)^{n} n x^{n-1} \\
& =\frac{-1}{2}
\end{aligned} \\
& =\frac{-1}{(1+x)^{2}} \\
& L_{\rightarrow-1}+2 x-3 x^{2}+\cdots \\
& g^{\prime \prime}(x)=2(1+x)^{-3}=\frac{2}{(1+x)^{3}}=\sum_{n=2}(-1)^{n} n(n-1) x^{n-2} \\
& f(x)=\frac{1}{2} g^{\prime \prime}(x)=\frac{1}{2} \sum_{n=2}(-1)^{n} n(n-1) x^{n-2} \\
& f(x)=\sum_{n=2} \frac{(-1)^{n} n(n-1) x^{n-2}}{2}
\end{aligned}
$$

Let $j=n-2$

$$
j+2=n
$$

$j \quad j+1=n-1$

Example: Find a power series representation of $f(x)$.

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{(1+2 x)^{3}}=x^{3} \cdot \frac{1}{8} g^{\prime \prime}(x)=\frac{x^{3}}{8} g^{\prime \prime}(x) \\
& y(x)=\frac{1}{1+2 x}=(1+2 x)^{-1}=\frac{1}{1-(-2 x)}=\sum_{n=0}(-1)^{n} 2^{n} x^{n} \\
& g^{\prime}(x)=-(1+2 x)^{-2}(2)=-2(1+2 x)^{-2}=\sum_{n=1}(-1)^{n} 2^{n} n x^{n-1} \\
& g^{\prime \prime}(x)=4(1+2 x)^{-3}(2)=\frac{8}{(1+2 x)^{3}}=\sum_{n=2}^{\infty}(-1)^{n} 2^{n} n(n-1) x^{n-2} \\
& f(x)=\frac{x^{3}}{8} g^{\prime \prime}(x)=\frac{x^{3}}{2^{3}} g^{\prime \prime}(x) \\
&=\frac{x^{3}}{2^{3}} \sum_{n=2} \frac{(-1)^{n} 2^{n} n(n-1) x^{n-2}}{2^{3}} \\
&=\sum_{n=2} \frac{(-1)^{n} 2^{n} n(n-1) x^{3} x^{n-2}}{2^{3}} \\
& f(x)=\sum_{n=2}^{(-1)^{n} 2^{n-3} n(n-1) x^{n+1}}
\end{aligned}
$$

$$
\operatorname{ar}\left(\tan (x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right.
$$

Example: Use a series to evaluate this integral. $\int \arctan \left(x^{3}\right) d x$

$$
\begin{aligned}
\arctan \left(\underline{x}^{3}\right) & =\sum_{n=0} \frac{(-1)^{n}\left(x^{3}\right)^{2 n+1}}{2 n+1} \\
& =\sum_{n=0} \frac{(-1)^{n} x^{6 n+3}}{2 n+1} \\
\int \arctan \left(x^{3}\right) d x & =\int \sum_{n=0} \frac{(-1)^{n} x^{6 n+3}}{2 n+1} d x \\
\int \operatorname{rrctan}\left(x^{3}\right) d x & =C+\sum_{n=0} \frac{(-1)^{n} x^{6 n+4}}{(2 n+1)(6 n+4)}
\end{aligned}
$$

